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Abstract— Inspired by estimation and identification of bi-
ological and engineering systems subject to constraints, this
paper addresses nonparametric estimation of monotone func-
tions contained in a class of dynamical systems. A two-stage
estimation procedure is proposed. At the first stage, partial
state estimation is performed via trend filtering techniques.
At the second stage, a penalized spline (or P-spline for short)
estimator is used to estimate monotone functions. The highlight
of the paper is asymptotic analysis of the monotone P-spline
estimator formulated as a constrained optimization problem.
The uniform Lipschitz property is established for optimal spline
coefficients. By approximating the estimator by a solution of a
differential equation with a constrained right-hand side, the
paper develops asymptotic normality at interior points and
establishes convergence rates. The proposed estimator is applied
to estimation of a monotone regulatory function in a gene
regulatory network.

I. INTRODUCTION

Many biological, economic, and engineering systems are
subject to constraints. Dynamical systems with constrained
components can be formulated as piecewise smooth systems,
which belong to the general framework of switching and
hybrid systems. Estimation and identification of switching
and hybrid systems has received fast growing interest in
recent years, driven by important applications in engineering,
robotics, and systems biology. For example, several effective
estimation and identification algorithms have been proposed
for piecewise affine systems [4], [6], [12].

Motivated by estimation of regulatory functions in gene
regulatory networks, this paper studies nonparametric esti-
mation of shape constrained functions, specifically monotone
functions, in dynamical systems. A two-stage procedure is
proposed to estimate such monotone functions. At the first
stage, partial state estimation is performed by exploiting
trend filtering methods, e.g. Hodrick-Prescott filtering or `1
trend filtering [7]. At the second stage, a penalized monotone
spline regression estimator (or simply P -spline estimator) re-
cently developed in [14] is considered. A monotone function
is approximated by a spline of an arbitrary degree, and the
estimator is defined by an optimal solution of a quadratic
programming subject to the first-order difference penalty
and the monotone constraint. Focused issues of the P -
spline estimator include asymptotic behaviors, for instance,
the asymptotic distribution of the estimator and the related
convergence rates with respect to the number of measurement
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points. To address these issues, a critical uniform Lipschitz
property is developed for the optimal spline coefficients and
yields consistency and stochastic boundedness of the estima-
tor. The optimality conditions show that the estimator can
be approximated by an ODE with a constrained right-hand
side. Using this ODE, asymptotic normality and convergence
rates are established. Compared with the existing methods
for estimation and identification of constrained systems, the
present paper treats nonparametric estimation of monotone
functions and studies asymptotic behaviors by employing
complementarity theory [2] and asymptotic statistics.

The rest of the paper is organized as follows. In Section II,
we introduce the dynamical model and present a motivating
example of gene regulatory networks. Section III addresses
partial state estimation and Section IV discusses monotone
estimation and its asymptotic analysis. A numerical exam-
ple from gene regulatory networks illustrates the proposed
estimator in Section V. Finally, conclusions are made in
Section VI. Due to space limitation, the proofs of theoretical
results in this paper are omitted and can be found in cited
references, e.g. [14].

II. MODEL AND EXAMPLE

Consider the following discrete-time dynamic system:

x(k + 1) = Ax(k) + bz(k) + εd(k) (1a)
z(k) = f(hTx(k)) (1b)
y(k) = cTx(k) + εy(k) (1c)

where k ∈ Z+, x ∈ Rn is the system state, A ∈ Rn×n
is the known state transition matrix, b, h, c ∈ Rn are the
given nonzero vectors, z denotes the feedback, y is the
measurement output, f : I → R is an unknown monotone
function defined on a given compact interval I ⊂ R, and
εd ∈ Rn and εy ∈ R are the dynamic and measurement
noises respectively. The goal of this paper is to use the mea-
surement y, together with other measurements, to estimate
the monotone function f and carry out asymptotic analysis.

The above model represents a wide range of biological and
engineering systems with unknown monotone components
that need to be estimated. The following example shows an
interesting application in gene regulatory networks [3], [4].

Example 1 The expression of genes in an organism is con-
trolled by regulatory systems via a complex network of inter-
actions between DNA, RNA, proteins and small molecules
[1], [3]. A thorough understanding of dynamic behaviors of
the regulatory networks is essential to biomedical science and



engineering [5]. To achieve this goal, various mathematical
models have been developed, one of which is the following
ODE system (without noise) [3]:

ẋ = Ex+ d r(xn) (2)

where the state vector x = (x1, · · · , xn)T ∈ Rn+, xi ≥ 0
denotes the concentration of the ith protein, and the n × n
matrix E and the n-vector d are respectively given by

E =


−γ1

k2 −γ2

. . . . . .
kn−1 −γn−1

kn −γn

 , d =


1
0
...
0
0

 ,
where k1, · · · , kn are positive production constants, and
γ1, · · · , γn are positive degradation constants. Here r(xn) ≡
k1[1− h+(xn, θ)] is an unknown switching regulation func-
tion, where θ > 0 is the threshold of switching, and plays
a crucial role in the gene network dynamics. It is known
that h+(·, θ) is an increasing function [3]. However, the
closed form expression of h+ and its threshold value θ
are usually unavailable and may vary from one network to
another. Certain approximations of h+ are proposed in the
literature. Figure 1 shows the graph of a piecewise linear
formulation of h+(·, θ); other formulations, including the
Heaviside function, can be found in [3]. To obtain a discrete-
time model for (2), let τ > 0 be the time step and we have

x(k + 1) = Ax(k) + b f(hTx(k)), y(k) = cTx(k),

where A ≡ eEτ , b ≡
∫ τ
0
eE(τ−s)d ds, f(·) ≡ r(·) and

c = h = ( 0, · · · , 0, 1)T . By including the dynamic and
measurement noise, we obtain the discrete-time model (1).

h

1

x
0

!

Fig. 1. Piecewise linear approximation of the monotone function h+

Remark 2 A more complex multi-output dynamic model
similar to (1) can be considered. Moreover the parameters
in the system (1) may be assumed to be unknown and
can be identified along with monotone estimation. We refer
the interested reader to the monograph [9] for extensive
discussions on system identification. On the other hand, since
our primary focus is estimation of the monotone component
f , we are content with the relatively simpler model (1) and
the assumption of the known parameters to avoid distraction
from the main theme of this paper. The general situation will
be addressed in the future.

III. PARTIAL STATE ESTIMATION

To estimate the monotone function f , one needs the
information about hTx(k) and z(k) that can be attained
via partial state estimation. We shall consider two cases as
follows: (i) the measurement z(k) is available; (ii) otherwise.

A. Available z(k)
The measurement z(k) is generally contaminated by ad-

ditional measurement noise. In view of this, we rewrite
equation (1) by including the noise εz(k) ∈ R as

x(k + 1) = Ax(k) + bf(hTx(k)) + εd(k) (3a)
z(k) = f(hTx(k)) + εz(k) (3b)
y(k) = cTx(k) + εy(k) (3c)

Since z(k) is available, we only need to construct hTx(k).
To reach this goal, the following assumption is made:

Assumption 1: (cT , A) is an observable pair.
Under this assumption, the n× n matrix

G ≡
[
c AT c · · · (An−1)T c

]T
is invertible. Defining three n-vectors y(k) ≡

(
y(k), y(k+

1), · · · , y(k + n− 1)
)T

,

w(k) ≡
(

0, cT bz(k),
1∑
i=0

cTAibz(k + 1− i), · · · ,

n−2∑
i=0

cTAibz(k + n− 2− i)
)T
,

and

e(k) ≡


εy(k)

εy(k + 1) + cT q(k)
εy(k + 2) +

∑1
i=0 c

TAiq(k + 1− i)
...

εy(k + n− 1) +
∑n−2
i=0 c

TAiq(k + n− 2− i)

 ,
where q(k) ≡ εd(k)− bεz(k), it is easy to verify that

y(k) = Gx(k) + w(k) + e(k)

Since y(k) and w(k) are available, so is ỹ(k) ≡
hT G−1 (y(k)−w(k)) and we obtain a time series

ỹ(k) = x̃(k) + ẽ(k),

where x̃(k) ≡ hTx(k) and ẽ(k) ≡ hT G−1 e(k) represents
the noise. We assume that εd(k) is an independent and
identically-distributed (i.i.d.) Gaussian random vector with
mean zero and covariance matrix σ2

dI , and εy(k), εz(k) are
i.i.d. Gaussian random variables with mean zero and variance
σ2
y, σ

2
z respectively. Furthermore, εd(k), εz(k) and εy(k) are

assumed to be independent of each other. Hence, ẽ(k) is
normally distributed with mean zero. It is assumed that σ2

d

is much smaller than σ2
z and σ2

y . Therefore the underlying
trend x̃(k) has slow and small variations while ẽ(k) is a
larger and more rapidly varying random component.

To estimate x̃(k), we consider either of the following trend
filtering methods [7]:
(1) Hodrick-Prescott filtering: this filtering is used to find

the unique solution {x̃∗(k)} of the penalized optimiza-
tion problem min 1

2 ‖ ỹ − x̃∗ ‖22 + λ ‖D̃x̃∗‖22;
(2) `1 trend filtering: similar to (1), this filtering is used

to find the unique solution {x̃∗(k)} of the optimization
problem min 1

2 ‖ ỹ − x̃∗ ‖22 + λ ‖D̃x̃∗‖1,



where λ > 0 is the penalty parameter, ỹ ≡
(ỹ(1), · · · , ỹ(N))T , x̃∗ ≡ (x̃∗(1), · · · , x̃∗(N))T , and the
(N − 2)×N second-order difference matrix is

D̃ =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

 .
The analytical and numerical properties of the Hodrick-
Prescott filtering and `1 trend filtering can be found in [7].

B. Unavailable z(k)
If z(k) is not available, then more output measurements

are needed to estimate hTx(k) and z(k). For this end, we
make the following assumption in addition to Assumption 1:

Assumption 2: There exist an index subset α ⊆
{1, · · · , n} and a vector cα ∈ R|α|, where |α| is the
cardinality of α such that (i) cTα is a left eigenvector of
Aαα associated with a real eigenvalue λα of Aαα, i.e.,
cTαAαα = λαc

T
α , where Aαα denotes the submatrix of A

with rows indexed by α and columns indexed by α; (ii)
cTαAαj = 0 for any j ∈ {1, · · · , n} \ α; and (iii) cTαbα 6= 0.
Besides the measurement v(k) ≡ cTαxα(k) is available.

By adding the noise εv(k) ∈ R to the measurement v,
equation (1) becomes

x(k + 1) = Ax(k) + bf(hTx(k)) + εd(k) (4a)
y(k) = cTx(k) + εy(k) (4b)
v(k) = cTαxα(k) + εv(k) (4c)

It follows from Assumption 2 that

cTαxα(k + 1) = cTαAααxα(k) + cTαbαf(hTx(k)) + cTα(εd)α(k)

Letting ν ≡ 1/(cTαbα), we have

f(hTx(k)) = ν
[
v(k + 1)− λαv(k)− cTα(εd)α(k)

−εv(k + 1) + λαεv(k)
]

Define z(k) ≡ ν
[
v(k + 1) − λαv(k)

]
. Hence z(k) =

f(hTx(k)) + εz(k), where εz(k) = ν
[
cTα(εd)α(k) + εv(k +

1) − λαεv(k)
]
. Following the similar development in the

last section, we obtain an estimation of hTx(k), namely, x̃∗,
by employing either Hodrick-Prescott filtering or `1 trend
filtering under similar assumptions.

IV. ESTIMATION OF THE MONOTONE FUNCTION f

In this section, we estimate the monotone function f :
I → R on a given interval I using x̃∗ (i.e. the estimation
of {hTx(k)}) obtained before. Without loss of generality,
consider an increasing f , i.e., f(s1) ≤ f(s2) once s1 ≤ s2,
and that I = [0, 1]. The following assumption is imposed in
order to perform this estimation:

Assumption 3: {x̃∗(k)} ∈ [0, 1],∀ k and {x̃∗(k)}`k=1 is
dense on [0, 1] as `→∞.

Loosely speaking, this condition assumes persistent exci-
tations of the system in consideration.

We sort the elements of the estimation x̃∗ to obtain an
increasing vector x ≡ {xk} on [0, 1], i.e., 0 ≤ xi ≤ xj ≤ 1
whenever i ≤ j, and let y ≡ {yk} denote the vector formed
by the corresponding elements in {z(k)}. For notational
simplicity (but somewhat notation abusing), we drop the bars
on both xi and yj and let n ≡ N . This gives rise to the
monotone regression model:

yi = f(xi) + σεi, i = 1, · · · , n, (5)

where xi’s are called the design points, σ is the noise level,
and εi’s are independent standard normal variables. Note
that the designed points are not necessarily equally spaced
on [0, 1]. However, the unequally spaced problem can be
converted into a relevant equally spaced one and, thus, treated
as one thereafter [8], [15]. Hence we focus on the equally
spaced case only. To introduce the P -spline estimator, let{
B

[p]
k : k = 1, . . . ,Kn + p

}
be the p th degree B-spline

basis with knots κi = i/Kn, i = 0, 1, · · · ,Kn and p ≥ 0.
The value of Kn depends on n as discussed below and n/Kn

is assumed to be an integer. Denote y ≡ (y1, · · · , yn)T and
the polyhedral cone C ≡ {b ∈ RKn+p : b1 ≤ b2 ≤ · · · ≤
bKn+p}. The following quadratic program yields the optimal
spline coefficients b̂ ≡ {b̂k, k = 1, . . . ,Kn + p}:

b̂ = arg min
b∈C

n∑
i=1

[
yi−

Kn+p∑
k=1

bkB
[p]
k (xi)

]2+λ∗
Kn+p∑
k=2

[
∆(bk)

]2
where λ∗ > 0 and ∆ is the backward difference operator,
i.e., ∆bk ≡ bk − bk−1. The monotone P -spline estimator is
given by

f̂ [p](x) =
Kn+p∑
k=1

b̂kB
[p]
k (x). (6)

It is worth mentioning that the above constrained quadratic
program can be solved using efficient numerical convex
optimization techniques.

A. Optimality Conditions and Uniform Lipschitz Property

The underlying optimization problem can be put in the
following matrix form

b̂ = arg min
b∈C

1
2
bT (Γn + λDTD)b− bT ȳ, (7)

where the (Kn + p− 1)× (Kn + p) difference matrix D is

D =


−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
· · · · · ·

0 0 0 0 · · · −1 1


such that Db = [∆(b2), . . . ,∆(bKn+p)]T , and

λ =
λ∗

βn
, Γn =

1
βn
XTX, and ȳ =

1
βn
XT y,

where βn ≡
∑n
i=1B

[p]
k (xi)2 for k = p+ 1, . . . ,Kn and the

n × (Kn + p) design matrix X =
[
B

[p]
k (xj)

]
k,j

. To obtain



the optimality conditions, we introduce more notation. Let
C be the (Kn + p− 1)× (Kn + p) matrix given by

C =


1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0
· · · · · ·

1 1 1 1 · · · 1 0

 .
Given two vectors a and b, we write a ≥ 0 (resp. b ≥ 0)
if each component of a (resp. b) is nonnegative and write
a ⊥ b if a and b are orthogonal, i.e., aT b = 0. Hence,
0 ≤ a ⊥ b ≥ 0 means a ≥ 0, b ≥ 0 and aT b = 0. This
condition is known as the complementarity condition [2],
[13]. The following lemma gives optimality conditions via
convex optimization [13], [14]:

Lemma 3 [14] The vector b̂ is the (unique) optimal solution
of (7) if and only if 0 ≤ Db̂ ⊥ C(ȳ − Γnb̂) + λDb̂ ≥ 0 and∑Kn+p
i=1

(
(Γnb̂)i − ȳi

)
= 0.

It is easy to show that the above optimality conditions are
equivalent to the difference equation:

λ∗(b̂j+1 − b̂j) =
[ jX

k=1

nX
i=1

B
[p]
k (xi)f̂

[p](xi)−
jX

k=1

nX
i=1

B
[p]
k (xi)yi

]
+

(8)
for j = 1, . . . ,Kn+p−1 subject to the boundary condition:

n∑
i=1

f̂ [p](xi) =
n∑
i=1

yi. (9)

Since (Γn + λDTD) is positive definite for any λ >
0, b̂ = (b̂1, · · · , b̂Kn+p)T is a (vector-valued) continuous
piecewise linear function of ȳ [13]. However, the closed form
expression of b̂ is hardly obtained due to the combinatorial
nature of the complementarity problem and this presents
a major technical difficulty for the following development.
Despite this difficulty, it is shown that b̂(ȳ) ∈ RKn+p

satisfies the uniform Lipschitz property with respect to the
`∞-norm, regardless of Kn and λ for all sufficiently large
n (cf. Theorem 4). This property plays a crucial role in
establishing stochastic boundedness and uniform consistency
of f̂ [p] discussed soon. It should be stressed that this property
is different from the conventional Lipschitz property of a
linear complementarity problem of fixed size [2] since the
Lipschitz constant attained here is invariant to size variation.

To obtain a piecewise linear formulation of b̂, let Λn ≡
(Γn+λDTD)/(1+2λ), b ≡ b̂/(1+2λ), and z ≡ ȳ/(1+2λ).
Hence the optimality conditions in Lemma 3 become

0 ≤ D b ⊥ C̃(Λnb− z) ≥ 0 and
Kn+p∑
i=1

[ (Λnb)i − zi ] = 0,

(10)
where the (Kn + p− 1)× (Kn + p) matrix C̃ is given by

C̃ =


0 1 1 1 · · · 1
0 0 1 1 · · · 1
...

...
. . . . . . . . .

...
0 0 · · · 0 1 1
0 0 · · · 0 0 1



For each z, the corresponding optimal solution b is charac-
terized by an index set α = { i |

(
C̃(Λnb − z)

)
i

= 0} ⊆
{1, · · · ,Kn + p − 1} (α may be empty) via (10). For the
given b̄ and α, define a vector b̃α as follows: b̃α1 ≡ b1 and
b̃αi+1 ≡ b`i+1 for i ≥ 1, where `i+1 ≡ min

1≤j≤Kn+p
{j | bj >

b̃αi }. Hence, the elements of b̃α strictly increase as their
indices increase. Moreover, for each b̃αi , define the index set
βαi = {j ∈ {1, · · · ,Kn + p} | bj = b̃αi }. This gives rise to
a (finite and disjoint) partition of {1, · · · ,Kn + p}, namely,⋃
i β

α
i = {1, · · · ,Kn+p} and βαj ∩βαk = ∅ whenever j 6= k.

It can be shown that b̃α, and thus b
α

(z) which denotes b(z)
corresponding to the index set α, is a linear function of z.
Hence, for any z ∈ RKn+p, b(z) ∈ {bα(z)}α, where b

α
(z)

is called a selection function of b(z). Therefore, the solution
mapping z 7→ b is a (continuous) piecewise linear function
with 2(Kn+p) selection functions. The same holds true for
the mapping ȳ 7→ b̂, i.e., b̂αi (ȳ) ≡

∑Kn+p
j=1 āαij ȳj , where

the coefficients āαi j pertain to each index set α. By further
employing piecewise linear structure, it is shown that under
appropriate order conditions on n, Kn and λ, for sufficiently
large n and for any Kn ≥ 2 and each i, each selection func-
tion b̂αi satisfies

∣∣ b̂αi (ȳ)
∣∣ ≤ (∑Kn+p

j=1 |āαi j |
)

max(|ȳi|) =
κp ‖ ȳ‖∞ for some constant κp > 0 dependent on p only,
namely, each selection function is Lipschitz continuous with
the same Lipschitz constant, regardless of Kn, λ and α. The
following theorem summarizes the above discussions whose
proof is given in [14]:

Theorem 4 The following statements hold:
(a) Let p = 0. For any Kn ≥ 2 and λ > 0, ‖b̂(u) −

b̂(v)‖∞ ≤ κ0 ‖u− v‖∞,∀ u, v ∈ RKn with κ0 = 1;
(b) Let p = 1. There exists κ1 > 0 such that for all

sufficiently large λ > 0 and n/Kn with Kn ≥ 2,
‖ b̂(u)− b̂(v) ‖∞ ≤ κ1 ‖u− v ‖∞,∀ u, v ∈ RKn+1;

(c) Let p ≥ 2 and % ∈ (0, 1). Suppose Kn ∼ nγ and
λ ∼ n2(γ−%) with γ ∈ (%, 1). Then for all n sufficiently
large, there exists κp > 0 dependent on p only such that
‖b̂(u)− b̂(v)‖∞ ≤ κp ‖u− v‖∞,∀ u, v ∈ RKn+p.

Define b̌ ≡ b̂(E(ȳn)) and f̄ [p](x) ≡
∑Kn+p
k=1 b̌kB

[p]
k (x).

By Theorem 4,

sup
x∈[0,1]

|f̂ [p](x)− f̄ [p](x)| ≤ ‖b̂(ȳn)− b̂(E(ȳn))‖∞

≤ κp ‖ȳn − E(ȳn)‖∞ = Op
(√

n−1Kn logKn

)
(11)

Let α ≡ λ∗

nKn
. It is shown that, under mild conditions on f ,

sup
x∈[0,1]

|f̄ [p](x)− f(x)| =
{
O(α) if p = 1
O(α) +O( 1

Kn
) if p 6= 1

(12)
The development of (12) is a special case of Theorem 5
in Section IV-B. Combining (11) and (12), we have (i)
supx∈[0,1] |f̂ [p](x) − f(x)| = Op

(√
n−1Kn logKn

)
+

O(α) if p = 1, and (ii) supx∈[0,1] |f̂ [p](x) − f(x)| =
Op
(√

n−1Kn logKn

)
+ O(α) + O( 1

Kn
) if p 6= 1. This

result shows that f̂ [p] is stochastically uniformly bounded



and f̂ [p](0) is consistent if Kn logKn/n→ 0 and α→ 0 as
Kn →∞ and n→∞.

B. Asymptotic Property of the Monotone P -spline Estimator
1) Linear Splines: p = 1: We first derive the asymptotic

distribution of f̂ [p] when p = 1. The closed form repre-
sentation of f̂ [1] based on (8) cannot be obtained, making it
difficult to study its properties. In this section, we replace the
difference equation (8) by its analogous differential equation
to study its asymptotic distributions.

Let ω be the uniform distribution on x1, . . . , xn and let
g be the piecewise constant function for which g(xi) = yi
for i = 1, . . . , n. Define F̂ (x) =

∫ x
0
f̂ [1](y)dy and G(x) =∫ x

0
g(y)dω(y). Denote G̃ the greatest convex minorant of

the cumulative sum diagram G. It is proved in [10] that
G and G̃ are close when f is strictly increasing and its
derivative is bounded away from zero, and ‖G − G̃‖ =
Op((n−1 log n)2/3), where ‖f‖ ≡ sup[0,1] |f(x)|. The sub-
sequent norms in this section are defined in the same way.
For any x ∈ (0, 1), let d = bKnxc. It is clear that F̂ ′′(x) =
Kn(b̂d+2 − b̂d+1). Let

R1(x) ≡
[
F̂ (x)−G(x)

]
−
[ 1
n

d+1∑
k=1

n∑
i=1

B
[1]
k (xi)f̂(xi)

− 1
n

d+1∑
k=1

n∑
i=1

B
[1]
k (xi)yi

]
.

Recalling α = λ∗

nKn
, equation (8) becomes αF̂ ′′ = [F̂ −

G−R1]+. Define R2 ≡ (F̂ − G̃)−αF̂ ′′. Then F̂ solves the
differential equation

αF̂ ′′(t) = F̂ (t)− G̃(t)−R2(t), t ∈ [0, 1], (13)

with two boundary conditions F̂ (0) = 0 and F̂ (1) =
G̃(1) + e1 by (9), where e1 = F̂ (1) − F̌ (1) is of order
Op(1/n) since f̂ [1] is bounded with probability one by (11)
and (12). It can be shown that ‖R2‖ is small and of order
Op((n−1 log n)2/3) +Op((n−1K−1

n logKn)1/2).
Denote ξ = 1/

√
α. The solution to (13) can be expressed

explicitly by the corresponding Green’s function [11]

χα(t, s) =
1
2
ξe−ξ|t−s|, 0 ≤ t ≤ 1 (14)

Using this, we have

F̂ (x) =
∫ 1

0

χα(x, s)G̃(s)ds+
∫ 1

0

χα(x, s)R2(s)ds

+c0(ξ)e−ξx + c1(ξ)e−ξ(1−x),

where both c0 and c1 can be obtained from the boundary
conditions and it can be shown that |c0(ξ)|+|c1(ξ)| ≤ 6‖G̃+
R2‖+ 4‖F̂‖ for ξ ≥ 1.

Theorem 5 [14] Assume that the true regression function f
is twice continuously differentiable. Then f̂ is given by

f̂ [1](x) = f(x) + αf ′′(x) + o(α) +
ξ

2n

n∑
i=1

e−ξ|x−xi|εi

+Op
(

( n
logn )−2/3

)
ξ +Op

(
( logKn

nKn
)1/2

)
ξ + e−ξx(1−x)Op(ξ)

uniformly in λ and x ∈ (0, 1). Moreover, if f is three times
continuously differentiable, then

d

dx
f̂ [1](x) = f ′(x) + αf ′′′(x) + o(α) +Op

( 1√
nξ

)
+Op

(
(
n

log n
)−

2
3

)
ξ2 +Op

(
(
logKn

nKn
)

1
2

)
ξ2

+e−ξx(1−x)Op(ξ2)

uniformly in λ and x ∈ (0, 1).

Theorem 5 indicates that the monotone P -spline estimator
is approximately a kernel regression estimator. The equiva-
lent kernel is the double-exponential or Laplace kernel and
its bandwidth is of order α. The asymptotic mean has the bias
αf ′′(x) + o(α), which can be negligible if α is reasonably
small. However, α cannot be arbitrarily small as that will
inflate the random component. The admissible range for α
given in Theorem 6 is a compromise between these two.

Theorem 6 [14] Suppose that f is twice continuously dif-
ferentiable with bounded second order derivative on [0, 1].
(a) If α and Kn satisfy αn2/3 → ∞, αn2/5 → 0, and

α−1/2 logKn/Kn → 0, then√
nα

1
2 (f̂ [1](x)− f(x)) −→ N

(
0,
σ2

4

)
(15)

in distribution as n→∞.
(b) If α = c2n−2/5 and let Kn ∼ nγ with γ > 1/5, then

n
2
5 (f̂ [1](x)− f(x)) −→ N

(
c2f ′′(x),

σ2

4c

)
(16)

in distribution as n→∞.

2) Splines of Other Degrees: p 6= 1: In this sec-
tion, we study the asymptotic property of f̂ [p](x) =∑Kn+p
k=1 b̂kB

[p]
k (x) when p 6= 1. We first define a piecewise

linear function f̃ [p], where f̂ [p] and f̃ [p] share the same
set of spline coefficients. In particular, define f̃ [0](x) =∑Kn

k=1 b̂kB
[1]
k (x), and f̃ [p](x) =

∑Kn+1
k=1 b̂

[p]
k B

[1]
k (x) if p ≥ 2.

Note that f̃ [0] is defined on [0, 1 − 1
Kn

]. Denote F̃ (x) =∫ x
0
f̃ [p](y)dy. For any x ∈ (0, 1), let

R3(x) ≡
[
F̃ (x)−G(x)

]
− 1
n

[ d+1∑
k=1

n∑
i=1

B
[p]
k (xi)f̃(xi)

−
d+1∑
k=1

n∑
i=1

B
[p]
k (xi)yi

]
.

Thus the optimality condition (8) becomes αF̃ ′′(x) = [F̃ −
G−R3]+. Define R4 ≡ (F̃ − G̃)−αF̃ ′′. Then F̃ solves the
differential equation

αF̃ ′′(t) = F̃ (t)− G̃(t)−R4(t), t ∈ [0, 1], (17)

with two boundary conditions F̃ (0) = 0 and F̃ (1) =
G̃(1)+e2, where e2 = Op(1/n). Following the same discus-
sion as in Section IV-B.1, we can establish the asymptotic
distribution for f̃ [p] as in (15) and (16), respectively, under
different admissible ranges of α and Kn.



Theorem 7 [14] Suppose that f is three times continuously
differentiable with bounded f

′′′
on [0, 1]. Let p 6= 1.

(a) If α and Kn satisfy αn2/3 → ∞, αn2/5 → 0, and
α−1/2 logKn/Kn → 0, then√

nα
1
2

(
f̂ [p](x)− f(x)− r[p]n (x)

)
−→ N

(
0,
σ2

4

)
in distribution as n → ∞, where (i) r

[p]
n (x) =

− 1
2Kn

f ′(x) if p = 0 and (ii) r
[p]
n (x) =

f ′(x)
∑p
q=2

∑d+q+1
i=d+2

1
q (x− κi−q)B[q−1]

i (x) if p ≥ 2;
(b) If α = c2n−2/5 and let Kn ∼ nγ with γ > 1/5, then

n
2
5

(
f̂ [p](x)− f(x)− r[p]n (x)

)
−→ N

(
c2f ′′(x),

σ2

4c

)
in distribution as n→∞.

V. NUMERICAL EXAMPLE

To illustrate the proposed estimator, we consider a simpli-
fied model of a carbon starvation network in E. coli [4]. This
network, which is of the form given by (2), consists of four
state variables with γ1 = 0.75, γ2 = 1.5, γ3 = 2, γ4 = 0.75,
and k1 = 0.2, k2 = 0.85, k3 = 0.75, k4 = 0.6. The interval
I is scaled as [0, 1] and θ = 0.5. The time step τ = 0.01. We
assume that z(k) is not available but v(k) ≡ x1(k) is. Hence
Assumptions 1–3 hold true for the system. A quadratic B-
spline basis is used in the monotone P -spline estimation,
i.e., p = 2 in equation (6). Figure 2 shows the plot of
input vs. output for monotone estimation, and Figures 3
and 4 display the monotone P -spline and monotone least-
square estimations respectively. The monotone least-square
estimator yields a piecewise constant estimation while the
P -spline estimator gives a much smoother result and thus
outperforms the former. Other widely used estimators, e.g.
[8], do not guarantee monotonicity and thus are omitted.

VI. CONCLUSION

In this paper, a two-stage procedure is developed to esti-
mate a monotone function in a dynamical system. The first
stage uses the trend filtering based partial state estimation,
and the second stage uses the monotone P -spline estimation.
This approach is applied to estimation of a monotone regula-
tory function in a gene network. Extension of this approach
to more general constraints (e.g. the Luré-type constraint)
and dynamics is currently under investigation.
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