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LINEAR COMPLEMENTARITY SYSTEMS: ZENO STATES*

JINGLAI SHENT AND JONG-SHI PANGT

Abstract. A linear complementarity system (LCS) is a hybrid dynamical system defined by a
linear time-invariant ordinary differential equation coupled with a finite-dimensional linear comple-
mentarity problem (LCP). The present paper is the first of several papers whose goal is to study
some fundamental issues associated with an LCS. Specifically, this paper addresses the issue of Zeno
states and the related issue of finite number of mode switches in such a system. The cornerstone
of our study is an expansion of a solution trajectory to the LCS near a given state in terms of an
observability degree of the state. On the basis of this expansion and an inductive argument, we
establish that an LCS satisfying the P-property has no strongly Zeno states. We next extend the
analysis for such an LCS to a broader class of problems and provide sufficient conditions for a given
state to be weakly non-Zeno. While related mode-switch results have been proved by Brunovsky and
Sussmann for more general hybrid systems, our analysis exploits the special structure of the LCS
and yields new results for the latter that are of independent interest and complement those by these
two and other authors.

Key words. linear complementarity systems, Zeno states, P-matrix, complementarity problem
AMS subject classifications. 34A40, 90C33, 93B12, 93C10

DOI. 10.1137/040612270

1. Introduction. A linear complementarity system (LCS) is a special dynam-
ical system defined by an linear ordinary differential equation (ODE) involving an
algebraic variable that is required to be a solution of a standard linear complemen-
tarity problem (LCP) [11]. While being a special instance of a differential variational
inequality, which has recently been studied in great depth in [23], the LCS has itself
received an extensive treatment in two excellent Ph.D. theses [5, 13] and in related
articles [3, 8, 9, 15, 16, 17]. In addition, the LCS belongs to the broad framework of
a hybrid system [18, 20, 30, 34, 35, 36, 26, 28], which is defined by a finite number
of smooth ODEs, called modes, with transitions between the modes occurring along
a state trajectory. Examples of dynamical systems in which the complementarity
paradigm has played a prominent role include nonsmooth mechanical systems [2, 24]
in general and multibody dynamics simulation under frictional contacts in particular
[1, 21, 29, 31, 32], as well as switched electrical networks and switched control sys-
tems, e.g., relay systems and variable structure systems [6, 7, 14, 19, 38]. In addition,
linear-quadratic dynamic Nash games with linear dynamics and control constraints
naturally lead to LCSs with special boundary conditions. For an excellent state-of-
the-art review of complementarity systems and their applications in engineering and
economics, we refer to the excellent recent article by Schumacher [27].

The LCS occupies a fundamental role in the study of nonsmooth dynamical sys-
tems because it is arguably the simplest of such systems. Though seemingly simple,
the analysis of the LCS in general is complicated by impulsive and multimodal be-
havior of its solutions. In the references cited above, such as in the two theses [5, 13],
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the study of the LCS has employed many concepts and results from (constrained)
linear systems theory; in particular, the concept of system passivity [37] has played
a major role. In contrast to this system-theoretic approach, we feel that a better
understanding of the LCS as a basic mathematical model can be achieved by con-
sidering the simplest, albeit nontrivial, instance of such a system. Motivated by this
contrasting “mathematical programming” approach, we are led to consider an LCS
satisfying the “P-property,” i.e., where the underlying finite-dimensional LCP has a
unique solution for all constant vectors. An immediate consequence of this property is
that the LCS is globally equivalent to an ODE with a piecewise linear, thus Lipschitz
continuous, right-hand side (which albeit is only implicitly defined). While this is
a great simplification, the piecewise linear nature of the right-hand side renders the
LCS a nonsmooth system and leads to many important system-theoretic and control
issues that require careful study. Several of these topics are the main concern of this
and accompanying papers. Extending the class of LCSs with the P-property, we will
also consider a broader class of systems and study their (non-)Zeno states.

The organization of the rest of the paper is as follows. In section 2, we formally
define the LCS, review some basic results of the LCP, and introduce two new LCP
concepts that are useful for our study. Section 3 addresses the question of whether
there can be infinitely many mode transitions in any finite time, i.e., the Zeno behavior
of the LCS. Formal algebraic definitions of (non-)Zeno states and of mode switches
that are tailored to the LCS are presented. An expansion based technique is developed
to prove non-Zenoness, which is applicable to an LCS with the P-property. Extended
Zeno results are presented in section 4. A special bimodal system is considered in
section 5. The paper ends with some concluding remarks in the sixth and last section.

2. Preliminary discussion. Defined by a tuple of four matrices, A € R™**",
Bec®Rvm C e ®™*" and D € R™*™, and a vector ¥ € R, the goal of the LCS
is to find trajectories z(t) € R™ and u(t) € N™ satisfying

& = Az + Bu,
(1) 0 <ul Czx+ Du >0,
2(0) = 20,

where © = ‘fl—f denotes the time derivative of the trajectory x(t) and a L b means that

the two vectors a and b are orthogonal, i.e., a”b = 0. While it is in general possible for
the above differential and complementarity conditions to hold only at almost all times
t, in the present paper, the conditions that we will impose on the tuple (A4, B, C, D)
will ensure that the xz-trajectory is continuously differentiable and the u-trajectory is
well defined (albeit not necessarily continuous) on the time interval of interest.

It is clear that LCP theory has a major role to play in the study of the LCS. For
this reason, we summarize in the next subsection some of the essential concepts from
this theory that are relevant to the developments in this paper. Details of this review
can be found in the monograph [11], and the results therein will be used freely. Two
new LCP concepts are introduced in subsection 2.2.

2.1. LCP background. Formally, given a vector ¢ € R™ and a matrix M €
Rm*™the aim of the LCP (¢, M) is to find a vector v € R™ such that

0<ulw=qg+Mu>D0.

The solution set of this problem is denoted by SOL(gq, M). Among all matrix classes
in LCP theory, the most fundamental one is that of the P-matrices. Specifically, M
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is a P-matrix if all its principal minors are positive. This is the class of matrices
that will be the starting point in our study of the LCS (1). It is well known that M
is a P-matrix if and only if SOL(q, M) is a singleton for all ¢ € R™; moreover, the
unique element of SOL(g, M), which we denote u(q), is a piecewise linear function
of ¢ € R™. This implies in particular that u(q) is (globally) Lipschitz continuous
and directionally differentiable. The directional derivative, denoted u'(g;dq), of the
solution function u(q) along the direction dg can be expressed as the unique solution
of a certain mixed LCP. Specifically, define three fundamental index sets associated
with u(q):

a={i:ulq); >0 = (¢g+Mulq))},
B={i:ulgi=0= (qg+Mulq))},
vy={i:u(@); =0 < (¢g+Mu(q)); }.

It follows that u’(g; dg) is the unique solution @ of the mixed LCP:

0 = (dg + Mii)a,

The solution set SOL(gq, M) of an LCP is in general the union of finitely many
polyhedra, each called a piece of this set. Indeed, we have

+Mu)g =0, uy >0
SOL(g, M) = | J{ u e ®™ - (a ) ,
(¢g+Mu)s >0, ug =0

[e3%

where the union ranges over all subsets a of {1,...,m}. The case where SOL(q, M)
is convex for all ¢ € R™ is particularly important. This case is characterized by the
column sufficiency property of the matrix M. Specifically, a matrix M is column
sufficient if wo Mu < 0 = uwo Mu = 0, where o denotes the Hadamard product
of two vectors. It is easy to see that the property of column sufficiency is inherited
by the principal submatrices of M and also by the principal pivot transforms of M.
That is, if M is column sufficient, then so is the principal submatrix M, for all

a C {1,...,m}; moreover, if M,, is nonsingular, then the matrix below, called the
a-principal pivot transform of M,
(2) [ (Maa)_l _(Maa )_1Mao7 ]

M& (Maa )71 M&& - Md (Mozoz )71Mo¢6z

is also column sufficient, where & is the complement of « in {1,...,m}. If M is
column sufficient, then

(¢g+Mu)y =0, uqg >0
SOL(¢g,M) = qu € R™ : ,

(¢g+Mu)s >0, ug =0

where « is the set consisting of all indices ¢ for which there exists a solution u €
SOL(q, M) with u; > 0.

Another known property of the LCP that we need is the “semistability” of its
solutions sets. Specifically, by [12, Proposition 5.5.5, Corollary 5.5.9], it follows that
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for any matrix M € R™*™ and every vector ¢ € R™, there exist positive scalars ¢
and ¢ such that

l¢' —qll < e = SOL(¢',M) C SOL(¢q, M)+ cllq—q"| B,

where B is the (closed) unit ball in ™.

2.2. New LCP concepts. While we are unable to directly deal with the entire
class of LCSs with a column sufficient matrix D, such matrices provide the motivation
to introduce two new LCP concepts to be used later. The first new LCP concept is a
broadening of the class of column sufficient matrices that addresses the convexity of
the solution sets of the homogeneous problems only.

DEFINITION 1. The matriz M € R™*™ is said to be weakly column sufficient
if for every triple of index sets (a, 8,7) that partition {1,...,m}, the set of vectors
u € R™ satisfying

(Mu)o = 0,

(3) 0<wug L (Mu)sg >0,
uy =0
is convex, or equivalently, is polyhedral. 1]

We leave it to the reader to verify that the convexity of the solution set of (3) is
equivalent to its polyhedrality. Besides the class of column sufficient matrices which
must be weakly column sufficient, a “nondegenerate matrix,” i.e., one whose principal
minors are all nonzero, is also weakly column sufficient; indeed if M is nondegenerate,
then the only solution to the system (3) is the zero vector. The following result
summarizes several properties of weak column sufficiency.

PROPOSITION 2. Let M € R™*™ be weakly column sufficient. The following
statements are valid:

(a) For every subset & of {1,...,m}, the principal submatriz Mgss is weakly col-
umn sufficient.
(b) For every subset & of {1,...,m} such that Mas is nonsingular, the &-principal

pivot transform (2) of M is weakly column sufficient.
(¢) The solution set of the homogeneous LCP (0, M) is polyhedral; in fact,

(Mu)q =0, uy >0
SOL(O,M) =< u e R™: ,

(MU )@ Z 0, Uy = 0
where « is the set consisting of all indices i for which there exists u €
SOL(0, M) such that u; > 0 and & is the complement of «.

Proof. Let o', B’, and +' be three index sets partitioning the subset &. A vector
ug satisfies the system

if and only if the vector u = (ug, 0) satisfies the system (3) with («, 3,7) = (o', 8',7'U
&), where & is the complement of & in {1,...,m}. Consequently, part (a) holds. To
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prove (b), let M be the a-principal pivot transform (2) of M. Let o', 8’, and v’ be

three index sets partitioning the set {1,...,m}. Consider the system
(Mii)or =0,
(4) 0 < g L (Mi)g: >0,
Uy = 0.

Let @ = Mu. By pivoting on (Mzz)~t in M, we can recover the original system
w = Mu, where the variables u and w are related to u and w via the identities:

= () = ()
=)o (2)

Therefore, system (4) is equivalent to system (3) for some suitable triple («, 5, v) that
partitions {1,...,m}. From this equivalence, the convexity of the solution set of the
former system can be easily proved. This establishes (b). To prove (c¢), we note that
the LCP (0, M) is just the system (3) with 5 = {1,...,m}. Hence the polyhedrality
of SOL(0, M) follows from the weak column sufficiency of M. The representation of
SOL(0, M) can be proved in the same way as in the case of a column sufficient matrix;
see the proof in [11, Theorem 3.5.8] for details. O

To introduce the second new LCP concept, we note that if ¢ # 0, then for every
solution u of the LCP (g, M), there must exist at least one index 4 such that u; > 0
or w; = (q + Mu); > 0. Define two sets of “identifiable indices”:

Z, ={i:u >0 Yu € SOL(¢, M)},
T, = {i:(q+ Mu); >0 Vu e SOL(q, M)},

one, or both, of which may be empty in general.

DEFINITION 3. The LCP (q, M), where q # 0, is identifiable if the following two
conditions hold:

(a) Z,UZ, # 0, and

(b) the principal submatriz Mz, 1, is nonsingular if Z,, # 0. (By convention, this

condition is vacuously true if T, is empty.) 0

If the LCP (¢, M), where g # 0, has a unique solution u, then the LCP is identifi-
able if M, is nonsingular, where « is the (possibly empty) support of u. The following
lemma asserts a positivity property of the “identifiable variables” of an LCP.

PROPOSITION 4. For any pair (g, M) with ¢ # 0, there exists a scalar o > 0 such
that u; > o and (¢ + Mu); > o for allu € SOL(¢, M) and alli € Z,, and j € T,,.

Proof. We prove the claim only for the u-variable. For each i € Z,,, consider the
optimization problem

minimize  u;

subject to u € SOL(q, M).
Since the feasible set of this problem is the union of finitely many polyhedra and its
objective function is linear and positive (hence bounded below) on this set, it follows

from linear programming theory that the above problem attains a finite minimum
objective value which must be positive. The desired claim follows readily. 1]
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2.3. Back to the LCS. Returning to the LCS (1), assume that D is a P-matrix.
In this case, (1) is equivalent to the ODE

(5) & = Az + Bu(Cz), x(0) = a°,

where the right-hand side Az 4+ Bu(C'z) is a piecewise linear function of z. (Note that
u(0) = 0.) As such, (1) has a unique solution trajectory (z(t),u(t)) defined on [0, c0)
with z(¢) being continuously differentiable and u(t) = u(Cx(t)) being continuous. In
contrast to the above representation (5) which involves the implicit function u(Cx),
the right-hand side of the LCS (1) can be represented explicitly using the comple-
mentarity cones associated with the matrix D. Specifically, for each index subset ¢ of
{1,...,m} with complement §, define the polyhedral cone

germ B (") =0,
qs

7(D5§)71 0
Eg = 1
—Dgs(Dss )~ 1

(6) Cs

where

6 §Rm><m

Since D is a P-matrix, it is clear that Ejs is well defined and nonsingular. Defining

the matrix
—(Dss)~t 0
K5 = ( 66) y
0 0

we have u(Cz) = KsCu, provided that Cx € Cs. Consequently, the ODE (5) can be
written equivalently as

&t = (A+ BKsC)x if EsCxz > 0,

whose right-hand side is now in an ezplicit, piecewise linear form.

Consider next the case where D is not a P-matrix but the submatrix D, is
nonsingular for some subset « of {1,...,m}. We can define a system that is equivalent
to (1) by “pivoting” on D, as done for a standard LCP [11], i.e., by solving for the
variable u, in the equation

Wy = Cuo.x + Daoqia + Dogtis

in terms of the other variables w,, =, and us, where & is the complement of «
in {1,...,m}, and then substituting the resulting expression for u, into the other
conditions in (1). The equivalent LCS, which we call the a-principal transform of (1),
is

i = Ax + Eﬂ,
(7) 0<a.Ll Cx+Du >0,

2(0) = 29,
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where @ = (wq, ug) and

A= A-By(Dao) Ca.,

B = [Ba(Daa)™" B~ Ba(Daa) 'Daa],

[ —(Daa)"'Ca.
(8) ¢ = ;
| Ca. — Daa(Daa )" 1C,.
~ [ (Daa)_l _(Doca)_lDad
D = .
_D&a(Daa)_l D&&_D&Q(Daa)_lDaa

We call the tuple (g, B,C, l~)) the a-principal transform of (A, B, C, D). Of particular
importance in the subsequent analysis is the following principal subsystem of this
transform:

© i = Az + [B.g — B.a(Daa ) "' Daa Jua,
0 S Ug J— [C&~ - D&a(Daa )71004- }.’E + [D&& - Dda(Daa )71Dao7 ]ud 2 0

To illustrate the role of the latter subsystem, suppose that at some state x(t,) = x*,
the corresponding algebraic vector u(t.) = u* is a strongly regular solution [25] of the
LCP (Cz*, D). This means that the submatrix D, ., is nonsingular and the Schur
complement Dg, 5. — Dg.a.(Da,a.) ' Da.pg. is a P-matrix, where

P> 0= (Cx*+Du"); },

Be ={i:uf =0=(Cz*+Du*); },

¥ =0< (Cx*+Du*); }.
If the solution trajectory (z(t),u(t)) is continuous near t,, it then follows that for all
t sufficiently near t., (Cz(t) + Du(t)); > 0 for all ¢ € v, and u;(¢) > 0 for all i € a.
This implies that u;(¢) = 0 for all i € v, and (Cx(t) + Du(t)); = 0 for all i € ..

Hence, locally for ¢ near t,, the trajectory (x(t), u(t)) must satisfy the following mixed
LCS obtained by fixing some variables at zero:

& = Az + Bu,

0= (Czx+Du); Vi€ as,
0<wu; L (Cx+Du); >0 Viéepf,

0=wu; Vi€ .

(10)

Since D, , is nonsingular, we can carry out the pivot operation as described above
and deduce that (10) is equivalent to, for all ¢ sufficiently near t,,
& = Az + Euﬁ,

(11) _
0 <ug L Cx+ Dug > 0,

where
A=A- B-a*(Da*a* )710(1*, B = Bﬁ* - B-a*(Da*a* )71Da*ﬁ*a
C =0Cp,.—Dp.a.(Da.a. ) 'Co., D= Dg.p. — Dpa.(Da,a. ) " Da.p.-
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The resulting LCS (11) has the P-property. We summarize this reduction in the
following result, which we will later use to deduce an important consequence of the
state z*; see Corollary 15. For further discussion of the above reduction process, see
[23, section 5.2].

PROPOSITION 5. Let (x(t), u(t)) be a solution trajectory of the LCS (1) that is con-
tinuous near a time t.. If u(t,) is a strongly reqular solution of the LCP (Cx(t.), D),
then (x(t),u(t)) must satisfy the reduced system (11) locally near t.. d

Finally, for any nonsingular constant matrix P, we can consider the change of
variables £ = Pz and obtain an LCS in the Z-variable that is equivalent to the
original (1). This equivalent LCS is

Z = PAP~'Z + PBu,
0<ul CP™'z2+4+Du >0,
z(0) = PzY.

Particularly useful for us later (see the proof of Lemma 12) is the transformation so
that the pair (PAP~1,CP~1) is of a particular form satisfying a favorable observ-
ability condition.

3. Zeno states of an LCS. In what follows, we define two types of Zeno states
of a general LLCS; see Definition 6. Generally speaking, the presence of a Zeno state in
a hybrid system could have an adverse effect on the numerical simulation of a solution
trajectory to the system. This issue, which is closely tied to mode switches, has been
dealt with extensively in the literature; see, e.g., [4, 9, 19, 33, 38]. In particular,
for hybrid systems described by ODEs with piecewise real analytic right-hand sides,
the results by Brunovsky [4] and Sussmann [33] show that there is a finite number
of mode switches (defined in the sense in the cited references). While the latter
results are in principle applicable to the LCS with the P-property, their treatment
does not reveal the important complementarity nature of the LCS. (See [5, 9] for
some special Zeno results for the LCS where the D matrix is positive definite or
satisfies a passifiability assumption.) Because of the fundamental role of the LCS
in hybrid system theory, it is useful to have a simplified approach that exploits the
characteristics of the LCS. Most importantly, the Zeno concepts defined below are of
a refined, algebraic nature that takes into account possible degeneracy of the solutions
to the complementarity conditions. Analytically, our proofs of the main Zeno results,
Theorems 9 and 21, are based on a local expansion of a solution trajectory to the LCS
(Lemma 14) which is a new result by itself and enables us to study systems failing
the P-property. Furthermore, this expansion reveals a local property of a solution
trajectory of (1) in terms of an “observability degree” of a given state relative to the
pair (C, A).

As is well known, an LCS is a special linear hybrid system with finitely many
“modes,” where a mode is a linear differential algebraic equation (LDAE) defined by
a pair of disjoint index sets (@, @) whose union is the index set {1, ..., m}; specifically,
such an LDAE is as follows:

& = Ax + Bu,
(12) 0 =(Cx+ Du)q,
0 = Ugy-

Every solution trajectory of the LCS (1) must satisfy, at every time instant, the above
LDAE for a certain pair (o, @) that is dependent on the time. Conversely, if (z(t), u(t))
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is a solution trajectory satisfying the latter LDAE, then (x(t), u(t)) satisfies the LCS
(1) if (Cz(t) + Du(t))a > 0 and u(t), > 0. In general, it is possible for a solution
trajectory (x(t),u(t)) of the LCS (1) to satisfy at any given time ¢ the LDAE (12) for
multiple pairs of index sets, due to degeneracy of the complementarity conditions. For
every such trajectory, at each time ¢, that is neither the initial nor the terminal time,
there exist (i) an infinite sequence of times {¢, } converging to t, from the left and a
pair (a_,a_) of index sets partitioning {1,...,m} such that (x(t;),u(t,)) satisfies
the LDAE (12) corresponding to (a—,a—) for all k, and (ii) an infinite sequence of
times {t;} converging to t. from the right and a pair (o, a4 ) of partitioning index
sets such that (z(t)),u(t))) satisfies the LDAE (12) corresponding to (o, a.y) for
all k. An intuitive definition of a mode switch at time t, is that the two pairs of index
sets (a—,a_) and (ay, @4 ) are not equal. Roughly speaking, a Zeno state of an LCS
is a state near which there are infinitely many modes switches.

We now formalize the above informal discussion by defining “weak” and “strong”
Zeno states of a solution trajectory (z(t), u(t)) of the LCS (1). Both are local proper-
ties of a state. The strong Zeno concept is more refined than the weak Zeno concept
and is defined in terms of the index sets

a(t) = {1 wilt) > 0 = (Cz(t) + Du(t)): },
Alt) ={i: ui(t) = 0 = (Ca(t) + Dult) )i },
V() =i wit) = 0 < (Ca(t) + Du(t) )i };

in contrast, the weak Zeno concept relaxes the strong concept by restricting to the
two combined sets a(t) U 3(¢t) and ~(t) U B(t). The two concepts coincide if u(t) is
a nondegenerate solution of the LCP (Cx(t), D) for all ¢ near ¢, in which case, the
degenerate set ((t) is empty for all such ¢.

DEFINITION 6. Let (x(t),u(t)) be a solution trajectory of (1) and let x(t.) = z*.

We say that x* is

(a) strongly left non-Zeno relative to (x(t),u(t)) if a scalar e~ > 0 and a triple
of index sets (a—,B_,v-) exist such that (a(t), 5(t),v(t)) = (a—, B, v-) for
every t € [t. —e_,ty);

(b) strongly right non-Zeno relative to (x(t),u(t)) if a scalar e, > 0 and a triple
(a4, B4,7v+) of index sets exist such that (a(t), B(t),v(t)) = (ay, B+,7v+) for
every t € (o, te +e4];

(c) weakly left non-Zeno relative to (z(t),u(t)) if a scalar e > 0 and a pair
of index sets a— and a_ partitioning {1,...,m} exist such that (z(t),u(t))
satisfies the LDAE (12) corresponding to (a—,a_) for allt € [t, —e_,t.);

(d) weakly right non-Zeno relative to (x(t),u(t)) if a scalar e > 0 and a pair
of index sets ay and ay partitioning {1,...,m} exist such that (z(t),u(t))
satisfies the LDAFE (12) corresponding to (o, @) for allt € (ty,t. +4].

The state x* = x(t.) is said to be left (right) Zeno of the first (second) kind relative to
the trajectory (z(t),u(t)) if it is not strongly (weakly) left (right) non-Zeno relative
to the same trajectory. When x* is strongly (weakly) left and right non-Zero, then
we say that x* is strongly (weakly) non-Zeno; when x* is either left or right Zeno
of the first (second) kind, then we say that x* is Zeno of the first (second) kind.
When the trajectory is clear from the context, we will omit the phrase “relative to the
trajectory.” O

Definition 6 is applicable to both the initial and the terminal states of an LCS.
Specifically, if z* is the initial state 2° of the LCS (1), then we are interested only in the
right (non-)Zeno property of z*; similarly, if 2* is the terminal state 2(T) of the LCS
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(1) at a prescribed terminal time 7' > 0, then we are interested only in the left (non-)
Zeno property of z*. It is clear that the strongly (left or right) non-Zeno properties
must imply the respective weakly (left or right) non-Zeno properties. Nevertheless,
the converse is clearly not always true. In essence, the left Zeno properties of a
state refer to its reachability from the left, and the right Zeno properties refer to the
continuation from the state. Obviously, these properties have important numerical
implications when the LCS is solved by a time-stepping method. For instance, the
numerical methods discussed in [30] for solving ODEs with discontinuous right-hand
sides are based on the presumed absence of Zeno states. Further discussion of such
numerical matters is beyond the scope of this paper.

An important remark should be made for Definition 6: namely, this definition
pertains to the two trajectories x(t) and u(t) jointly. This is distinct from the treat-
ment in [4, 33] which is applicable to the implicit formulation (5) of the LCS in which
the algebraic variable u is eliminated and treated only implicitly. It is not a straight-
forward task to directly apply the results in these cited references to analyze the Zeno
properties of the LCS as described in Definition 6, where the u-trajectory plays a
prominent role. In many realistic applications of the LCS (such as in contact mechan-
ics), the role of the algebraic variable u is as important as the differential variable x;
thus, an explicit treatment of the former, as emphasized herein, is warranted.

Zeno states are closely tied to mode switches, which we formally define next. For
simplicity, we present the definition below only for a time that is neither the initial
nor the terminal time of a trajectory. The triple of index sets («(t), 5(t),y(t)) in this
definition are the fundamental index sets associated with the pair (z(t),u(t)).

DEFINITION 7. Let (z(t),u(t)) be a solution trajectory of (1) and let t. be an
intermediate time of this trajectory. We say that t. is a

(a) switch time of the first kind relative to (x(t),u(t)) if there exist two triples

of index sets, (a—,B_,v-) and (a4, By,v+), and two infinite sequences of
times, {t;. } and {t}, the former converging to t. from the left and the latter
converging to ty from the right, such that, for all k,

(a(ty), Bt;).v(ty) = (am, B, v-) # (ag, B v4) = (alty), B, Y(t7):

(b) switch time of the second kind relative to (x(t), u(t)) if there exist two infinite
sequences of times, {t; } and {t;}, the former converging to t. from the left
and the latter converging to t. from the right, such that for no pair of index
sets (o, a) partitioning {1,...,m}, (z(t;),u(ty)) and (z(t]),u(t])) both
satisfy the LDAE (12) for all k. 0

The following result shows that the absence of Zeno states in a finite time of
interval provides a sufficient condition for the finite number of switch times in the
interval.

PROPOSITION 8. Let (z(t),u(t)) be a solution trajectory of the LCS (1) defined
on an open interval containing [0,T]. If the trajectory has no Zeno states of the first
(second) kind, then there is a finite number of switch times of the first (second) kind
relative to (z(t),u(t)) in [0, 7).

Proof. We prove the result for the “second” kind only. If (z(¢), u(t)) contains no
Zeno states of the second kind, then for every ¢ € [0,T], there exist a right neigh-
borhood N;" = (¢,t + &;) and a left neighborhood N;” = (t — &) of t, for some
scalar g, > 0, and two pairs of index sets, (o;",@,") and (a; ,@; ), both partitioning
{1,...,m}, such that for all ' € N;", the pair (z(t'),u(t)) satisfies the LDAE (12)

corresponding to (o, &), and that for all ' € N, the pair (z(t'),u(t’)) satisfies
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the LDAE (12) corresponding to («; ,a; ). The family
{(t*€t,t+€t) bt e [O,T}}

constitutes an open covering of the compact interval [0, T]. Hence there exists a finite
sequence {tg,t1,...,te} C [0, 7] such that

L

[O,T] C U [tl _Etiyti +Eti].
=0

By refining the partition on the right-hand side, we may assume without loss of
generality that there exist a finite sequence of times 0 = t§ < t{ < --- < t] <
t 41 = T and a corresponding sequence of index sets a; of {1,...,m} with respective
complements &; such that (x(t),u(t)) satisfies (12) corresponding to (o, @;) for all
t e (t{,tji;1), i = 0,1,...,k. Consequently, the only possible switch times of the
second type in the interval [0, T] are the times ¢/ for i = 0,1,...,k + 1. d

3.1. The P-matrix case. The following is the main Zeno result for an LCS
with the P-property.

THEOREM 9. If D is a P-matriz, then all states of the LCS (1) must be strongly
non-Zeno.

The proof of the above theorem is accomplished via several lemmas. The first
such lemma, which is a global and time-invariant version of Proposition 5.3 in [26],
gives a decay rate for a Lipschitz continuous system.

LEMMA 10. Let @ = f(z), 2(0) = 2° be a dynamical system on R", where f(x)
is globally Lipschitz continuous in x with Lipschitz constant L > 0. If x = 0 is an
equilibrium of the system, i.e., f(0) =0, then

2% ll2e™ < Jla@) [l < [l2°2 e VE > 0.

The main proof of Theorem 9 is divided into two parts, depending on whether a
state * in question is observable or unobservable with respect to the pair (C, A). The
concept of observability is well known for a linear time-invariant system # = Ax + Bu
and y = Cz 4+ Du and is briefly reviewed here. A state x € R" is unobservable with
respect to (C, A) if Cetx = 0 for all ¢; otherwise it is called observable with respect
to (C, A). Without confusion, we usually simply call a state observable/unobservable.
The set of all unobservable states is a subspace of ", called the unobservable subspace
of the pair (C,A). An equivalent condition for a state x being observable is that
CAxx =% (0 for some 0 < k < n — 1. The linear system is observable if x = 0 is the
only unobservable state. In such the case, we call (C, A) an observable pair.

The next lemma asserts that the LCS (1) with the P-property is trivial if the
initial state 20 is unobservable.

LEMMA 11. Let D be a P-matriz. If ¥ is unobservable, then the unique solution
tragectory of (1) is (x(t),u(t)) = (eA2°,0) for all t > 0. In this case, we have
B(t) ={1,...,m} for all t > 0; hence, all states x(t) are strongly non-Zeno.

Proof. This follows easily from the uniqueness of the solution trajectory and the
fact that Ce*z® = 0 for all ¢ > 0. 0

Lemma 11 suggests that we may assume without loss of generality that 2 is
observable. The next lemma asserts that in this case, all states on the trajectory x(t)
are observable.
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LEMMA 12. Let D be a P-matriz. If 2° = x(0) is observable, then so is z(t) for
allt > 0.

Proof. Lemma 10 is applicable to the implicit form (5) of the LCS. It follows that
llz(t)|| > ||°||e~L* for some constant L > 0. Since x° is observable, it is not zero.
Hence z(t) # 0 for all ¢ > 0. Consequently, we may assume without loss of generality
that (C, A) is an unobservable pair. Let O(C, A) denote the unobservable subspace
whose dimension is ng with 1 < ny < n. According to linear system theory [10,
p. 203], there exists a nonsingular matrix P € R™"*" such that the change of variables
Z = Pz transforms the original linear system (1) into the observable canonical form

T .= O+
Tuo Tyo
_ T, _
Czr = [Co O] < _ ) - Co i’oa

and (C,, A,) is an observable pair, Z = (g;u ) is the transformed state, z, € "~ "2 and
Tuo € N™2 correspond to the observable part and unobservable part of Z, respectively.
Hence, the LCS (1) can be decomposed into the observable dynamics

B,
B’U.O

A4, 0

A21 Auo

To = AoZo+ Bou,

(13) _
0<u L C,zo+ Du>0,

and the unobservable dynamics
(14) -’%uo = 12121*%0 + Auojuo + Buou-

Moreover, any unobservable state 7 € O(C, A) is transformed to the following form
under the above transformation:
R 0
Pz = | .
xuo

This means that the observable part of an original unobservable state must be zero
and the observable part of an original observable state must not be zero. Since (13)
remains an LCS with the P-property, and since Z,(0) # 0 because z(0) is observable,
it follows that Z,(¢) # 0 for all ¢ > 0, which means that z(¢) must be observable. d

A noteworthy remark is that Lemma 12 can be proved using the reverse-time
argument.! Letting (27 (t),u"(t)) = (z(—t),u(—t)) for all t > 0, one easily sees that
the pair (z"(¢),u"(t)) satisfies a reverse-time LCS for all ¢ > 0:

"(t) = —Ax"(t) — Bu"(t),
u” >

0<u'(t) LCz"(t)+ Du"(t)

0.

Hence, the reverse-time LCS (— A, —B, C, D) preserves the P-property and its solution
pair is unique as well. Suppose z(0) is observable but x(t) is not at some ¢t > 0. Then
using the reverse-time LCS and Lemma 11, 2(0) = e~“4*x(t), which is unobservable
as well. However, the decomposition of the LCS into the observable dynamics (13)

1We thank an anonymous reviewer for bringing this remark to our attention.
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and the unobservable dynamics (14) in Lemma 12 has its own interest. Therefore, we
present it for this purpose.

Combining the above two lemmas, we have therefore proved Theorem 9 for the
unobservable states. We formally state this conclusion in the following corollary,
which requires no proof.

COROLLARY 13. Any unobservable state of an LCS with the P-property is strongly
non-Zeno. 0

We next turn our attention to the observable states. The cornerstone of the
treatment of these states is an expansion of the solution trajectory near any given time
t.. We will make use of the (unique) solution u(£CA¥z) of the LCPs (£CA*x, D).
In general, except for the fact that both are nonnegative, the two vectors u**(z) =
u(CA*2*) and u*~(z) = u(—CAFz*) have very little to do with each other. Since
D is a P-matrix, we can speak of the directional derivative of the solution function
u’(q;dq) of the LCP (q, D) at the vectors ¢ = +CA*z along the directions dq =
+(CA*+ 1z +CBu**(z)). Specifically, we will use the following directional derivatives:

u'(CA*z; CAF g + CBuFt (2))

— lim u(CAFz + 7(C Ay + CBuF*(2))) — u(CAFz)
10 T ’

u'(CA*z; —(CA* 1z + CBuk* (2)))

_ lim u(CAkz — 1(CA* 1z + CBuFt (2))) — u(CA¥x)
710 T

9

u'(—CAkz; CAF* 1y — CBuF~(2))
(—~CA*x + 7(CA* 1y — CBuF*(2))) — u(—CAFz)

LU
= lim .
710 T

The reason for distinguishing these derivatives will be evident from the next result.
In this result, we use the standard notation o(f(t)) to mean a function such that
limozt—o w = 0; the notation O(f(t)) also has the standard meaning.

LEMMA 14. Let D be a P-matriz. Let x* = x(t.) be an arbitrary state of the
solution trajectory (x(t),u(t)) such that CAix* =0 for all j = 0,1,...,k—1 for some
integer k > 0. The following two statements hold:

(a) For allt > t,,

t—t*J - t—t* k+1 i
z(t) = Z) (J,) Alg® + MBu(CA’Cm )
j=
(t — s )k+2
+ W Bu’(CAkx*;CAk+1$* + CBU(CAkLL'*)) + O(|t . t*|k+2)7
_ k _ k1
) = b ueate) + (t(kii), u!(C AV CAM 2" + CBu(C AR )

+ o([t = ..
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(b) For allt < t.,

k+2(t

x(t) ]ZZ:O 7 x + UESH] u(CA%z™)
(t_t* )k+2 / k _* k+1 _x k_x k+2
(tit*)k k_* |t7t*|k+1 / k_.* k+1,_ % k_.*
u(t) = Tu(C’A x )+Wu (CA®z*; —C A" x* — CBu(C A z™"))
+o(lt — ")
if k is even; and if k is odd,
k+2 ; k+1
§=0
(t_t*)kJrQ 1 k% k+1 % k .x k+2
+ WBu (=CA%z*; CA" " — CBu(—CA”x™)) 4+ o(|t — t.|"™°),
|t7t*|k k_*x (t*t*)kle / k_* k+1 % k_*
u(t) = Tu(fC’A )+ Wu (—=CA%z*;CA" ™ z* — CBu(—CA"x™))
Toflt — ),
Proof. Define
k  Alx*
(15) 2(t) = a(t) = (t—t.) o
J=0 '

Hence, z(t.) = 0 and z(t) satisfies

(16) 3(t) = Az(t) + (-t )" AR e 4 Bul(t),

k!

where u(t) satisfies

(17) 0 < u(t) L Ca(t) + “;ﬁiﬂ“

Since D is a P-matrix, it follows that there exists a constant 7 > 0 such that for all ¢,

CAkz* + Du(t) > 0.

lu@) | < 0l =@ 1|+t =[]
By (16), we deduce the existence of positive constants A and p such that for all ¢ < .,
ta
Iz < At =) +p / | 2(s) || ds.
t
Thus by Gronwall-Bellman inequality, we obtain, for some constant p’ > 0,
t.
[ A=) g [ (b= ) et
t

S)\(t*—t)k+1+u/(t* _t)k+2
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for all ¢ < t,. sufficiently near ¢,. A similar bound can be derived for ||z(¢)| for all
t > t, sufficiently near ¢,. Consequently, we deduce the existence of a scalar A’ > 0
such that for all ¢ near t,,

(18) Iz | < A [t =t M

Suppose that k is odd. For all ¢ < t., (17) implies

(19) 0 < o(t) L k1o—20

m - CAkZ'* + DU(t) > O7

where v(t) = klu(t)/|t — t.|¥. Since D is a P-matrix, it follows from the Lipschitz
continuity of the solutions to the LCP (g, D) that, for some constant L > 0, we have

[o(t) — u(-=CA*z*) || < L|t|i(2|k

or equivalently

Lk
(20) Hu(t) - “Tt!*'u(—CAkx*)

‘ < Lk 2(t)] Vt < t, sufficiently near t,.

For k odd and for ¢ < t., we can write (16) as

. t—t,)"
2(t) = Az(t) + %

t—t.|*

[AFT1g* — Bu(—CA*z*)) + B {u(t) _| o u(C’Akx*)}

_ k _ k
_ %[Ak"'lx* _ Bu(—CAbs) + B [u(t) _ %

+O([t = "),

u(—C’Akx*)}

where the last inequality is due to (18). Integrating the above and using (20) and
(18), we deduce

¢ (t—t,)kt!
2(t) = z(ts) +/ i(s)ds = ———2—— [AM1g* — Bu(—CAFz*) ]|+ O(Jt — t.|"2)
. (E+1)!
for all ¢t < t, sufficiently near t,. Substituting into (19), we obtain

0 < () L ’;7;1’5 ClAM 2" — Bu(—CAF ™) ] + O(|t — t.[?) — CA*2* + Du(t) > 0.

Hence, we deduce

WD) = u(~CAYe) + Tt (~C AR CAM e — CBu(-CAM") + ol|t 1),
which yields
u(t) = Mu(—CAkx*) + Mu’(—CAkx*' CA* g — CBu(-CAFz*))
k! (k+1)! ’

+o([t — .M.
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Substituting this into (16), we deduce

. (t — s )k k+1_ % k_.x
(t — s )k+1 / k_.* k+1_ % k_.* k+1

Integrating the above equation and recalling x(t) = z(¢t) + E?:o(t —t. ) Al /), we
obtain the desired expansion for z(t) when k is odd and ¢ < ¢,.

Next, assume that k is even and consider ¢ < t, sufficiently near ¢,. In this case,
instead of (19), we have

0 <o) L k!C’(ti(?)k—i-CAkx*—i—Dv(t) > 0;

moreover, (20) is replaced by

Nk
u(t) — % w(C AR

’ < Lk 2(t)]] VYt < t. sufficiently near t,.

Proceeding as above, we obtain from (16)

s = U=t ety o pucatar)) 4+ 8 [un - U=t l

1 u(CAFz*)
+O(|t — tu|1).

At this point, we can repeat the above proof and obtain the desired expansion for

(z(t),u(t)) in this case where k is even. Finally, the proof for statement (a) is similar

and therefore omitted. d

On the basis of Lemma 14, we can complete the proof of Theorem 9 by defining
the observability degree of an observable state x with respect to the pair (C, A), which
is defined as the first nonnegative integer k such that C' A¥z # 0.

Proof of Theorem 9. We use induction on m, the dimension of the input variable u.
The case m = 0 is trivial. Inductively, assume that the theorem is valid for an integer
m > 0. Consider the LCS (1) where the algebraic variable u is of dimension m+1 > 1.
Let a* = x(t,) be an arbitrary state. We first prove that z* is strongly right non-
Zeno. By the above arguments, we may assume without loss of generality that x* is
observable. Let k > 0 be the observability degree of z*; thus Cz* = - -- = CAF~la* =
0 and CAFz* # 0. The expansion in part (a) of Lemma 14 holds for the trajectory
(x(t),u(t)) in a small interval [t,,t. + e] for some e > 0. Since CA¥z* # 0, there
must exist an index i such that either u;(C A¥z*) > 0 or [C A*z* + Du(C A*z*)]; > 0.
By part (a) of Lemma 14, this implies that if u;(CA*z*) > 0 for some index 4, then
u;(t) > 0 for all ¢ > t, sufficiently near ¢., which implies, by complementarity, that
[Cxz(t) + Du(t)]; = 0 for all such t. Hence, we can solve for w;(t) from this equation,
obtaining

w(0) = 4 | Cu(t)+ X 0

J#i

which we can then substitute into the remaining conditions in (1). This substitution
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results in an LCS:

i(t) = Az(t) + Bu(b),
(21) 0 < a(t) L Cx(t) + Da(e),
x(te) = ¥,

where the matrix D is the Schur complement of the diagonal entry d;; in D and
the algebraic variable u is of dimension m, which is one less than that of the orig-
inal variable u. The original trajectory (z(t),u(t)) with the variable w; removed
must satisfy (21) in a small interval (t.,t. + /] for some ¢ > 0. Since D re-
mains a P-matrix, by the induction hypothesis, there exist an index set (o}, 31,7 )
such that (a(t),B(t)ﬁ(t)) = (al,B1,7}) for all t > t, sufficiently near ., where
(&(t),ﬁ(t)ﬁ(t)) are the three fundamental index sets associated with the solution
trajectory (x(t),u(t)). Clearly, we have («a(t), 5(t),~(t)) = (o) U {i},BL,~]) for all
t > t, sufficiently near t,.

Next, consider the case where [C A*z* + Du(C A*¥z*)]; > 0 for some index i. We
then have

[Cx(t) + Du(t)]; = (t—t) [CAFz* + Du(CA*z")]; + o(|t — t.|*1)

L k! ! * ’
which implies that [Cz(t) + Du(t)]; > 0, and thus w;(t) = 0 by complementarity for
all ¢ > t, sufficiently near ¢,. Setting this variable equal to zero and dropping the
ith column of B and D and the ith row of C' and D, we obtain a principal linear
complementarity subsystem of (1) that is satisfied by the trajectory (z(t),u(t)) for all
t > t, sufficiently near t,. The induction hypothesis can be applied to the resulting
subsystem whose algebraic variable is of one less dimension than that of the original
u. Finally, we can apply part (b) of Lemma 14 to deal with ¢ < ¢, and employ similar
reductions to complete the inductive proof. ]

4. Extended Zeno results. Theorem 9 can be easily extended to the mixed

LCS
& = Az + B'u! + B%u?,
0 = Clz + DMl + D122,
0 < u? L C?c+ D*u! +D?2u? > 0,
2(0) = 29,

provided that the matrix D! is nonsingular and the Schur complement
D22 o D21(D11 )71D12

is a P-matrix. Instead of presenting the details of this easy extension, we consider
a local version of the extension that pertains to an LCS with a “strongly regular”
state but which is not of the P-type. Specifically, we call z* a strongly regular state
of the LCS (1) if the LCP (Cx*, D) has a strongly regular solution. The following
corollary of Theorem 9 shows that any such state must be strongly non-Zeno. For
simplicity, we treat the case where x* is neither an initial nor a terminal state of a
solution trajectory.
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COROLLARY 15. Any strongly regular state of the LCS (1) is strongly non-Zeno
relative to a continuous solution trajectory of the system. In fact, if (x(t),u(t)) is such
a trajectory defined on an open interval containing t. and if the LCP (Cx(t.), D) has a
strongly regular solution, then (x(t),u(t)) is the unique continuous solution trajectory
passing through x* = x(t.) for all t sufficiently near t., and x* is strongly non-Zeno
relative to this trajectory.

Proof. We first establish the uniqueness of (x(t),u(t)). Suppose that (Z(t),u(t))
is another continuous solution trajectory of (1) passing through z* and defined on
the same interval as (z(t),u(t)). By the strong regularity of u*, a neighborhood V
of Cx*, a neighborhood U of u*, and a Lipschitz continuous function u : V — U
exist such that for every ¢ € V, u(q) is the unique solution of the LCP (g, D) in U.
Since (z(t),u(t)) and (Z(t), u(t)) are both continuous near ¢, it follows that for all ¢
sufficiently near t,, (Cz(t),u(t)) and (Cz(t),u(t)) both belongs to V x U. Hence we
have u(t) = u(Cz(t)) and u(t) = w(Cz(t)). Moreover, a constant L > 0 exists such
that for all ¢ sufficiently near t,, we have

(22) [u(®) —u@)| < L) —2@)].
Since

O IO _ Au(t) ~ (1) + Blult) ~ (1),
(22) implies that the right-hand side is a Lipschitz function of x(t) — Z(¢). Since
x(t.) = Z(t.) = a*, it follows that the two trajectories z(t) and Z(t), and thus the
two trajectories, u(t) and u(t), must coincide in a sufficiently small open interval
containing t,. The uniqueness of (z(t), u(t)) therefore follows.

By Proposition 5, it follows that for all ¢ sufficiently near t., the trajectory
(z(t),u(t)) must satisfy the reduced system (11). Since D, being the Schur comple-
ment of D, _,, in a principal submatrix of D, remains a P-matrix, it follows that z(¢,)
is a strongly non-Zeno state of (11) relative to the trajectory (z(t), ug, (t)). Therefore,
a scalar € > 0 and two triples of index sets (ag+, Bo+,Yo+) and (ag—, Bo—,Yo—) exist
such that

ap(t)={i € Bu:ui(t) >0
Go(t) = {i € B wilt) = 0 = (Ta(t) + Dug (1) )i} = fos (Yt € (tort+
Yo(t) ={i € Bu:ui(t) =0

and
ap(t) = ag-
Bo(t) = Po- p Vi€ [t —ets)
Yo(t) = Y0
Since 0 < g, (t) = —(Dana,) H(Ca..2(t) + Dy, g.ug, (t)) and 0 = u,, (t), it follows

that
Cx(t) + Dup. () = (Ca(t) + Du(t) ).
for all ¢ sufficiently near t¢,. Consequently,
a(t) = ax U apy
B(t) = Bo+ Vit € (te,ty +e]
Y(t) =7+ U yo+
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and
a(t) = an U ag_
B(t) = Bo- Vit € [t, —e,t,).
Y(t) = Y U o

This shows that z* is a strongly non-Zeno state of (1). O

One important consequence of the P-property is that the u-trajectory must neces-
sarily be unique. In what follows, we present an extended treatment of the Zeno issue
for an LCS with nonunique u-trajectories. Specifically, we make several alternative
assumptions on the tuple (A, B,C, D), the first of which ensures the existence and
uniqueness of a continuously differentiable solution trajectory z(t) corresponding to
various subsystems of (1).

(A) For every x € R™ and every triple of index sets («, 3, ) partitioning {1, ..., m}
with 3 # 0, the mixed LCP

0 = [Cxz + Dula,
(23) 0 <ug L [Cl‘—l—Du],@ > 0,
0=u,
has a solution u € ®™; moreover, Bu' = Bu? for any two such solutions u! and u2.
The fundamental role of the above assumption is described in the following result.

PROPOSITION 16. Under assumption (A), for every triple of index sets (a, 3,7)
partitioning {1,...,m} with B # 0, the system

z = Az + Bu,
0 = [Cxz + Dula,
(24) 0 <ug L [Cz+ Dulg > 0,
0 = u,,
z(0) = 2°

has a unique solution trajectory x(t) for all t € [0,T] for any T > 0; moreover, x(t)
is continuously differentiable on its domain.

Proof. Let S(z) C R™ denote the solution set of (23). As a multifunction, the
map S : x — S(x) is a polyhedral multifunction; i.e., its graph is the union of finitely
many polyhedra. Under assumption (A), the mapping

B:z e R — BS(z)

is a single-valued function whose graph is the union of finitely many polyhedra. As
such, by a result due originally to Gowda (see [12, Exercise 5.6.14]), it follows that
Bisa (globally) Lipschitz continuous function on R™. In terms of this mapping, the
system (24) can be equivalently stated as

i = Az + B(z), x(0) = a°.

Since the right-hand side of the ODE is Lipschitz continuous, the existence and
uniqueness and the continuous differentiability of a solution trajectory x(t) follows
from classical ODE theory. 0
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Before proceeding further, we make several remarks about Proposition 16 and
assumption (A). First, if one is interested in the existence of a unique z-trajectory
to the single LCS (1), then it suffices to assume that BSOL(Cz, D) is a singleton for
all z € R™. Second, while the z-trajectory is necessarily unique in the proposition,
no such uniqueness is asserted for the u-trajectory; no continuity of the u-trajectory
is asserted either. This is a significant departure from the P-property under which
the u-trajectory exists and is both unique and continuous. Nevertheless, it can be
shown that in the case where C has full row rank, assumption (A) implies that D
must be a P-matrix. Hence, condition (A) is most interesting when C' is deficient in
row rank. A class of triples (B, C, D) satisfying assumption (A) with D being non-P
is presented in section 5. It should be noted that condition (A) is different from the
passifiability property of the triple (B,C, D) used in [5]; the latter property, along
with a minimality assumption on (4, B,C, D), yields the existence and uniqueness
of a continuous z-trajectory and an Lo u-trajectory of the LCS (1). Examples of
the class of triples (B, C, D) from section 5 can easily be constructed which fail the
passifiability condition; conversely, any triple (B, C,0) with CB symmetric positive
definite is passifiable but fails condition (A).

Another difference between assumption (A) and the P-matrix assumption is that
(A) does not imply any apparent determinant properties of the principal matrix

bl

Daa Daﬂ]
Do Dpp

in particular, it could be singular. Assumption (A) does imply

0= (Du)qy
0<wug L (Du)g >0 = Bu =0,

0=u,
and is implied by the following more restrictive condition:
uoDu < 0 = Bu = 0.

For our purpose, the following invariance properties of assumption (A) are important
for the extension of the previous inductive argument to an LCS not satisfying the
P-property.

PROPOSITION 17. Suppose that (B, C, D) satisfies condition (A). The same con-
dition holds for the following triples of index sets:

(a) (B.a,Ca.,Dsa) for every subset & C {1,...,m};

(b) the triple (B, C, D) associated with the é-principal transform (7) of (B, C, D)

for every subset & C {1,...,m} such that Dsg is nonsingular;

(c) (PB,CP~Y, D) for every nonsingular matriz P.

Proof. Let o', B/, and v’ be any three index sets partitioning &, with 3’ # 0.
Let x € R™ be arbitrary. We need to show that the system

0 =[Cz+ Dulq,
0 <wugr L [Cx+Dulg >0,

0=1u,
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has a solution ug. Moreover, if ul and u% are any two such solutions, we must have
B.aul = B.suZ. But this is clear from condition (A) with the choice of (a, 3,7) =

&

(a’,8",7v"U({1,...,m}\&)). To prove (b), let (a’,3’,7’) be a triple of index sets
partitioning {1,...,m} with 3’ # 0 and consider the system

0= [5$+5a]a’a
(25) 0 < g L[Cx+Dulsg >0,
0= Uy

Letting @ = Cx + Dt and “pivoting” on (Dag) ™!, we obtain w = Cz + Du, where
the relation between the pairs (w, ) and (w,u) is as follows:

We,

w = , U
Wg
Ua Wea,

w ,u ;
Wg Uy

where @& is the complement of & in {1,...,m}. Therefore, system (25) is equivalent to
system (23) for some suitable triple («, 3,7) that is derived from (a’, 8’,7’). There-
fore, the existence of a solution to (25) follows from condition (A) on the original
triple (B, C, D). Suppose that u! and @2 are any two solutions satisfying (25). Cor-
responding to @, for i = 1,2, let @' = Cx + Du' and (w', u?) be defined accordingly.
It follows that Bu! = Bu?. We have

Il
R
e <
Qi [*}}
~

(26)

7111)1-_ —+ [B@ - B.&(D&& )71D5£O7 ]ugz

[0}

Dsa)
Dsa)
Dag ) Y[ Cx + Du'la + [B.a — B.a(Dag) ' Daa Jut
Dsa)

1
@

hence, Bu! = Bu2. This proves (b). Finally (c) is obvious. O

To motivate the following discussion, consider an unobservable state z* = x(t.).
In this case, (z(t),u(t)) = (eA~t)z* 0) is trivially an admissible solution trajectory
to (1) for t > t,. Moreover, under assumption (A), the trajectory z(t) = eA0t=t)z* is
unique for ¢ > t,. Nevertheless, if D is not an Rg-matrix, i.e., if the homogeneous LCP
(0, D) has a nonzero solution, then it is very difficult, if not impossible, to ascertain
the Zeno properties of (x(t), u(t)) jointly. The reason is very simple: the LCP (0, D),
which must be satisfied by the u-trajectory in this case, is totally unaffected by the
a-trajectory. Consequently, if one expects an unobservable state x* to be (right) non-
Zeno, one must restrict oneself to the class of matrices D for which the LCP (0, D)
has a polyhedral solution set; this is the principal motivation to introduce the class
of weakly column sufficient matrices (Definition 1).

The following result extends the key expansion Lemma 14 and is applicable to an
arbitrary tuple (A, B, C, D) satisfying condition (A).

LEMMA 18. Suppose that (A, B,C, D) satisfy condition (A). Let z* = x(t4)
be a given state of the solution trajectory (x(t),u(t)) such that CAJz* = 0 for all
7=0,1,.... k=1 for some integer k > 0. The following two statements hold:
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(a) For each t > t, sufficiently near t,, there exists u'* € SOL(CA*x*, D) such
that

U VAN Ui 0 P
x(t)_jgo i Alr* 4 )] Bul™ + O(|t — t. k),
(t—t.)" t+ k+1

(b) If k is even, then for each t < t. sufficiently near t., there emists utt €
SOL(CAFz*, D) such that the expansion in part (a) remains valid. If k is odd, then
for each t < t,, there exists u'~ € SOL(—CA*x*, D) such that

_ (t=t) . (t=t)FHt g k2
x(t)f;o - Az e Bul™ + O(|t — t,[F+?),
t—t F o,
u(t):7| m | u'™ + O(|t — t,|FH).

Proof. We prove only statement (a). Proceeding as in the proof of Lemma 14, we
define z(t) by (15) and note that (16) and (17) must hold. By the same result due of
Gowda that we used in the proof of Proposition 16, we can deduce the existence of a
constant 1 > 0 such that

I Bu() || < nlll=@) |+t -t |]

for all t. Consequently, it follows that (18) holds. The vector v(t) = klu(t)/|t — t.|¥
satisfies, for all t > t,,

0<o(t) L k!Cm+CAkx*+Dv(t) > 0.

Since ||z(t)|| is of order |t — t.|**1, by the semistability of the LCP (CA¥z* D), it
follows that for every ¢ > t, sufficiently near t,, there exists u'* € SOL(C A*z*, D)
such that [|v(¢) — u't| is of order O(|t — t.]). The expansion for u(t) in part (a) thus
follows readily. Substituting this expansion into the differential equation

t)

2(t) = Az(t) + (t_ki'k ARz 4+ Bu(t)

_ k

[AkJrll,* + But+] 4 O(| t—t, ‘k+1)
using the fact that Bu'* is independent of ¢ (because BSOL(C A*z*, D) is a singleton),
and integrating, we can deduce the desired expansion for x(t). The details are not
repeated. |
On the basis of the concept of an identifiable LCP, we introduce the following.
DEFINITION 19. A state x* is said to be identifiable with respect to the triple
(A,C, D) if, for each subset « of {1,...,m}, if * is observable with degree k with
respect to the pair (Cy., A), then the LCPs (£Cqs. A*2* D4oo) are identifiable. The
state x* is said to be totally identifiable with respect to the tuple (A, B, C, D) if x* is
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identifiable with respect to all triples (/T, 6, ﬁ), where
D

)

=A—By(Duo ) 'C,.,

C =Ca — Daa(Dan )" 1Co.,
ﬁ = Dd& - Dda(Daa )71Dad7
and a, with complement &, ranges over all subsets of {1,...,m} for which Dy is

nonsingular. 1]

The next lemma asserts that the above identifiability property is inherited by the
principal (sub)transforms of a given tuple.

LEMMA 20. Suppose that x* is totally identifiable with respect to (A, B,C, D).
Then x* is also totally identifiable with respect to the following tuples:

(a) (A4, B.o;Co., Doo) for all subsets a of {1,...,m};

(b) the principal subtuples (E,E,é,f)) associated with all legitimate principal

pivot transforms of (A, B,C, D), where

A=A—Bo(Dsa)'Cs, B =Bgs—Ba(Das) 'Daa,
a = C&- - Dda(Daa)ilcaw ﬁ = Dd& - Dda(Daa)ilDa&a

and «, with complement &, ranges over all subsets of {1,...,m} for which
Dqo s nonsingular.
Moreover, Pxz* is totally identifiable with respect to the triple (PAP~!, PB,CP~! D)
for any nonsingular matriz P.
Proof. Statement (a) is obvious. The validity of statement (b) is based on the

observation that a tuple (g, é, lA)), where

Q) =y
1l Il
)
|
oy
g;
o)
Q
Q:
T
S

)
Il
=}
)
)
o]
R
=)
o}
o8
I
-
=)
Q
o]

and &, with complement &, is a subset of @ for which 13@@ is nonsingular, can be shown
to be a principal subtuple associated with the (o U &)-principal pivot transform of
(A,B,C,D). Hence (b) holds. The last assertion follows easily from the identity
CP Y (PAP~YHYr = CAFP~L. |

Our extended Zeno result for an LCS without the P-property is the following. The
statement of the theorem assumes that x* is neither the initial nor the terminal state
of the solution trajectory so that we do not need to pay attention to the one-sidedness
of these special states.

THEOREM 21. Let D be a weakly column sufficient matriz. Suppose that condition
(A) holds for the tuple (A, B,C, D). The following two statements hold for any state
z* = z(ts) and any u-trajectory:

(a) If z* is unobservable with respect to (C, A), then x* is weakly non-Zeno.

(b) If x* is totally identifiable with respect to the tuple (A, B,C, D), then x* is

weakly non-Zeno.

Proof. We follow the proof of Theorem 9. Suppose that the initial state 2° is un-

observable with respect to (C, A). In this case, the unique z-trajectory is z(t) = eAtx?
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and we have Cz(t) = 0 for all ¢. Hence u(t) € SOL(0, D) for all t. The weak col-
umn sufficiency of D then completes the proof. So we assume that z° is observable.
The proof of Lemma 12 shows that all subsequent states are observable. This estab-
lishes part (a). We use induction on m to prove that if 2* is totally identifiable with
respect to (A, B,C, D), then z* is weakly right non-Zeno; the proof of weakly left non-
Zenoness is similar and therefore omitted. Since the LCP (CA*x*, D) is identifiable,
where k is the observability degree of z* with respect to the pair (C, A), either one
of the two index sets Z,, or Z,, is nonempty. Without loss of generality, assume that
the former is so. By Proposition 4, there exists a scalar ¢ > 0 such that u; > o for
all u € SOL(CA*z* D) and all i € Z,,. Consequently, by the expansion of u(t) near
t, as described in part (a) of Lemma 18 it follows that u;(¢t) > 0 for all ¢ € Z,, and
all ¢ > t, sufficiently near t.. Moreover, Dz, 7, is nonsingular by the identifiability
assumption. Consequently, the trajectory (x(t),u(t)) must satisfy the principal sub-
transform (9) with o = Z,, for all ¢ > ¢, sufficiently near ¢.. The induction hypothesis
then completes the proof. 0

5. A special bimodal system. As an illustration of another application of the
expansion Lemma 18, we consider a special bimodal system which has D = ff7,
B = bfT, and C = fcT for some m-vector f and n-vectors b and c¢. To avoid
trivialities, we assume that f has no zero components. It is easy to see that condition
(A) holds for the triple (B,C, D) = (bfT, fc', ffT). Notice that the LCS (1) with
this triple remains an MIMO (multiple input, multiple output) system; nevertheless,
it is a bimodal system because of the lemma below.

LEMMA 22. The LCP

0<ul fcla+fffu>0

has a solution for all x € R™; moreover, for any such solution u, fTu =0 if fc¥z >0,
and ¢’z + fTu =0 otherwise. Consequently,

{u>0:fTfu=0} if fclaz > 0,
{u>0:clz+ fTu =0} otherwise.

SOL(fe"x, ffT) = {

Proof. If fcTz > 0, then w = 0 is a solution of the LCP. Since fTu is a constant

on the solution set of this LCP, it follows that fTu = 0 for all such solutions in this

case. If fcTz # 0, then fTu # 0 for all solutions of the LCP. For any such solution
u, we have

0= (fTu)(c"e)+(fTu)

which yields ¢’z + fTu = 0 as claimed. The representation of SOL(fc 'z, ffT) is
easy to establish. 0

In view of the above lemma, it follows that the LCS (1) is of the following bimodal
kind:

Ax if fc'z > 0,
(A —bc" )z otherwise.
Since f # 0, it is clear that 2* is an observable state of the pair (C, A) if and only if the

scalar ¢ AFz* # 0 for some integer k > 0. If cTa* = ... = T AF1g* = 0 # T Akg*,
Lemma 18 implies that, for ¢ > t,,
L

cla(t) = (t_ki' T ARz + Ot — t[FHh).
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Since ¢T A¥z* is a nonzero scalar, it follows that ¢’z (¢) is nonzero and of one sign
for all t > t, sufficiently near t,. Since f is a constant vector, it follows that either
fclz(t) > 0 for all t > t, sufficiently near t,, which implies fTu(t) = 0 for all
u(t) € SOL(fclz(t), ff1), or cTa(t) + fFu(t) = 0 for all such t. In the latter case,
it follows that z* is a weakly right non-Zeno state with respect to the trajectory
(z(t),u(t)). In the former case, f must be either a positive or a negative vector
depending on whether ¢ A*z* > 0 or ¢’ A*¥z* < 0; in either case, we must have
u(t) = 0 for all ¢t > t, sufficiently near ¢, because fZu(t) = 0 and u(t) > 0. This is
enough to show that z* is a weakly right non-Zeno state. A similar argument will
establish that x* is also a weakly left non-Zeno state. We have, therefore, proved the
following result for an observable state. The proof of the result for an unobservable
state is the same as before and is not repeated.

THEOREM 23. Let (B,C,D) = (bfT, fc*', ffT), where f has no zero component.
The LCS (1) has no Zeno states of the second kind. 0

6. Concluding remarks. In this paper, via a basic expansion of the solution
trajectory near a given time, we have shown that an LCS with the P-property has no
Zeno states of the first kind, that the totally identifiable states of an LCS with the
weakly column sufficient property are weakly non-Zeno, and that a certain bimodal
LCS has no Zeno states of the second kind. Subsequently to the completion to this
work, we have extended the results in several directions, in particular, to a special
LCS of the “positive semidefinite plus” type [12] and to a strongly regular nonlinear
complementarity system [22]. An interesting extension that we have not yet resolved
is the case where D = 0 and C'B is positive definite (but not symmetric). Such an LCS
is not necessarily passifiable. Lastly, in the paper [22], we use the results established
herein to study the “local observability” of an LCS.
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