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Abstract

In this paper, we study the solution uniqueness of an individual feasible vector of a class of convex
optimization problems involving convex piecewise affine functions and subject to general polyhedral
constraints. This class of problems incorporates many important polyhedral constrained ℓ1 recovery
problems arising from sparse optimization, such as basis pursuit, LASSO, and basis pursuit denoising,
as well as polyhedral gauge recovery. By leveraging the max-formulation of convex piecewise affine
functions and convex analysis tools, we develop dual variables based necessary and sufficient uniqueness
conditions via simple and yet unifying approaches; these conditions are applied to a wide range of
ℓ1 minimization problems under possible polyhedral constraints. An effective linear program based
scheme is proposed to verify solution uniqueness conditions. The results obtained in this paper not only
recover the known solution uniqueness conditions in the literature by removing restrictive assumptions
but also yield new uniqueness conditions for much broader constrained ℓ1-minimization problems.

1 Introduction

The ℓ1-norm minimization, or simply ℓ1 minimization, is a convex relaxation of ℓ0-(pseudo)norm based

sparse optimization, and it has received surging interest in diverse areas, such as compressed sensing,

signal and image processing, machine learning, and high dimensional statistics and data analytics. Unlike

the ℓp-norm with p > 1, the ℓ1-norm is not strictly convex [21], and this yields many interesting issues

in solution uniqueness which are critical to algorithm development and analysis. In addition to various

important sufficient conditions for global and uniform solution uniqueness (or the so-called uniform

recovery conditions) [8, 9, 23], necessary and sufficient conditions for solution uniqueness of an (arbitrary)

individual vector are also established, e.g., [8, Section 4.4] and [10, 28, 29, 31], which are closely related

to non-uniform recovery conditions in the sparse signal recovery literature [4, 8, 29].

It is worth mentioning that there are many different, nonetheless equivalent, solution uniqueness

conditions for an individual vector. We are particularly interested in those conditions expressed in terms of

dual variables or the so-called dual certificate conditions [9]. This is because dual variables usually have a

smaller size in sparse optimization. For example, the size of dual variables associated with a measurement

matrix is the number of rows of this matrix, which is much smaller than the size of primal variables,

i.e., the number of columns of such a matrix. Therefore, solution uniqueness conditions in dual variables

are numerically favorable. From an optimization point of view, such conditions are nontrivial and often

require convex analysis tools to develop them. Moreover, it is desired that uniqueness conditions are

explicitly dependent on problem parameters, e.g., the measurement matrix and the measurement vector.

Recent solution uniqueness results of this kind include [10, 28, 29, 30, 31]. In particular, the paper [30,

Theorem 2.10] establishes solution uniqueness conditions for the standard ℓ1 minimization, and the papers
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[28, 29] develop solution uniqueness conditions for several important ℓ1 minimization problems and their

variations, e.g., basis pursuit (BP), the least absolute shrinkage and selection operator (LASSO), and

basis pursuit denoising (BPDN). The recent paper [10] gives another proof of the uniqueness conditions

of basis pursuit established in [28] and clarifies geometric meanings of these conditions with extensions to

polyhedral gauge recovery. Motivated by constrained sparse signal recovery [7, 11, 27], solution uniqueness

of basis pursuit under the nonnegative constraint is studied in [31]. Moreover, solution uniqueness

conditions are recently developed for the standard ℓ1 minimization over a general polyhedral set using

the concept of restricted range space property [32, 33]. They can also be established via the uniqueness

conditions of linear programs [13]; see Remark 4.1 for details. However, solution uniqueness of many

other ℓ1 minimization problems under general polyhedral constraints has been not fully addressed, despite

various polyhedral constraints in applications, e.g., the monotone cone constraint in order statistics, and

the polyhedral constraint in the Dantzig selector [5] (cf. Section 3.5).

Inspired by the lack of solution uniqueness conditions under general polyhedral constraints and the

fact that the ℓ1-norm is a special convex piecewise affine (PA) function, we study a broad class of convex

optimization problems involving convex PA functions and subject to general linear inequality constraints,

and we develop necessary and sufficient solution uniqueness conditions for an individual feasible vector.

This general framework incorporates many important ℓ1 minimization problems under possible inequality

constraints, such as BP, LASSO, BPDN, and polyhedral gauge recovery. Different from the techniques

developed in a similar framework in [10], we exploit the max-formulation of a convex PA function (cf.

Section 2). The max-formulation leads to much simpler, yet unifying and systematic, approaches to

establish solution uniqueness conditions for a wide range of problems; see Remark 3.1 for comparison.

These approaches not only recover all the known solution uniqueness conditions in the literature by

removing restrictive assumptions but also shed light on new solution uniqueness conditions of much

broader constrained ℓ1 minimization problems, e.g., the basis pursuit and sparse fused LASSO under

general linear inequality constraints, and the Dantzig selector; see Section 5 for examples and details.

The rest of the paper is organized as follows. In Section 2, we introduce convex PA functions and

discuss their properties. Section 3 develops solution uniqueness conditions for four convex optimization

problems involving convex PA functions and subject to general linear inequality constrains, i.e., basis

pursuit-like problem, LASSO-like problem, and two basis pursuit denoising-like problems. By applying

these results, Section 4 addresses solution existence and uniqueness of general ℓ1 minimization problems.

In Section 5, concrete uniqueness conditions are established for ℓ1 minimization and compared with

related results in the literature. Section 6 provides a simple and effective linear program based scheme

for verifying solution uniqueness conditions. Finally, conclusions are made in Section 7.

Notation. Let A be an m × N real matrix. For any index set S ⊆ {1, . . . , N}, let |S| denote the

cardinality of S, Sc denote the complement of S, and A•S be the matrix formed by the columns of A

indexed by elements of S. Similarly, for an index set α ⊆ {1, . . . ,m}, Aα• is the matrix formed by the

rows of A indexed by elements of α. For a given matrix A, R(A) and N(A) denote the range and null

space of A, respectively. Denote by NC(x) the normal cone of a closed convex set C at x ∈ C, and by int

and ri the interior and the relative interior of a set, respectively. Besides, denote by 1 the column vectors

of ones. In addition, RN
+ and RN

++ denote the nonnegative and positive orthants of RN , respectively. For

a vector z = (z1, . . . , zn)
T whose each zi ̸= 0, we define sgn(z) := (z1/|z1|, . . . , zn/|zn|)T .

2 Preliminary: Convex Piecewise Affine Functions

A real-valued continuous function g : RN → R is piecewise affine (PA) if there exists a finite family of

real-valued affine functions {gi}ℓi=1 such that g(x) ∈ {gi(x)}ℓi=1 for each x ∈ RN [17]. A special class

of continuous PA functions is continuous piecewise linear (PL) functions, for which each gi is a linear

function. A continuous PA function is globally Lipschitz, and we call it a Lipschitz PA function without
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loss of generality; see [18, 19, 22] for more geometric properties of these functions. A real-valued Lipischitz

PA function can be described by the min-max formulation [17]. Furthermore, a convex (Lipischitz) PA

function g : RN → R (whose effective domain is RN ) attains the max-formulation [15, Section 19] or [3,

Proposition 2.3.5]. Specifically, there exists a finite family of (pi, γi) ∈ RN × R, i = 1, . . . , ℓ such that

g(x) = max
i=1,...,ℓ

(
pTi x+ γi

)
. (1)

Similarly, a convex PL function attains the above max-formulation with all γi = 0. For a given x ∈ RN ,

define the index set I := {i ∈ {1, . . . , ℓ} | pTi x+ γi = g(x)}. Letting conv denote the convex hull of a set,

the subdifferential of g(x) at this x is then given by [2, Proposition B.25]:

∂g(x) = conv

(∪
i∈I

∂(pTi x+ γi)

)
= conv

(
{pi | i ∈ I}

)
. (2)

The normal cone of {x | g(x) ≤ 0} at x∗ is cone(∂g(x∗)) [16], where cone denotes the conic hull of a set.

The following lemma presents additional properties of convex PA functions.

Lemma 2.1. The following hold:

(i) The (real-valued) function g : RN → R is a convex PA function if and only if its epigraph is a

convex polyhedron in RN × R;

(ii) Let f : Rm → R be a convex PA function, and h : RN → Rm be an affine function. Then f ◦ h is a

convex PA function on RN ;

(iii) Let {g1, . . . , gr} be a finite family of convex PA functions on RN . Then
∑r

i=1 λi · gi(x) with λi ≥ 0

is a convex PA function.

Proof. Statement (i) follows from a similar proof for [3, Proposition 2.3.5] by restricting the effective

domain of g to RN , and statements (ii)-(iii) are trivial.

Remark 2.1. A slightly more general class of convex PA functions is considered in [15, Section 19] and

[3]. Such a function, which is called the polyhedral convex function coined by R. T. Rockafellar, is defined

as an extended real-valued function whose epigraph is a polyhedron in RN × R. It can be described by

the sum of a real-valued convex PA function and the indicator function of a polyhedron, namely,

ĝ(x) = max
i=1,...,ℓ

(
hTi x+ βi

)
︸ ︷︷ ︸

:=g(x)

+ δP(x),

where g is a real-valued convex PA function, P = {x |Cx ≥ d} is a polyhedron in RN , and δP is the

indicator function of P, i.e., δP(x) = 0 if x ∈ P, and δP(x) = +∞ otherwise. See [3, 10, 15] for more

discussions. However, in all the optimization problems to be considered in this paper, the polyhedron

P corresponding to the indicator function in the function ĝ can be formulated as an additional linear

inequality constraint, and thus be removed from ĝ(x). For example, the optimization problem: min ĝ(x)

subject to Ax = y is equivalent to: min g(x) subject to x ∈ P and Ax = y. For this reason, we consider

real-valued convex PA functions, or simply convex PA functions, throughout this paper.

Convex PA functions represent a broad class of nonsmooth convex functions in numerous applications,

and we give several examples as follows. A (real-valued) polyhedral gauge is a convex PA function satisfying

the following conditions: it is nonnegative, positively homogeneous of degree one, and vanishes at the

origin [10, 15]. Since a (real-valued) convex function is continuous on RN , it must vanish at the origin if it

is positively homogeneous of degree one, since for some z ∈ RN , g(0) = limλ↓0 g(λ·z) =
(
limλ↓0 λ

)
·g(z) =

0. Hence, a convex PA function is a polyhedral gauge if it is nonnegative and positively homogeneous of

degree one. The following lemma shows that a polyhedral gauge is a convex PL function.
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Lemma 2.2. The function g : RN → R is a polyhedral gauge if and only if there are finitely many

p1, . . . , pℓ ∈ RN such that g(x) = max( pT1 x, . . . , p
T
ℓ x, 0), ∀x ∈ RN .

Proof. The “if” part is trivial since the convex PA function g(x) = max( pT1 x, . . . , p
T
ℓ x, 0) is nonnegative

and positively homogeneous of degree one. We show the “only if” part as follows. Suppose g : RN → R
is a polyhedral gauge. Since g is a convex PA function, it attains the max-formulation and its domain

attains a polyhedral subdivision of RN [17]. Specifically, there are finitely many (pi, γi) ∈ RN × R and

polyhedra Xi, where i = 1, . . . , ℓ, such that g(x) = maxi=1,...,ℓ(p
T
i x+ γi), and for each i, g(x) = pTi x+ γi

for all x ∈ Xi [6, Proposition 4.2.1]. Here Ξ := {Xi}i=1,...,ℓ is a polyhedral subdivision of RN , i.e.,

∪ℓ
i=1Xi = RN , each Xi has nonempty interior, and the intersection of any two polyhedra in Ξ is either

empty or a common proper face of both polyhedra; see [6, 17, 18, 20] for more details. For any fixed

i ∈ {1, . . . , ℓ}, let z be in the interior of Xi. Therefore, g(z) = pTi z+γi, and for all λ ∈ R sufficiently close

to 1, we have λ · z ∈ Xi so that g(λ · z) = pTi (λ · z) + γi. Furthermore, since g is positively homogeneous

of degree one, g(λ · z) = λ · g(z) such that λ · pTi z + γi = λ · pTi z + λ · γi for all λ sufficiently close to 1.

This shows that γi = 0 for each i. Therefore, g(x) = max(pT1 x, . . . , p
T
ℓ x). Finally, since g is nonnegative,

we have g(x) = max(g(x), 0) for all x. This shows that g(x) = max(pT1 x, . . . , p
T
ℓ x, 0) for all x ∈ RN .

We mention a particular class of polyhedral gauges arising from applications as follows. Such a

polyhedral gauge g(x) = max( pT1 x, . . . , p
T
ℓ x, 0) with pi ̸= 0, ∀ i = 1, . . . , ℓ satisfies the following condition:

for each nonzero pi, there exists pj such that pj = βj,i · pi for some constant βj,i < 0, where βj,i depends

on pi and pj . We call such the polyhedral gauge sign-symmetric. Note that for each x ∈ RN ,

g(x) = max
{
max

{
max(pTi x, p

T
j x) | i = 1, . . . , ℓ, pj = βj,i · pi, βj,i < 0

}
, 0
}
.

Since max(pTi x, p
T
j x) = max(pTi x, βj,ip

T
i x) ≥ 0 for any x, we have g(x) = max

{
max(pTi x, p

T
j x) | i =

1, . . . , ℓ, pi = βi,jpj , βi,j < 0
}

= max( pT1 x, . . . , p
T
ℓ x). In other words, the zero term can be dropped

in the max-formulation of a sign-symmetric polyhedral gauge. Examples of sign-symmetric polyhedral

gauges include ∥Ex∥1 and ∥Ex∥∞ for a matrix E ∈ Rq×N ; see Section 4.2 for the max-formulation of

∥Ex∥1. Obviously, not every polyhedral gauge is sign-symmetric, e.g., max(pTx, 0) for some vector p ̸= 0.

3 Unique Optimal Solution to A Class of Convex Optimization Prob-

lems Involving Convex PA Functions

In this section, we develop dual variables based explicit conditions for unique optimal solutions to four

convex optimization problems involving convex PA functions, which are motivated by basis pursuit (BP),

LASSO, and basis pursuit denoising (BPDN) problems subject to possible polyhedral constraints. For

each of these optimization problems, we assume that an optimal solution exists. A detailed study of

solution existence requires different techniques and argument other than those for convex PA functions

and uniqueness analysis. To avoid being off track from the main theme of the paper, we postpone the

discussions of the solution existence issue to Section 4.1.

Among the four convex optimization problems treated in this section, three of them are involved with

two functions: the first function, denoted by f , pertains to the cost due to measurement or approximation

errors, while the second function corresponds to sparsity related penalty or objective value, which is

usually a convex PA function denoted by g. In the literature of statistics and decision theory, the first

function is called a loss function. We consider the class of smooth (i.e., C1) and strictly convex loss

functions through Sections 3.1-3.4, and study the class of convex PA loss functions in Section 3.5. A

typical example of loss functions in the first class is the ℓ2-loss f(·) = ∥ · ∥22, whereas examples of the

second class are the ℓ1-loss ∥ · ∥1, the max-loss ∥ · ∥∞, and the hinge loss.
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Throughout this section, let g : RN → R be a convex PA function whose max-formulation is given in

(1), A ∈ Rm×N , y ∈ Rm, and P := {x ∈ RN |Cx ≥ d} be a nonempty polyhedron, where C ∈ Rm̄×N and

d ∈ Rm̄. For a given x∗ ∈ RN satisfying Cx∗ ≥ d, define the index sets

α :=
{
i ∈ {1, . . . , m̄} | (Cx∗ − d)i = 0

}
, I :=

{
j ∈ {1, . . . , ℓ} | pTj x∗ + γj = g(x∗)

}
, (3)

and define the following matrix:

W :=

 pTi1
...

pTi|I|


ik∈I

∈ R|I|×N , (4)

where without loss of generality, we assume that for each ik ∈ I, pik is not a convex combination of the

other pij ’s with ij ∈ I. In light of (2), the columns of W T are generators of the convex hull that forms

the subdifferential ∂g(x∗). Hence, finding the matrix W is equivalent to finding convex hull generators

of ∂g(x∗). This observation will be exploited to establish the matrix W ; see Lemma 4.2 and Section 4.

3.1 Unique Optimal Solution to the Basis Pursuit-like Problem

Consider the following convex optimization problem motivated by the basis pursuit (BP) subject to a

linear inequality constraint:

min
x∈RN

g(x) subject to Ax = y, Cx ≥ d. (5)

We assume that this problem has an optimal solution. For a given feasible point x∗ ∈ RN of (5), i.e.,

Ax∗ = y and Cx∗ ≥ d, recall the definitions of α, I, and W in (3)-(4).

Lemma 3.1. Let A ∈ Rm×N and H ∈ Rr×N be given. Then {u ∈ RN |Au = 0, Hu ≥ 0} = {0} if and

only if the following two conditions hold:

(i) {u ∈ RN |Au = 0, Hu = 0} = {0}; and

(ii) There exist z ∈ Rm and z′ ∈ Rr
++ such that AT z = HT z′.

Proof. Consider the following linear program:

(LP ) : max
u∈RN

1THu, subject to Au = 0, Hu ≥ 0. (6)

We claim that {u ∈ RN |Au = 0, Hu ≥ 0} = {0} if and only if the following hold:

(i’) condition (i) holds, i.e., {u ∈ RN |Au = 0, Hu = 0} = {0}; and

(ii’) the linear program (LP ) attains the zero optimal value (and the unique optimal solution u∗ = 0).

To show the “if” part of this claim, suppose (i’) and (ii’) hold but there exists u′ ̸= 0 such that Au′ = 0 and

Hu′ ≥ 0. It follows from (i’) that Hu′ ̸= 0. Therefore, 1THu′ > 0, a contradiction to (ii’). Conversely,

suppose {u ∈ RN |Au = 0, Hu ≥ 0} = {0} holds. Clearly, it implies condition (i’). Furthermore, the

feasible set of the (LP ) is the singleton set {0} such that (ii’) holds. Consequently, the claim holds.

The dual problem of (LP ) is given by:

min
(v,w)∈Rm×Rr

0, subject to AT v −HTw = HT1, w ≥ 0.

In view of the strong duality theorem of linear program, the dual problem attains an optimal solution

(v∗, w∗) such that AT v∗ = HT (1 + w∗) and w∗ ≥ 0. By suitable positive scaling, we deduce that there
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exist z and z′ > 0 such that AT z = HT z′, which yields condition (ii). Since condition (ii) is also sufficient

for the feasibility, and thus solvability, of the dual problem, it follows from the weak duality of linear

program that 1THu ≤ 0 for any feasible u of (LP ). Since Hu ≥ 0 for any feasible u of (LP ), we must

have 1THu = 0, which leads to condition (ii’). Therefore, conditions (ii) and (ii’) are equivalent. In view

of the claim proven above, the lemma holds.

Theorem 3.1. Let x∗ ∈ RN be a feasible point of the optimization problem (5). Then x∗ is the unique

minimizer of the problem (5) if and only if the following two conditions hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0}; and

(ii) There exist z ∈ Rm, z′ ∈ R|α|
++, and z′′ ∈ R|I|

++ such that AT z − CT
α•z

′ +W T z′′ = 0.

Moreover, condition (ii) is equivalent to the following condition:

(iii) There exist w ∈ Rm, w′ ∈ R|α|
++, and w′′ ∈ R|I| with 0 < w′′ < 1 and 1Tw′′ = 1 such that

ATw − CT
α•w

′ +W Tw′′ = 0.

Proof. Clearly, x∗ is a unique (global) minimizer of the convex optimization problem (5) if and only if

x∗ is a local unique minimizer of (5). It is easy to see that for all x sufficiently close to x∗, g(x) =

g(x∗) + maxi∈I
(
pTi (x − x∗)

)
. In other words, g(x) − g(x∗) is piecewise linear (and convex) in (x − x∗)

for all x sufficiently close to x∗. By this observation, we deduce that x∗ is the unique minimizer of (5) if

and only if v∗ = 0 is the unique minimizer of the following convex optimization problem:

min
v∈RN

(
max
i∈I

pTi v
)
, subject to Av = 0, Cα•v ≥ 0. (7)

Furthermore, it is easy to verify that v∗ = 0 is the unique minimizer of (7) if and only if{
v ∈ RN

∣∣Av = 0, Cα•v ≥ 0, max
i∈I

pTi v ≤ 0
}

=
{
0
}
.

In light of the definition of the matrixW given in (4), we see that maxi∈I p
T
i v ≤ 0 is equivalent toWv ≤ 0.

Hence, v∗ = 0 is the unique minimizer of (7) if and only if {v ∈ RN |Av = 0, Cα•v ≥ 0, W v ≤ 0} = {0}.

By setting H =

[
Cα•
−W

]
, we deduce via Lemma 3.1 that {v ∈ RN |Av = 0, Cα•v ≥ 0, W v ≤ 0} = {0} if

and only if conditions (i) and (ii) hold. This leads to the desired result.

We finally show the equivalence of conditions (ii) and (iii). Clearly, condition (iii) implies condition

(ii). Conversely, suppose there exist z ∈ Rm, z′ ∈ R|α|
++, and z′′ ∈ R|I|

++ such that AT z−CT
α•z

′+W T z′′ = 0.

Note that 1T z′′ > 0. Therefore, letting

w =
z

1T z′′
, w′ =

z′

1T z′′
, w′′ =

z′′

1T z′′
,

we obtain condition (iii) with the above w,w′ and w′′. Hence, conditions (ii) and (iii) are equivalent.

3.1.1 Comparison with Related Results in the Literature

The paper [10] studies a problem similar to (5) but without the linear inequality constraint. For com-

parison, we apply these tools to the problem (5). Define S := {x |Ax = y} and P := {x |Cx ≥ d}.
Note that the problem (5) is equivalent to the unconstrained problem: minx∈RN J(x), where J(x) :=

g(x) + δS(x) + δP(x), and δ is the indicator function defined in Remark 2.1. Since S and P are

polyhedral, x∗ is the unique minimizer of (5) if and only if 0 ∈ int
(
∂J(x∗)

)
[10, Lemma 3.2], where

∂J(x∗) = ∂g(x∗) +NS(x
∗) +NP(x

∗). Since NS(x
∗) = R(AT ) and NP(x

∗) = {CT
α•z | z ≤ 0}, the condi-

tion 0 ∈ int
(
∂J(x∗)

)
is further equivalent to the following two conditions [10, Proposition 4.2]:
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(a) 0 ∈ ri(∂g(x∗)) +R(AT ) + ri({CT
α•z | z ≤ 0}); and

(b) aff(∂g(x∗) +R(AT ) + {CT
α•z | z ≤ 0}) = RN , where aff(·) denotes the affine hull of a set.

In what follows, we show that conditions (a) and (b) are equivalent to conditions (i) and (iii) of Theo-

rem 3.1. To achieve this goal, we first present a lemma which gives an explicit characterization of relative

interiors of a polytope and a polyhedral cone.

Lemma 3.2. Let C = conv(a1, . . . , ak) and K = cone(b1, . . . , bℓ), where a1, . . . , ak ∈ Rn and b1, . . . , bℓ ∈
Rn. Then the relative interiors of C and K are

ri C =
{ k∑

i=1

λiai

∣∣∣ k∑
i=1

λi = 1, 0 < λi < 1, ∀ i = 1, . . . , k
}
, riK =

{ ℓ∑
j=1

µjbj

∣∣∣µj > 0, ∀ j = 1, . . . , ℓ
}
.

Proof. To establish the relative interior of C, we note that C = conv(C1 ∪ C2 ∪ · · · ∪ Ck), where each

Ci := {ai} is a convex singleton set. Hence, ri Ci = {ai} for each i. It follows from [15, Theorem 6.9] that

ri C =
{∑k

i=1 λi · ri Ci |
∑k

i=1 λi = 1, 0 < λi < 1, ∀ i = 1, . . . , k
}
, which leads to the desired result for

ri C. The relative interior of K also follows by positive scaling.

Proposition 3.1. Conditions (a) and (b) for the optimization problem (5) are equivalent to conditions

(i) and (iii) of Theorem 3.1.

Proof. By Lemma 3.2 and the subdifferential of g at x∗ given in (2), we have

ri
(
∂g(x∗)

)
=
{∑

i∈I
λi · pi

∣∣∣ ∑
i∈I

λi = 1, 0 < λi < 1, ∀ i ∈ I
}
, ri

(
{CT

α•z | z ≤ 0}
)
= {CT

α•z | z < 0}.

Therefore, condition (a) holds if and only if there exist z, z′ > 0, and z′′ with 0 < z′′ < 1 with 1T z′′ = 1

such that AT z − CT
α•z

′ +W T z′′ = 0, which is exactly condition (iii) of Theorem 3.1.

Moreover, aff(∂g(x∗) + R(AT ) + {CT
α•z | z ≤ 0}) = aff(∂g(x∗)) + aff(R(AT )) + aff({CT

α•z | z ≤ 0}),
where, in view of ∂g(x∗) = conv(pi1 , pi2 , . . . , pi|I|), we have

aff(∂g(x∗)) = pi1 + span
(
pi2 − pi1 , . . . , pi|I| − pi1

)
, aff(R(AT )) = R(AT ), aff({CT

α•z | z ≤ 0}) = R(CT
α•).

Therefore, condition (b) is equivalent to

span
(
pi2 − pi1 , . . . , pi|I| − pi1

)︸ ︷︷ ︸
:=V

+R(AT ) +R(CT
α•) = RN ,

which is further equivalent to condition (b’): V⊥ ∩N(A) ∩N(Cα•) = {0}, where V⊥ = {v ∈ RN | pTi1v =

pTi2v = · · · = pTi|I|
v}. Obviously, condition (b’) implies condition (i) of Theorem 3.1. We show next that

if conditions (i) and (iii) holds, then condition (b’) holds. It follows from condition (iii) that for any

v ∈ RN , vTAz − vTCT
α•z

′ + vTW T z′′ = 0 for some z, z′ > 0, and z′′ with 0 < z′′ < 1 with 1T z′′ = 1.

Therefore, for any v ∈ V⊥ ∩ N(A) ∩ N(Cα•), i.e., Av = 0, Cα•v = 0, and pTi1v = pTi2v = · · · = pTi|I|
v, we

obtain (Wv)T z′′ = 0. By virtue of the expression of the matrix W in (4), we further have 0 = (Wv)T z′′ =

(pTi1v · 1)
T z′′ = (pTi1v) · 1

T z′′ = pTi1v. This shows that Wv = 0. Along with Av = 0 and Cα•v = 0, we see

via condition (i) of Theorem 3.1 that v = 0 such that condition (b’) holds. Consequently, conditions (a)

and (b) hold if and only if conditions (i) and (iii) of Theorem 3.1 hold.

Remark 3.1. Proposition 3.1 shows that the techniques developed in [10] can be used to derive the

exactly same solution uniqueness conditions given in Theorem 3.1. However, when establishing explicit

uniqueness conditions in terms of problem parameters, the paper [10] considers a particular class of convex
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PA functions, i.e., polyhedral gauges, and employs the inner representation of the unit sublevel set of a

polyhedral gauge to obtain (equivalent) uniqueness conditions in a different form. Instead, the present

paper gives a much simpler approach to derive the explicit uniqueness conditions in Theorem 3.1 for a

general convex PA function via its max-formulation, which can be easily applied to any specific convex

PA function. For example, by leveraging Lemma 2.2 and Theorem 3.1, explicit uniqueness conditions

can be readily obtained for a polyhedral gauge. Furthermore, the proposed approach can be exploited

for other relevant problems as shown in the subsequent subsections, and thus provides a simple, albeit

unifying, framework for a broad class of problems. Nevertheless, conditions (a)-(b) derived in [10] give

better geometric interpretation of the conditions obtained in Theorem 3.1.

3.2 Unique Optimal Solution to the LASSO-like Problem

Letting f : Rm → R be a C1 strictly convex function, we consider the following convex optimization

problem motivated by the constrained LASSO:

min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d. (8)

We assume that this optimization problem has an optimal solution. To characterize a unique optimal

solution to (8), we first present some preliminary results as follows.

Being an extension of [28, Lemma 4.1], the following lemma can be shown via an elementary argument

in convex analysis; its proof is thus omitted.

Lemma 3.3. Let f : Rm → R be a strictly convex function, and h : RN → R be a convex function. If

f(Ax− y) + h(x) is constant on a convex set S ⊆ RN , then Ax = Az and h(x) = h(z) for all x, z ∈ S.

In light of Lemma 3.3, we obtain the following proposition which generalizes [28, Theorem 2.1] using

a similar argument. To be self-contained, we present its proof as follows.

Proposition 3.2. Let f : Rm → R be a strictly convex function, h : RN → R be a convex function, and

C be a convex set in RN such that the following optimization problem has a minimizer x∗ ∈ RN :

(P0) : min
x∈RN

f(Ax− y) + h(x) subject to x ∈ C.

Then x∗ is the unique minimizer of (P0) if and only if x∗ is the unique minimizer of the following problem:

(P1) : min
x∈RN

h(x) subject to Ax = Ax∗, and x ∈ C.

Proof. Let S0 be the solution set of (P0). It is easy to see that S0 is convex on which f(Ax− y)+h(x) is

constant. By Lemma 3.3, we have Ax = Ax∗ and h(x) = h(x∗) for any x ∈ S0 ⊆ C. To show the “if” part,

suppose that x∗ is the unique minimizer of (P1) but there exists z ∈ S0 with z ̸= x∗. It follows from the

previous result that h(z) = h(x∗), Ax = Ax∗, and z ∈ C, contradicting the solution uniqueness of (P1).

Conversely, for the “only if” part, we first show that x∗ is a minimizer of (P1). Suppose not, i.e., there

exists z ∈ C with Az = Ax∗ such that h(z) < h(x∗). Then we have f(Az−y)+h(z) < f(Ax∗−y)+h(x∗).

This implies that x∗ is not a minimizer of (P0), contradiction. The solution uniqueness of (P1) follows

directly from that of (P0) and the result given at the beginning of the proof.

Theorem 3.2. Let x∗ ∈ RN be a feasible point of the problem (8), where f : Rm → R is a C1 strictly

convex function. Then x∗ is the unique minimizer of (8) if and only if all the following conditions hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0};

(ii) There exist z ∈ Rm, z′ ∈ R|α|
++, and z′′ ∈ R|I| with 0 < z′′ < 1 and 1T z′′ = 1 such that AT z −

CT
α•z

′ +W T z′′ = 0;
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(iii) There exist w ∈ R|α|
+ and w′ ∈ R|I| with 0 ≤ w′ ≤ 1 and 1Tw′ = 1 such that AT∇f(Ax∗ − y) −

CT
α•w +W Tw′ = 0.

Proof. We first show that x∗ is a minimizer of (8) if and only if condition (iii) holds. Recall that

P := {x |Cx ≥ d}. Since f(Ax − y) + g(x) is a real-valued convex function on RN and P is a closed

convex set, it follows from [16, Theorem 3.33] that x∗ is a minimizer of (8) if and only if 0 ∈ ∂f(Ax∗ −
y) + ∂g(x∗) +NP(x

∗). In light of

∂f(Ax∗ − y) = {AT∇f(Ax∗ − y)}, ∂g(x∗) = conv(pi1 , pi2 , . . . , pi|I|), NP(x
∗) = {CT

α•u |u ≤ 0},

we see that x∗ is a minimizer of (8) if and only if condition (iii) holds.

Applying Proposition 3.2 with C := {x ∈ RN |Cx ≥ d} and h(x) = g(x), we deduce that a minimizer

x∗ is the unique minimizer of (8) if and only if it is the unique minimizer of the following problem in the

form of (5):

(P2) : min
x∈RN

g(x) subject to Ax = Ax∗, and Cx ≥ d.

Clearly, x∗ is a feasible point of (P2). Hence, by Theorem 3.1, x∗ is the unique minimizer of (P2) if and

only if conditions (i) and (ii) hold. This completes the proof.

3.3 Unique Optimal Solution to the Basis Pursuit Denoising I-like Problem

Letting f : Rm → R be a C1 strictly convex function and ε ∈ R, we consider the following convex

optimization problem motivated by the BPDN-I problem with an additional linear inequality constraint:

min
x∈RN

g(x) subject to f(Ax− y) ≤ ε, and Cx ≥ d. (9)

We assume that this problem has an optimal solution. Note that this problem is different from that

treated in [10], since the constraints are no longer polyhedral in general. Moreover, the papers [28, 29]

consider a problem similar to (9) with g(x) = ∥Ex∥1 or g(x) = ∥x∥1 but without the linear inequality

constraint Cx ≥ d, and they show that its solution uniqueness can be reduced to that of a relevant basis

pursuit problem. However, this reduction does not hold for (9) due to the presence of the general linear

inequality constraint; see Section 5.1 for a counterexample. This calls for new techniques to handle (9).

Theorem 3.3. Let x∗ ∈ RN be a feasible point of the problem (9).

C.1 Suppose f(Ax∗ − y) < ε. Then x∗ is the unique minimizer of (9) if and only if {v ∈ RN |Cα•v =

0, Wv = 0} = {0} and there exist z ∈ R|α|
++ and z′ ∈ R|I| with 0 < z′ < 1 and 1T z′ = 1 such that

CT
α•z = W T z′.

C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (9) if and only if the following hold:

(2.i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0};

(2.ii) There exist z ∈ Rm, z′ ∈ R|α|
++, and z′′ ∈ R|I| with 0 < z′′ < 1 and 1T z′′ = 1 such that

AT z − CT
α•z

′ +W T z′′ = 0;

(2.iii) If K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist w ∈ R|α|

+

and w′ ∈ R|I|
+ such that AT∇f(Ax∗ − y)− CT

α•w +W Tw′ = 0.

Remark 3.2. We give several remarks on the conditions in Theorem 3.3 before presenting its proof.

(a) Note that in C.2, if the cone K defined in condition (2.iii) is empty, then x∗ is the unique minimizer

if and only if conditions (2.i)-(2.ii) hold;
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(b) The cone K is nonempty if and only if there is no u ≥ 0 such that AT∇f(Ax∗ − y) = CT
α•u.

Geometrically, it means that AT∇f(Ax∗−y) is not in the dual cone of {v |Cα•v ≥ 0}, which equals

the normal cone of the polyhedron P := {x |Cx ≥ d} at x∗. This condition provides a constraint

qualification for the optimality condition shown in (2.iii);

(c) In view of remark (b), we see that if K is nonempty, then a nonnegative w′ given in condition (2.iii)

must be nonzero. Hence, condition (2.iii) can be equivalently written as: if K is nonempty, then

there exist a positive real number θ, w̃ ∈ R|α|
+ , and w̃′ ∈ R|I| with 0 ≤ w̃′ ≤ 1 and 1T w̃′ = 1 such

that θ ·AT∇f(Ax∗ − y)− CT
α•w̃ +W T w̃′ = 0.

Proof. The proof is divided into the following two parts:

Case C.1: f(Ax∗ − y) < ε. Due to the continuity of f , it is clear that x∗ is a unique minimizer of (9)

if and only if it is a unique (local) minimizer of the following problem on a small neighborhood of x∗:

min
x∈RN

g(x), subject to Cx ≥ d.

By applying Theorem 3.1 with A = 0 and y = 0 to the above problem, we obtain the desired result.

Case C.2: f(Ax∗− y) = ε. Define the function r(Av) := f(Ax∗ − y+Av)− f(Ax∗ − y)−
(
∇f(Ax∗ −

y)
)T

Av for v ∈ RN . Since f is strictly convex, we see that r(Av) ≥ 0 for all v, and r(Av) = 0 if and only

if Av = 0. Furthermore, since f is C1, we have

lim
0̸=Av→0

r(Av)

∥Av∥
= 0. (10)

For notational simplicity, we define q := AT∇f(Ax∗ − y) ∈ RN . Note that if Av = 0, so is qT v.

Define the positively homogeneous function g̃(v) := maxi∈I pTi v. By virtue of the piecewise linear

structure of g(x)− g(x∗) for all x sufficiently close to x∗, x∗ is the unique minimizer of (9) if and only if

v∗ = 0 is a unique local minimizer of the following problem:

min
v∈RN

g̃(v) subject to qT v + r(Av) ≤ 0, Cα•v ≥ 0. (11)

We claim that v∗ = 0 is the unique local minimizer of (11) if and only if the following hold:

(i’) u∗ = 0 is the unique minimizer of the problem

min
u∈RN

g̃(u) subject to Au = 0, Cα•u ≥ 0; and

(ii’) If the cone K := {u | qTu < 0, Cα•u ≥ 0} is nonempty, then g̃(u) > 0 for all u ∈ K.

To show this claim, we first prove the “if” part. Let U be a neighborhood of v∗ = 0 such that g̃(v) =

g(x∗ + v) − g(x∗) and Cαc•(x
∗ + v) > dαc for all v ∈ U . For any 0 ̸= v ∈ U with qT v + r(Av) ≤ 0 and

Cα•v ≥ 0, we consider two cases: Av = 0, and Av ̸= 0. For the former case, we have qT v + r(Av) = 0.

By condition (i’), we have g̃(v) > g̃(0) = 0. For the latter case, since Av ̸= 0, we have r(Av) > 0 so that

hT v < 0. By condition (ii’), we also have g̃(v) > 0. Therefore, v∗ = 0 is the unique local minimizer of (11).

We next prove the “only if” part. Suppose v∗ = 0 is the unique local minimizer of (11). For any u ̸= 0

with Au = 0 and Cα•u ≥ 0, we have that for all sufficiently small β > 0, qTβu+r(βAu) = 0 such that βu

is a nonzero local feasible point of (11). This implies that g̃(βu) > 0. By the positive homogeneity of g̃,

we see that g̃(u) > 0 for all u ̸= 0 with Au = 0 and Cα•u ≥ 0. This leads to condition (i’). Furthermore,

for any u ∈ K, we deduce via qTu < 0 that u ̸= 0 and Au ̸= 0 (recalling that [Au = 0] ⇒ [qTu = 0]). It

follows from (10) that for all sufficiently small β > 0,

qTβu+ r(Aβu)

∥βu∥
=

qTu

∥u∥
+

r(βAu)

∥βAu∥
· ∥Au∥
∥u∥

< 0.
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Therefore, qTβu+ r(Aβu) < 0 for all small β > 0. Hence, βu is a nonzero local feasible point of (11) so

that g̃(βu) > 0. We thus obtain condition (ii’) via the positive homogeneity of g̃ again. This completes

the proof of the claim.

We finally show that conditions (i’) and (ii’) are equivalent to conditions (2.i), (2.ii), and (2.iii)

stated in the theorem. Clearly, in light of Theorem 3.1, condition (i’) is equivalent to conditions (2.i)-

(2.ii). Moreover, when K is nonempty, condition (ii’) is equivalent to the inconsistency of the following

inequality system in u:

qTu < 0, Cα•u ≥ 0, max
i∈I

pTi u ≤ 0.

In view of the expression of the matrix W in (4), the above inequality system is equivalent to the following

linear inequality system:

(I) : qTu < 0, Cα•u ≥ 0, Wu ≤ 0.

By the Motzkin’s Transposition Theorem, system (I) has no solution if and only if there exists z =

(z1, z2, z3) with 0 < z1 ∈ R and (z2, z3) ≥ 0 such that −z1 · q + CT
α•z2 −W T z3 = 0. The latter condition

is equivalent to the existence of (w,w′) ≥ 0 such that q−CT
α•w+W Tw′ = 0. This shows the equivalence

of conditions (ii’) and (2.iii).

3.4 Unique Optimal Solution to the Basis Pursuit Denoising II-like Problem

Let f : Rm → R be a C1 strictly convex function. For each i = 1, . . . , r, gi : RN → R is a convex PA

function whose max-formulation is gi(x) = maxs=1,...,ℓi(p
T
i,sx + γi,s), where each (pi,s, γi,s) ∈ RN × R.

Consider the following convex optimization problem motivated by the constrained BPDN-II problem:

min
x∈RN

f(Ax− y) subject to g1(x) ≤ η1, . . . , gr(x) ≤ ηr, and Cx ≥ d, (12)

where η1, . . . , ηr are real numbers. We assume that this problem has an optimal solution. This optimiza-

tion problem allows multiple convex PA function defined constraints, which appear in applications, e.g.,

the sparse fused LASSO [25]; see Section 5.3 for details.

A problem similar to (12) is treated in [28] with one inequality constraint ∥x∥1 ≤ η1 but without the

polyhedral constraint Cx ≥ d. Under a restrictive assumption on η1, it is shown in [28] that its solution

uniqueness is reduced to that of a related basis pursuit problem. However, this reduction fails for (12)

due to the presence of the general polyhedral constraint; see Section 5.2 for more elaboration.

We introduce more notation first. For a given feasible point x∗ ∈ RN , define the index set J := {i ∈
{1, . . . , r} | gi(x∗) = ηi}, which corresponds to the active constraints defined by gi’s at x

∗. For each i ∈ J ,

define the index set Ii := {s ∈ {1, . . . , ℓi} | pTi,sx∗ + γi,s = gi(x
∗)}, and the matrix

Wi :=

 pTi,s1
...

pTi,s|Ii|


sk∈Ii

∈ R|Ii|×N . (13)

Theorem 3.4. Let x∗ ∈ RN be a feasible point of the problem (12). Then x∗ is the unique minimizer of

(12) if and only if the following hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wiv = 0, ∀ i ∈ J } = {0};

(ii) There exist w ∈ Rm, w′ ∈ R|α|
++, and w′′

i ∈ R|Ii| with 0 < w′′
i < 1 and 1Tw′′

i = 1 for each i ∈ J such

that ATw − CT
α•w

′ +
∑

i∈J W T
i w′′

i = 0;

(iii) There exist z̃ ∈ R|α|
+ and z̃′i ∈ R|Ii|

+ for each i ∈ J such that AT∇f(Ax∗−y)−CT
α•z̃+

∑
i∈J W T

i z̃′i = 0.

Moreover, condition (iii) is equivalent to the following condition:
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(iv) There exist z ∈ R|α|
+ , θi ∈ R+, z

′
i ∈ R|Ii| with 0 ≤ z′i ≤ 1 and 1T z′i = 1 for each i ∈ J such that

AT∇f(Ax∗ − y)− CT
α•z +

∑
i∈J

θi ·W T
i z′i = 0.

Proof. We first show that x∗ is a minimizer of the problem (12) if and only if condition (iii) holds.

Note that for each gi(x) = maxs=1,...,ℓi(p
T
i,sx + γi,s), the constraint gi(x) ≤ ηi is equivalent to the linear

inequality constraint pTi,sx ≤ ηi − γi,s for all s. Hence, the problem (12) has a polyhedral constraint.

In view of the definitions of Cα• and Wi for each i ∈ J , it is easy to see, e.g., via [16, Theorem 3.33],

that x∗ is a minimizer if and only if there exist z̃ ∈ R|α|
+ and z̃′i ∈ R|Ii|

+ for each i ∈ J such that

AT∇f(Ax∗−y)−CT
α•z̃+

∑
i∈J W T

i z̃′i = 0, which is condition (iii). To show the equivalence of conditions

(iii) and (iv), we first observe that (iv) implies (iii). Conversely, suppose (iii) holds. It suffices to show

that for each z̃′i ∈ R|Ii|
+ , there exist θi ∈ R+ and z′i ∈ R|Ii| with 0 ≤ z′i ≤ 1 and 1T z′i = 1 such that

z̃′i = θi · z′i. This result is trivial when z̃′i = 0. When 0 ̸= z̃′i ≥ 0, we choose θi := 1T z̃i > 0 and zi := z̃′i/θi,

which leads to the desired result.

Suppose x∗ is a minimizer of the problem (12) or equivalently x∗ satisfies condition (iii). For each

i ∈ J , let g̃i(v) := maxs∈Ii p
T
i,sv. Let U be a convex neighborhood of x∗ such that for all x ∈ U ,

gi(x)− gi(x
∗) = g̃i(x− x∗) for each i ∈ J , gi(x) < ηi for each i ∈ J c, and Cαc•x > dαc . Then x∗ is the

unique minimizer of (12) if and only if it is a unique local minimizer of the following problem on U :

min
x∈RN

f(Ax− y) + h(x), subject to x ∈ U , g̃i(x− x∗) ≤ 0, ∀ i ∈ J , and Cα•(x− x∗) ≥ 0,

where h is the zero function, and g̃i(x − x∗) is convex in x for each i ∈ J . Applying Proposition 3.2 to

the above problem with the convex set C := U ∩ {x |Cα•(x − x∗) ≥ 0, g̃i(x − x∗) ≤ 0, ∀ i ∈ J }, we see

that x∗ is the unique minimizer of (12) if and only if it is the unique minimizer of the following problem:

min
x∈RN

h(x), subject to Ax = Ax∗, x ∈ U , g̃i(x− x∗) ≤ 0, ∀ i ∈ J , and Cα•(x− x∗) ≥ 0,

It is equivalent to the equation {v |Av = 0, Cα•v ≥ 0, g̃i(v) ≤ 0, ∀ i ∈ J } = {0} in view of the positive

homogeneity of g̃i. Since g̃i(v) ≤ 0 is equivalent to Wiv ≤ 0 where Wi is defined in (13), this equation

holds if and only if {v |Av = 0, Cα•v ≥ 0, Wiv ≤ 0, ∀ i ∈ J } = {0}. Using Lemma 3.1 with

H =


Cα•
−Wi1

...

−Wi|J |


ik∈J

and a similar argument for Theorem 3.1, we deduce that {v |Av = 0, Cα•v ≥ 0, Wiv ≤ 0, ∀ i ∈ J } = {0}
holds if and only if conditions (i) and (ii) hold. This completes the proof.

3.5 Extensions to Convex PA Loss Functions

In this subsection, we extend the results in Sections 3.2-3.4 to a convex PA loss function f : Rm → R. It
follows from (ii) of Lemma 2.1 that f(Ax−y) is a convex PA function on RN . By virtue of this property,

we show below that under this f and a convex PA function g, each of the LASSO-like problem (8), the

BPDN-I-like problem (9), and the BPDN-II-like problem (12) can be formulated as the BP-like problem

(5) with a new convex PA objective function or suitable polyhedral constraints.

(a) The LASSO-like problem (8). Define g⋆(x) := f(Ax− y) + g(x). Since both f(Ax− y) and g(x)

are convex PA functions on RN , so is g⋆ in view of (iii) of Lemma 2.1. This leads to the BP-like problem

(5) with the objective function g⋆ and without the equality constraint.
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(b) The BPDN-I-like problem (9). Since f(Ax − y) is a convex PA function on RN , the constraint

set {x | f(Ax− y) ≤ ε} is polyhedral as shown in the proof of Theorem 3.4. Hence, the problem (9) can

be formulated as the BP-like problem (5) with a new polyhedral constraint.

(c) The BPDN-II-like problem (12). Based on the argument for the above two cases, the problem

(12) is also transferred to the BP-like problem (5).

Consequently, when f is a convex PA function, the solution uniqueness of the above three problems

can be determined via Theorem 3.1 for a given x∗.

As an example, we consider the Dantzig selector which has gained tremendous interest in high-

dimensional statistics [5]: minx∈RN ∥x∥1 subject to ∥AT (Ax − y)∥∞ ≤ ε. Let g(x) := ∥x∥1, ∀x ∈ RN ,

and f(z) := ∥AT z∥∞, ∀ z ∈ Rm, which are both convex PA functions. Hence, the Dantzig selector can be

treated as the BPDN-I-like problem (9) with the convex PA loss function f and the objective function g.

4 Solution Existence and Uniqueness of ℓ1-norm based Constrained

Optimization Problems

Since the ℓ1-norm is a sign-symmetric polyhedral gauge and thus a convex PL function, we apply the

general results developed in Section 3 to establish solution uniqueness conditions for several important

and representative ℓ1 minimization problems, possibly subject to linear inequality constraints.

4.1 Solution Existence of ℓ1-norm based Constrained Optimization Problems

Solution existence is a fundamental issue for ℓ1-norm based optimization problems. For the BP-like

problem, it depends on the convex PA function g, whereas for the LASSO-like and two BPDN-like

problems, it depends on the function f additionally. In this subsection, we first establish some general

solution existence results, and then apply them to several problems of interest with g(x) = ∥Ex∥1 and

f(·) = ∥·∥s, which find various applications in ℓ1 minimization. We start from certain preliminary results.

Lemma 4.1. Let J : Rℓ → R be a coercive and lower semi-continuous function that is bounded below,

i.e., infu∈Rℓ J(u) > −∞. Let a matrix H ∈ Rℓ×N and a set C ⊆ RN be such that HC is a closed set in

Rℓ. Then for any u′ ∈ Rℓ, the minimization problem infx∈C J(Hx+ u′) attains an optimal solution.

Proof. Define the set W := HC+{u′} in Rℓ for an arbitrary u′. Since HC is closed, so is W. Consider the

optimization problem (P ) : infu∈W J(u). Since J is coercive, lower semi-continuous, and bounded below

and W is closed, it follows from a standard argument that (P ) has a minimizer u∗ ∈ W. Therefore, there

exists x∗ ∈ C such that Hx∗ + u′ = u∗. Clearly, x∗ is an optimal solution to the original problem.

Corollary 4.1. Let A ∈ Rm×N , F ∈ Rp×N , and H :=

[
A

F

]
∈ R(m+p)×N . Let J1 : Rm → R and

J2 : Rp → R be two coercive and lower semi-continuous functions that are bounded below. Suppose

C ⊆ RN is such that HC is a closed set in Rm+p. Then for any given y ∈ Rm, the following problem

attains a minimizer:

inf
x∈C

J1(Ax− y) + J2(Fx). (14)

Proof. For any z = (zα, zβ) ∈ Rm+p with zα ∈ Rm and zβ ∈ Rp, define the function J(z) := J1(zα) +

J2(zβ). Clearly, J is coercive, lower semi-continuous, and bounded below on Rm+p. For any given y,

define z′ := (−y, 0) ∈ Rm+p. Hence, J1(Ax− y) + J2(Fx) = J(Hx+ z′) for any x ∈ RN . Consequently,

the minimization problem in (14) can be equivalently written as infx∈C J(Hx+ z′). Since HC is closed,

it follows from Lemma 4.1 that the minimization problem in (14) attains an optimal solution.

By exploiting the above results, we obtain the following solution existence results for some general

minimization problems motivated by the basis pursuit, LASSO, and basis pursuit denoising problems.
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Theorem 4.1. Let A ∈ Rm×N , C ∈ Rp×N , y ∈ Rm, d ∈ Rp, and E ∈ Rk×N be given, and suppose the

functions J1 : Rm → R and J2 : Rk → R are coercive, bounded below, and lower semi-continuous. Then

each of the following minimization problems attains an optimal solution as long as it is feasible:

(P1) : min
x∈RN

J2(Ex) subject to Ax = y, and Cx ≥ d;

(P2) : min
x∈RN

J1(Ax− y) + J2(Ex) subject to Cx ≥ d;

(P3) : min
x∈RN

J1(Ax− y) subject to ∥E1x∥1 ≤ η1, . . . , ∥Erx∥1 ≤ ηr, and Cx ≥ d,

where Ei ∈ Rki×N and ηi ≥ 0 for each i = 1, . . . , r in (P3). Moreover, if J1 : Rm → R is coercive

and lower semi-continuous, and J2 : Rk → R satisfies the conditions specified above, then the following

problem attains an optimal solution as long as it is feasible:

(P4) : min
x∈RN

J2(Ex) subject to J1(Ax− y) ≤ ε, and Cx ≥ d, where ε ∈ R.

Proof. (i) Consider the problem (P1) first. Define the (nonempty) feasible set C1 := {x |Ax = y, Cx ≥ d}.
Since C1 is a convex polyhedron, we deduce via Minkowski-Wyel Decomposition Theorem that EC1 is

also a convex polyhedron and thus closed. Applying Lemma 4.1 to J(·) = J2(·), H = E, u′ = 0, and

C = C1, we conclude that this problem attains a minimizer.

(ii) We then consider the problem (P2). Clearly, the (nonempty) feasible set C2 := {x | Cx ≥ d} is

a convex polyhedron. Let H :=

[
A

E

]
∈ R(m+k)×N . Hence, HC2 is closed. It follows from Corollary 4.1

directly that a minimizer exists.

(iii) We next consider the problem (P3). As indicated in the proof of Theorem 3.4, since each gi is a

convex PL function, the (nonempty) feasible set C3 := {x | g1(x) ≤ η1, . . . , gr(x) ≤ ηr, and Cx ≥ d} is

a polyhedron. Therefore, AC4 is closed. By letting J(·) = J1(·), H = A, and u′ = −y, and C = C3, the
desired result follows readily from Lemma 4.1.

(iv) Lastly, we consider the problem (P4). Let the (nonempty) set D := {x ∈ RN | J1(Ax − y) ≤ ε},
and define W := R(AT ) ∩ D. We claim that D = W + N(A). It is straightforward to show that

D ⊇ W + N(A). For the converse, consider an arbitrary x ∈ D. Note that there exist unique vectors

u ∈ R(AT ) and v ∈ N(A) such that x = u + v. Since Ax = Au, we have u ∈ D. Therefore, u ∈ W so

that x ∈ W +N(A). This completes the proof of the claim.

We next show that W is a compact set. Toward this end, we note that since J1(·) is lower semi-

continuous, J1(Ax − y) is also lower semi-continuous in x. By observing that D is the sub-level set of

a lower semi-continuous function, we deduce that D is closed. Sine R(AT ) is also closed, so is W. We

show next that W is bounded. Since J1(·) is coercive, we see via the definition of the set D that AD
is bounded. Suppose, by contradiction, that W is unbounded. Then there exists a sequence (xn) in

W := R(AT )∩D such that (∥xn∥) → ∞. Without loss of generality, we assume that (xn/∥xn∥) converges
to z∗ with ∥z∗∥ = 1. Since (Axn) is in AD, it is thus bounded so that (Axn/∥xn∥) → 0. This implies

that Az∗ = 0 or equivalently z∗ ∈ N(A). Furthermore, since (xn/∥xn∥) is a convergent sequence in the

closed set R(AT ), we have z∗ ∈ R(AT ). In view of N(A)∩R(AT ) = {0}, we have z∗ = 0, a contradiction.

Hence, W is bounded and thus compact.

Since D = W +N(A), we have ED = EW +EN(A). Note that EW is compact, and that EN(A) is

a subspace and thus closed. Consequently, ED is closed. Since the (nonempty) feasible set C4 = D ∩ P,

where P := {x | Cx ≥ d}, we have EC4 = ED ∩ EP. As both ED and EP are closed, so is EC4. It

follows from the similar argument as before that (P4) attains an optimal solution.

We apply the above theorem to several representative ℓ1 minimization problems.
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Corollary 4.2. Let A ∈ Rm×N , C ∈ Rp×N , y ∈ Rm, and d ∈ Rp be given, g(x) = ∥Ex∥1 for some

E ∈ Rk×N , and f(u) = ∥u∥s, ∀u ∈ Rm where ∥ · ∥ is a norm on Rm and s > 0. Then each of the

following minimization problems attains an optimal solution as long as it is feasible:

BP-like problem : min
x∈RN

g(x) subject to Ax = y, and Cx ≥ d;

LASSO-like problem : min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d;

BPDN-I like problem : min
x∈RN

g(x) subject to f(Ax− y) ≤ ε, and Cx ≥ d, where ε > 0;

BPDN-II-like problem : min
x∈RN

f(Ax− y) subject to ∥E1x∥1 ≤ η1, . . . , ∥Erx∥1 ≤ ηr, and Cx ≥ d,

where Ei ∈ Rki×N and ηi ≥ 0 for each i = 1, . . . , r in the last problem.

Proof. It is a direct consequence of Theorem 4.1 by noting that J1(·) = ∥ · ∥s with s > 0 in f and

J2(·) = ∥ · ∥1 in g are coercive, continuous (thus lower semi-continuous), and bounded below by zero.

4.2 Properties of ℓ1-norm based Convex PA Functions

In order to apply the general results developed in Section 3 to an ℓ1-norm based convex PA function, it

is crucial to find the matrix W defined in (4) associated with this function for a given vector. Toward

this end, we first establish this matrix for the ℓ1-norm. Note that the max-formulation of the ℓ1-norm

on Rk is given by g(z) := ∥z∥1 = max1,...,2k p
T
i z,∀ z ∈ Rk, where each

pi ∈
{(

± 1,±1, . . . ,±1
)T} ⊂ Rk. (15)

For a given z∗ ∈ Rk, let S be the support of z∗ and Sc be its complement. Further, define the index set

I := {i ∈ {1, . . . , 2k} | pTi z∗ = ∥z∗∥1}, and b := sgn(z∗S) ∈ R|S|. Here |I| = 2|S
c|. Using the definitions of

S and Sc, we can decompose g(z) as the sum of two ℓ1-norms on R|S| and R|Sc| respectively, i.e., g(z) =

∥z∥1 = ∥zS∥1 + ∥zSc∥1, ∀ z ∈ Rk. For notational purpose, define gS(zS) := ∥zS∥1 and gSc(zSc) := ∥zSc∥1.
Hence the subdifferentials ∂gS(z

∗
S) = {b}, and ∂gSc(z∗Sc) = ∂gSc(0) = {u ∈ R|Sc| | ∥u∥∞ ≤ 1}. By the

comment after equation (4), it is easy to verify that the matrix defined in (4) associated with ∥z∥1 at

z∗ is given by Ŵ =
[
Ŵ•S Ŵ•Sc

]
∈ R|I|×k, where Ŵ•S = 1 · bT , and each row of Ŵ•Sc is of the form

(±1, . . . ,±1) ∈ R|Sc|. For example, if |Sc| = 2, Ŵ•Sc =


1 1

1 −1

−1 1

−1 −1

 . We collect several properties of

Ŵ•Sc in the following lemma. These properties will be used for the latter development; see the proofs of

Lemma 4.3, Proposition 4.1, and Proposition 4.2.

Lemma 4.2. For the given z∗ ∈ Rk, the matrix Ŵ•Sc ∈ R|I|×|Sc| defined above satisfies:

(i) The columns of Ŵ•Sc are linearly independent;

(ii) For any row ŴiSc, there is another row ŴjSc with i ̸= j such that ŴjSc = −ŴiSc;

(iii) conv{Ŵ T
iSc | i = 1, . . . , |I|} = ∂gSc(0) = {u ∈ R|Sc| | ∥u∥∞ ≤ 1}, and

|I|∑
i=1

λi · Ŵ T
iSc

∣∣∣ |I|∑
i=1

λi = 1, λi > 0, ∀ i = 1, . . . , |I|

 =
{
u ∈ R|Sc| ∣∣ ∥u∥∞ < 1

}
.
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Proof. Statements (i) and (ii) are trivial. To show the first part of statement (iii), it follows from the

comment after equation (4) that the columns of Ŵ T
•Sc are convex hull generators (or vertices/extreme

points) of ∂gSc(0), which is the closed unit ball with respect to the infinity-norm ∥·∥∞. Lastly, we deduce

from Lemma 3.2 and the first part of (iii) that
|I|∑
i=1

λi · Ŵ T
iSc

∣∣∣ |I|∑
i=1

λi = 1, λi > 0, ∀ i = 1, . . . , |I|


= ri

(
conv{Ŵ T

iSc | i = 1, . . . , |I|}
)

= ri
(
{u ∈ R|Sc| | ∥u∥∞ ≤ 1}

)
= int

(
{u ∈ R|Sc| | ∥u∥∞ ≤ 1}

)
=
{
u ∈ R|Sc| | ∥u∥∞ < 1

}
,

where the second-to-last equation follows from the fact that the unit closed ball with respect to the

infinity-norm ∥ · ∥∞ has nonempty interior.

Motivated by generalized ℓ1 minimization, we consider a sign-symmetric polyhedral gauge of the form

g(x) = ∥Ex∥1 for a (nonzero) matrix E ∈ Rk×N . Many ℓ1-norm based convex PL functions arising from

applications can be represented by this form, e.g., ℓ1-trend filtering [12], sparse fused LASSO [25], and

generalized LASSO [24]; see Sections 4.3.1 and 5.3 for more discussions and examples. For a given x∗ ∈
RN , let S denote the support of Ex∗, i.e., S = {i ∈ {1, . . . , k} | (Ex∗)i ̸= 0}, and Sc be its complement.

Further, define b̂ := sgn((Ex∗)S) and the index set I := {i ∈ {1, . . . , 2k} | pTi Ex∗ = ∥Ex∗∥1}, where
pi’s are defined in (15) for the max-formulation of the ℓ1-norm. Here |I| = 2|S

c|. In light of the

comment after equation (4), we obtain the matrix Ŵ defined in (4) associated with ∥ · ∥1 at Ex∗ as

Ŵ =
[
Ŵ•S Ŵ•Sc

]
∈ R|I|×k, where Ŵ•S = 1 · b̂T and Ŵ•Sc ∈ R|I|×|Sc| is the matrix whose columns of its

transpose form the vertices of the closed unit ball in R|Sc| with respect to ∥ · ∥∞. Note that the matrix

Ŵ•Sc satisfies the conditions given in Lemma 4.2. In view of ∂g(x∗) = ET∂∥ · ∥1(Ex∗), we see that the

matrix W associated with the function g at x∗ is

W = Ŵ · E =
[
Ŵ•S Ŵ•Sc

] [ES•
ESc•

]
= 1 · bT + Ŵ•ScESc• ∈ R|I|×N , b := ET

S•b̂ ∈ RN . (16)

By virtue of these results, we obtain the following lemma which characterizes the null space of W .

Lemma 4.3. Let the matrix W be defined in (16) for the function g(x) = ∥Ex∥1 at x∗. For a given

v ∈ RN , Wv = 0 if and only if bT v = 0 and ESc• v = 0.

Proof. The “if” part is trivial, and we show the “only if” part only. Suppose Wv = 0. Let α := bT v ∈ R
and u := ESc• v ∈ R|Sc|. Hence, we have Wv = α · 1 + Ŵ•Sc u = 0. It follows from (ii) of Lemma 4.2

that the vector W•Scu has two elements of the same absolute value (which is possibly zero) but opposite

signs. This shows that α is zero, i.e., bT v = 0. This further implies that W•Sc u = 0. Since the columns

of W•Sc are linearly independent (cf. (i) of Lemma 4.2), we obtain u = 0 or equivalently ESc• v = 0.

4.3 Solution Uniqueness of Convex Optimization Problems Involving ∥Ex∥1
Through this subsection, we let g(x) = ∥Ex∥1,∀x ∈ RN for a (nonzero) matrix E ∈ Rk×N , and let

P := {x ∈ RN |Cx ≥ d} be a nonempty polyhedron where C ∈ Rp×N and d ∈ Rp. Furthermore, for a

given x∗, recall the definitions of the index sets α and S in Section 4.2, and the definitions of the matrix

W and the vector b in (16). We first consider the BP-like problem (5) involving the function g.

Proposition 4.1. Let g(x) = ∥Ex∥1, and x∗ be a feasible point of the optimization problem (5). Then

x∗ is the unique minimizer if and only if the following conditions hold:
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(a) The matrix

 A

Cα•
ESc•

 has full column rank; and

(b) There exist u ∈ Rm, u′ ∈ R|α|
++, and u′′ ∈ R|Sc| with ∥u′′∥∞ < 1 such that ATu+CT

α•u
′−ET

Sc•u
′′ = b.

Proof. By Theorem 3.1, it suffices to show that conditions (i) and (iii) of Theorem 3.1 hold if and

only if conditions (a)-(b) hold, where we recall that (i) {v |Av = 0, Cα•v = 0, Wv = 0} = {0},
and (iii) there exist w ∈ Rm, w′ ∈ R|α|

++, and w′′ ∈ R|I| with 0 < w′′ < 1 and 1Tw′′ = 1 such that

ATw − CT
α•w

′ +W Tw′′ = 0.

“Only if”. Suppose conditions (i) and (iii) of Theorem 3.1 hold with suitable w,w′, and w′′ satisfying

the specified conditions. In view of the expression of W given in (16), we have W Tw′′ = b · 1Tw′′ +

ET
Sc•Ŵ

T
•Scw′′ = b+ET

Sc•u
′′, where u′′ := Ŵ T

•Scw′′ and we use 1Tw′′ = 1. By the second part of statement

(iii) Lemma 4.2, we obtain ∥u′′∥∞ < 1. Hence, letting u = −w and u′ = w′ > 0, we have ATu+ CT
α•u

′ −
ET

Sc•u
′′ = b. This yields condition (b). Moreover, it follows from condition (i) and Lemma 4.3 that{

v |Av = 0, Cα•v = 0, bT v = 0, ESc• v = 0
}

= {0}. (17)

We claim that equation (17) implies condition (a). Suppose, in contrast, that (a) fails under (17), i.e.,

there exists v ̸= 0 such that Av = 0, Cα•v = 0, and ESc•v = 0. In view of condition (b), we have

vT b = vT
(
ATu+ CT

α•u
′ − ET

Sc•u
′′) = 0.

This gives rise to a contradiction to (17). Hence, condition (a) holds.

“If”. Suppose conditions (a)-(b) hold. Note that condition (a) implies that {v |Av = 0, Cα•v =

0, bT v = 0, ESc• v = 0} = {0}. By Lemma 4.3, we have {v |Av = 0, Cα•v = 0, Wv = 0} = {0}, which
is condition (i) of Theorem 3.1. Furthermore, we deduce from condition (b) that there exist u ∈ Rm,

u′ ∈ R|α|
++, and u′′ ∈ R|Sc| with ∥u′′∥∞ < 1 such that ATu+ CT

α•u
′ −ET

Sc•u
′′ = b. By letting w = −u and

w′ = u′, we have ATw − CT
α•w

′ + b + ET
Sc•u

′′ = 0. Since ∥u′′∥∞ < 1, we deduce via the second part of

(iii) of Lemma 4.2 that there exists w′′ ∈ R|I| with 0 < w′′ < 1 and 1Tw′′ = 1 such that u′′ = W T
•Scw′′.

Therefore, b+ ET
Sc•u

′′ =
(
b · 1T + ET

Sc•W
T
•Sc)w′′ = W Tw′′, where the second equation follows from (16).

This gives rise to condition (ii) of Theorem 3.1.

The necessary and sufficient conditions for unique optimal solutions to the LASSO-like problem (8)

are given in the following proposition.

Proposition 4.2. Let g(x) = ∥Ex∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a

feasible point of the problem (8). Then x∗ is the unique minimizer of (8) if and only if conditions (a)-(b)

of Proposition 4.1 and the following condition hold:

(c) There exist ũ ∈ R|α|
+ and ũ′ ∈ R|Sc| with ∥ũ′∥∞ ≤ 1 such that AT∇f(Ax∗−y)−CT

α• ũ+b+ET
Sc•ũ

′ = 0.

Proof. In light of Theorem 3.2 and Proposition 4.1, we only need to show that condition (iii) of The-

orem 3.2 is equivalent to condition (c) of this proposition. Using (iii) of Lemma 4.2, we deduce that

∥ũ′∥∞ ≤ 1 for some ũ′ ∈ R|Sc| if and only if there exists w′ ∈ R|I| with 0 ≤ w′ ≤ 1 and 1Tw′ = 1 such

that ũ′ = Ŵ T
•Scw′. Applying this result and the similar argument in the proof of Proposition 4.1, we

conclude that condition (iii) of Theorem 3.2 is equivalent to condition (c) of the proposition.

The following proposition pertains to the BPDN-I-like problem (9); condition (2.c) given below follows

from statement (c) of Remark 3.2. Its proof is rather straightforward and thus omitted.

Proposition 4.3. Let g(x) = ∥Ex∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a

feasible point of the problem (9).
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C.1 Suppose f(Ax∗ − y) < ε. Then x∗ is the unique minimizer of (9) if and only if

[
Cα•
ESc•

]
has full

column rank, and there exist u ∈ R|α|
++ and u′ ∈ R|Sc| with ∥u′∥∞ < 1 such that CT

α•u = b+ET
Sc•u

′.

C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (9) if and only if conditions (a)-(b)

of Proposition 4.1 and the following condition hold:

(2.c) If K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist a positive

real number θ, ũ ∈ R|α|
+ , and ũ′ ∈ R|Sc| with ∥ũ′∥∞ ≤ 1 such that θ ·AT∇f(Ax∗ − y)−CT

α•ũ+

b+ET
Sc•ũ

′ = 0.

The next result characterizes solution uniqueness of the following BPDN-II-like problem:

min
x∈RN

f(Ax− y) subject to g(x) ≤ η, and Cx ≥ d. (18)

This problem is a special case of the problem (12) with r = 1, g(x) = ∥Ex∥1, and a constant η > 0.

Proposition 4.4. Let g(x) = ∥Ex∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a

feasible point of the problem (18).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (18) if and only if the matrix

[
A

Cα•

]
has

full column rank, and there exist w ∈ Rm, w′ ∈ R|α|
++ and u ∈ R|α|

+ such that ATw = CT
α•w

′ and

AT∇f(Ax∗ − y) = CT
α•u;

C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (18) if and only if conditions (a)-(b) of

Proposition 4.1 and the following condition hold:

(2.c) There exist ũ ∈ R|α|
+ , µ ∈ R+, and ũ′ ∈ R|Sc| with ∥ũ′∥∞ ≤ 1 such that AT∇f(Ax∗ − y) −

CT
α•ũ+ µ ·

(
b+ ET

Sc•ũ
′
)
= 0.

Proof. The proof for the case C.1 follows directly from Theorem 3.4 by setting the index J = ∅. For

the case C.2, it suffices to show that condition (iv) of Theorem 3.4 is equivalent to condition (2.c) of this

proposition. For this purpose, it follows from the expression of the matrix W in (16), (iii) of Lemma 4.2,

and a similar argument for Proposition 4.1 that (a) for any z′ ≥ 0 with 1T z′ = 1, there exists ũ′ ∈ R|Sc|

with ∥ũ′∥∞ ≤ 1 such that W T z′ = b + ET
Sc•ũ

′; and (b) for any ũ′ ∈ R|Sc| with ∥ũ′∥∞ ≤ 1, there exists

z′ ≥ 0 with 1T z′ = 1 such that W T z′ = b+ET
Sc•ũ

′. Therefore, condition (iv) of Theorem 3.4 is equivalent

to (2.c) of this proposition.

4.3.1 Extension to a Sum of ℓ1-norm based Convex PA Functions

The results developed for ∥Ex∥1 can be extended to a wide range of ℓ1-norm based convex PA functions;

see Section 4.4 for the ℓ1-norm. In this subsection, we consider a convex PL function of the following

form which appears in such applications as the sparse fused LASSO [14, 25] (cf. Section 5.3):

g(x) =

q∑
i=1

∥Fix∥1, ∀ x ∈ RN , (19)

where each matrix Fi ∈ Rki×N , i = 1, . . . q. Letting k := k1 + · · · + kq, define the augmented matrix

F :=

F1
...

Fq

 ∈ Rk×N . Then g(x) = ∥Fx∥1, ∀x ∈ RN . Consequently, all the results developed for ∥Ex∥1
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hold for g(x) = ∥Fx∥1. Particularly, for a given x∗ ∈ RN , let Si be the support of Fix
∗ for each i, and S

be the support of Fx∗. Then FS• =

FS1•
...

FSq•

. Similarly, FSc• =

FSc
1•
...

FSc
q•

. Further, let b̂ := sgn((Fx∗)S),

and b := F T
S•b̂. Therefore, Propositions 4.1-4.4 are readily extended to the function g in (19) using these

matrices and vectors.

4.4 Solution Uniqueness of Convex Optimization Problems Involving the ℓ1-norm

Through this subsection, we consider the case where g is the ℓ1-norm, i.e., g(x) = ∥x∥1, ∀x ∈ RN . By

setting E as the N × N identity matrix and applying the results in Section 4.3 to the ℓ1-norm, we see

that for a given x∗ ∈ RN , the index set S is the support of x∗, the vector b̂ = sgn(x∗S) ∈ R|S|, the vector

b = ET
S•b̂ = (bS , bSc) = (̂b, 0) ∈ RN , ESc• = [0 IScSc ], and ESc•v = vSc .

Corollary 4.3. Let g(x) = ∥x∥1, and x∗ be a feasible point of the optimization problem (5). Then x∗ is

the unique minimizer if and only if the following conditions hold:

(i) The matrix

[
A•S
CαS

]
has full column rank; and

(ii) There exist u ∈ Rm and u′ ∈ R|α|
++ such that AT

•Su+ CT
αSu

′ = b̂ and
∥∥AT

•Scu+ CT
αScu′

∥∥
∞ < 1.

Proof. We apply Proposition 4.1 to this case with E = IN . Since ESc• = [0 IScSc ], we see that A

Cα•
ESc•

 =

A•S A•Sc

CαS CαSc

0 IScSc

 .

Since IScSc is invertible, condition (a) of Proposition 4.1 holds if and only if condition (i) holds, i.e.,[
A•S
CαS

]
has full column rank. Using ESc• = [0 IScSc ] and b = (bS , bSc) with bS = b̂ and bSc = 0, we deduce

that condition (b) of Proposition 4.1 holds if and only if there exist u ∈ Rm, u′ ∈ R|α|
++, and u′′ ∈ R|Sc|

with ∥u′′∥∞ < 1 such that

AT
•Su+ CT

αSu
′ = b̂, and AT

•Scu+ CT
αScu′ = u′′.

The latter equation given above is equivalent to
∥∥AT

•Scu+CT
αScu′

∥∥
∞ < 1. This completes the proof.

Remark 4.1. The polyhedron constrained ℓ1 minimization problem considered in Corollary 4.3 can be

formulated as the following equivalent linear program:

min
(x,v)∈RN×RN

1T v subject to v ≥ 0, −v ≤ x ≤ v, Ax = y, Cx ≥ d,

where x ∈ RN is the original decision variable, and v ∈ RN is the slack variable used for transforming

the ℓ1-norm into linear inequalities. Hence, the solution uniqueness conditions for linear programs, e.g.,

[13, Theorem 2], can be employed to obtain uniqueness conditions which are equivalent to those in

Corollary 4.3. However, the linear program based conditions are described by large-size linear inequality

systems due to the presence of the slack variable v, and they often require the knowledge of optimizers

of the associated dual problem. Therefore, they are more expensive to verify numerically than those in

Corollary 4.3. Furthermore, the conditions in Corollary 4.3 demonstrate better geometric meanings and

yield simpler conditions for specific polyhedral constraints, in comparison with the linear program based

uniqueness conditions.
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The necessary and sufficient conditions for unique optimal solutions to the LASSO-like and the

BPDN-I/II-like problems are presented below. Their proofs are omitted since they follow directly from

Propositions 4.2-4.4 and particular structure associated with the ℓ1-norm shown in Corollary 4.3.

Corollary 4.4. Let g(x) = ∥x∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible

point of the problem (8). Then x∗ is the unique minimizer of (8) if and only if conditions (i)-(ii) of

Corollary 4.3 and the following condition hold: there exists ũ ∈ R|α|
+ such that AT

•S∇f(Ax∗−y)−CT
αS ũ+

b̂ = 0, and
∥∥AT

•Sc∇f(Ax∗ − y)− CT
αSc ũ

∥∥
∞ ≤ 1.

The next result characterizes a unique optimal solution to the BPDN-I-like problem (9).

Corollary 4.5. Let g(x) = ∥x∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible

point of the problem (9).

C.1 Suppose f(Ax∗− y) < ε. Then x∗ is the unique minimizer of (9) if and only if CαS has full column

rank and there exists u ∈ R|α|
++ such that CT

αSu = b̂ and ∥CT
αScu∥∞ < 1.

C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (9) if and only if conditions (i)-(ii)

of Corollary 4.3 and the following condition hold:

(2.iii) If K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist a

positive real number θ and ũ ∈ R|α|
+ such that θ · AT

•S∇f(Ax∗ − y) − CT
αS ũ + b̂ = 0, and

∥θ ·AT
•Sc∇f(Ax∗ − y)− CT

αSc ũ∥∞ ≤ 1.

The last result of this subsection pertains to the BPDN-II-like problem defined below, which is a

special case of the problem (12) with r = 1, g(x) = ∥x∥1, and a positive real number η > 0:

min
x∈RN

f(Ax− y) subject to g(x) ≤ η, and Cx ≥ d. (20)

Corollary 4.6. Let g(x) = ∥x∥1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible

point of the problem (20).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (20) if and only if the associated conditions

given in C.1 of Proposition 4.4 hold;

C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (20) if and only if conditions (i)-(ii) of

Corollary 4.3 and the following condition hold:

(2.iii) There exist ũ ∈ R|α|
+ and µ ∈ R+ such that AT

•S∇f(Ax∗ − y) − CT
αS ũ + µ · b̂ = 0, and

∥AT
•Sc∇f(Ax∗ − y)− CT

αS ũ∥∞ ≤ µ.

5 Applications to ℓ1-norm Recovery Problems: Examples and Com-

parison with Related Results

In this section, we apply the results developed in the previous section to specific ℓ1-norm recovery prob-

lems. We show that the general framework established in this paper not only recovers all the known

results without imposing restrictive assumptions but also leads to many new results, e.g., the sparse

fused LASSO subject to polyhedral constraints (cf. Corollary 5.1), basis pursuit subject to the monotone

cone constraint and the Dantzig selector (cf. Section 5.4). Besides, we compare our results with the

existing work and demonstrate the broad applicability and efficiency of the general results of this paper.

By setting C = 0 and d = 0 in Propositions 4.1-4.4 and Corollaries 4.3-4.6, we obtain solution

uniqueness conditions for ℓ1-norm optimization problems without a linear inequality constraint for either
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g(x) = ∥Ex∥1 or g(x) = ∥x∥1. These results give rise to the same uniqueness conditions recently

developed for g(x) = ∥Ex∥1 in [29] and g(x) = ∥x∥1 in [28] respectively. Also see Section 3.1.1 for a

detailed comparison with the results on basis-pursuit-like problems in [10].

5.1 Applications to Basis Pursuit Denoising I and Comparison with Related Results

Let f : Rm → R be a C1 strictly convex function, and g(x) = ∥Ex∥1 or g(x) = ∥x∥1. For the BPDN-

I-like problem (9) without a linear inequality constraint Cx ≥ d, it is shown in the two papers [28, 29]

that Ax − y is constant on the solution set X and that f(Ax − y) = ε for all x ∈ X if 0 /∈ X . By a

similar argument for [28, Lemma 4.2(3)], one can show that if a linear inequality constraint is involved

but 0 ∈ P := {x |Cx ≥ d} (or equivalently d ≤ 0), then the same results hold; particularly, Ax − y is

also constant on the solution set. This case is especially interesting since P is often a polyhedral cone

in applications. Therefore, the case C.1 in Proposition 4.3 and Corollary 4.5 can be ignored in these

scenarios. Nonetheless, when a general linear inequality constraint is considered, the case C.1 is needed,

since Ax− y is not always constant on the solution set as demonstrated by the following example.

Example 5.1. Consider the following problem on R2:

min
x=(x1,x2)∈R2

∥x∥1 subject to
x21
9

+
x22
16

≤ 1 and x1 + x2 ≥ 2.

This problem is a special case of the BPDN-I-like problem in (9), where g(x) = ∥x∥1, ε = 1, f(Ax− y) =

∥Ax∥22 with A = diag(1/3, 1/4) and y = 0, C = [1 1], and d = 2. It is easy to show via a geometric

argument that the solution set is {x = (x1, x2) |x1 + x2 = 2 and x ≥ 0} on which Ax− y is varying.

5.2 Applications to Basis Pursuit Denoising II and Comparison with Related Results

We discuss the results on the BPDN-II-like problem subject to one ℓ1-norm based constraint given in

(18) or (20) and compare them with the previous results. The paper [28] studies this problem of the

following form without the linear inequality constraint Cx ≥ d:

min
x∈RN

f(Ax− y) subject to ∥x∥1 ≤ τ, (21)

where f is a strictly convex function, and the constant τ is assumed to satisfy 0 < τ ≤ inf{∥x∥1 |x ∈
argminz∈RN f(Az−y)} [28, Assumption 2.3]. It is claimed in [28, Lemma 4.2(4)] that under this assump-

tion on τ , ∥x∥1 = τ on the (nonempty) solution set of (21), which is a key step to derive the solution

uniqueness conditions in [28]. However, the proof for this claim given in [28, Lemma 4.2(4)] is invalid.

In what follows, we provide a remedy proof in a general setting.

Lemma 5.1. Let h : RN → R be a convex function and g : RN → R be a continuous function such that

minx∈RN h(x) has a nonempty solution set H, and γ := inf{g(x) |x ∈ H} > −∞. For a given τ ∈ R with

τ ≤ γ, suppose the following optimization problem attains a nonempty solution set HP :

(P ) : min
x∈RN

h(x) subject to g(x) ≤ τ.

Then g(x) = τ for any x ∈ HP . In particular, if h(x) = f(Ax− y) and g(x) = ∥x∥1, where f is strictly

convex, then ∥x∥1 = τ on HP .

Proof. We prove this lemma by contradiction. Suppose there exists an optimal solution x̂ ∈ HP such that

g(x̂) < τ . Then g(x̂) < γ := inf{g(x) |x ∈ H}, which implies that x̂ ̸∈ H. For a fixed x′ ∈ H, we thus

have h(x̂) > h(x′). It follows from the continuity of g at x̂ and g(x̂) < τ that there exists a sufficiently
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small λ̄ ∈ (0, 1) such that g
(
(1− λ̄)x̂+ λ̄x′

)
= g

(
x̂+ λ̄(x′− x̂)

)
< τ. Hence, z := (1− λ̄)x̂+ λ̄x′ is feasible

to the optimization problem (P ). In view of h(x̂) > h(x′), λ̄ > 0, and the convexity of h, we further have

h(z) = h
(
(1− λ̄)x̂+ λ̄x′

)
≤ (1− λ̄)h(x̂) + λ̄h(x′) < h(x̂).

This shows that x̂ is not an optimal solution to (P ), contradiction. Therefore, g(x) = τ, ∀x ∈ HP .

Compared with the results for the problem (21) developed in [28], the present paper establishes

the solution uniqueness conditions not only without imposing a restriction on the parameter τ but also

taking a general linear inequality constraint as well as multiple convex PA functions based constraints into

account; see Theorem 3.4, Proposition 4.4, and Corollary 4.6. This generalization is especially important

because, as shown in the following example, the claim that ∥x∥1 is constant on the solution set fails when

a linear inequality constraint is imposed.

Example 5.2. Consider the problem in R2:

min
x=(x1,x2)∈R2

(x1 + x2 − 2)2 subject to ∥x∥1 ≤ 1 and − x1 − x2 ≥ 0.

This problem is a special case of (20), where f(·) = | · |2, A = [1 1], y = 2, η = 1, C = [−1 − 1], and

d = 0. It is noticed that the solution set of minx∈R2 (x1+x2−2)2 is the line in R2 defined by x1+x2 = 2,

and inf{∥x∥1 | x1+x2 = 2} = 2. Therefore, the bound η = 1 satisfies the specified assumption. However,

by a simple geometric argument, we deduce that the solution set is {x = (x1, x2) |x1 + x2 = 0, −1/2 ≤
x1 ≤ 1/2}. Clearly, ∥x∥1 is not constant on this set.

5.3 Applications to Multiple ℓ1-norm based Convex PA Functions

Multiple ℓ1-norm based functions are involved in several sparse optimization problems arising from statis-

tics, image processing, and machine learning. One notable example is the so-called sparse fused LASSO

[14, 25] which takes the following form with the positive penalty parameters λ1 and λ2:

min
x∈RN

∥Ax− y∥22 + λ1 · ∥x∥1 + λ2 · ∥D1x∥1, (22)

where A ∈ Rm×N and y ∈ Rm are given, and D1 is the first-order difference matrix given by

D1 :=


−1 1

−1 1
. . .

. . .

−1 1

 ∈ R(N−1)×N . (23)

Here ∥D1x∥1 characterizes the total variation of x. Another version of the sparse fused LASSO is

min
x∈RN

∥Ax− y∥22 subject to ∥x∥1 ≤ η1, and ∥D1x∥1 ≤ η2, (24)

where η1, η2 > 0. These two problems are closely related to the generalized LASSO [24, 26].

It is observed via the discussions in Section 4.3.1 that the sparse fused LASSO in (22) can be for-

mulated as: minx∈RN f(Ax − y) + g(x), where f(·) = ∥ · ∥22, and g(x) = ∥Ex∥1 with E =

[
λ1 · IN
λ2 ·D1

]
∈

R(2N−1)×N . Therefore, its solution uniqueness is determined by Theorem 3.2 or Proposition 4.2. Fur-

thermore, we observe that the problem (24) can be treated as the BPDN-II-like problem (12) subject to

two ℓ1-norm based constraints, and its solution uniqueness conditions follow from Theorem 3.4. These

observations allow us to easily incorporate linear inequality constraints into the two sparse fused LASSO

models. For illustration, we show the solution uniqueness conditions below for the sparse fused LASSO

in (22) subject to the nonnegative constraint, i.e., x ∈ RN
+ = {x |Cx ≥ d} with C = IN and d = 0.
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Corollary 5.1. Consider the sparse fused LASSO in (22) subject to the nonnegative constraint. For

a feasible point x∗ and the matrix E defined above, let S be the support of Ex∗, and b := ET
S•b̂ with

b̂ := sgn((Ex∗)S). Then x∗ is the unique minimizer if and only if the following conditions hold:

(i)

[
A•SI

(D1)Sc
DSI

]
has full column rank, where SI is the support of x∗, and SD is the support of D1x

∗;

(ii) There exist u ∈ Rm, u′ ∈ R|Sc
I |

++ , and u′′ ∈ R|Sc| with ∥u′′∥∞ < 1 such that

(
AT

•SI
u

AT
•Sc

I
u+ u′

)
−ET

Sc•u
′′ =

b;

(iii) There exist ũ ∈ R|Sc
I |

+ and ũ′ ∈ R|Sc| with ∥ũ′∥∞ ≤ 1 such that 2AT (Ax∗−y)−ITSc
I•
ũ+b+ET

Sc•ũ
′ = 0.

Proof. Based on the definitions of E, S, SI , and SD as well as C = IN , we have ESc• =

[
λ1 · ISc

I•
λ2 · (D1)Sc

D•

]
,

α = Sc
I , and Cα• = ISc

I•. Hence, we have

 A

Cα•
ESc•

 =


A•SI

A•Sc
I

0 ISc
IS

c
I

0 λ1ISc
IS

c
I

λ2(D1)Sc
DSI

λ2(D1)Sc
DSc

I

 . In view of this result,

Proposition 4.2, and condition (a) of Proposition 4.1, it can be verified via a straightforward calculation

that the corollary holds.

5.4 Applications to ℓ1-norm Recovery subject to Linear Inequality Constraints and
Comparison with Related Results

The general framework developed in Sections 3-4 provides considerable flexibility to incorporate various

linear inequality constraints into recovery problems. We shows this advantage via several examples below.

An important linear inequality constraint that has received considerable attention in applications is

the nonnegative constraint [7, 11, 27, 31], i.e., x ∈ RN
+ . As shown in Section 5.3, we have C = IN and

d = 0 so that P = {x ∈ RN |Cx ≥ d} = RN
+ . We first consider the basis pursuit with g(x) = ∥x∥1, and

recover the solution uniqueness conditions established in [31, Theorem 2.7].

Corollary 5.2. Let C = IN and d = 0 so that P = RN
+ . Then a feasible point x∗ is the unique minimizer

of (5) with S being the support of x∗ if and only if the following conditions hold:

(i) The columns of A•S are linearly independent; and

(ii) There exists u ∈ Rm such that AT
•Su = 1 and AT

•Scu < 1.

Proof. Note that for a given x∗ ∈ RN
+ , we have b̂ = (sgn(x∗S)) = 1 ∈ R|S|, α = Sc, CαS = 0 and

CαSc = IScSc . It thus follows from Corollary 4.3 that x∗ is the unique minimizer if and only if (i)

A•S has full column rank, and (ii) there exist u ∈ Rm and u′ ∈ R|Sc|
++ such that AT

•Su = b̂ = 1 and

∥AT
•Scu + u′∥∞ < 1. Hence, it suffices to show that (ATu)Sc < 1 if and only if ∥AT

•Scu + u′∥∞ < 1 for

some u′ > 0. The “if” part is trivial. To show the “only if” part, suppose for each i ∈ Sc, vi := (ATu)i < 1.

Hence, either −1 < vi < 1 or vi ≤ −1. For the former case, choose u′i > 0 sufficiently small so that

|vi + u′i| < 1. For the latter case, choose s satisfying 0 ≤ −(1+vi)
1−vi

< s < 1. Then u′i := s · (1 − vi) > 0 is

such that |vi + u′i| < 1. This thus completes the proof.

The solution uniqueness conditions for the LASSO-like and the BPDN-I/II-like problems under the

nonnegative constraint are given below. Their proofs follow directly from Corollaries 4.4-4.6 and the fact

that h ≥ −1 if and only if there exists u ≥ 0 such that ∥h− u∥∞ ≤ 1.
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Corollary 5.3. Let g(x) = ∥x∥1, and f : Rm → R be a C1 strictly convex function, and x∗ be a feasible

point of the problem (8). Then x∗ is the unique minimizer of (8) if and only if conditions (i)-(ii) of

Corollary 5.2 and the following condition hold: AT
•S∇f(Ax∗ − y) = −1, and AT

•Sc∇f(Ax∗ − y) ≥ −1.

The next result characterizes a nonzero unique optimal solution to the BPDN-I-like problem (9). The

case f(Ax∗ − y) < ε is ignored due to the fact that 0 ∈ RN
+ and the discussions in Section 5.1.

Corollary 5.4. Let g(x) = ∥x∥1, f : Rm → R be a C1 strictly convex function, and x∗ be a nonzero

feasible point of the problem (9). Then x∗ is the unique minimizer of (9) if and only if conditions (i)-(ii)

of Corollary 5.2 and the following condition hold: if K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, vSc ≥

0} is nonempty, then there exists a positive real number θ such that θ · AT
•S∇f(Ax∗ − y) = −1, and

θ ·AT
•Sc∇f(Ax∗ − y) ≥ −1.

We then consider the BPDN-II-like problem (20) subject to the nonnegative constraint.

Corollary 5.5. Let g(x) = ∥x∥1, f : Rm → R be a C1 strictly convex function, and x∗ be a feasible point

of the problem (20).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (20) if and only if the associated conditions

given in C.1 of Proposition 4.4 hold;

C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (20) if and only if conditions (i)-(ii) of

Corollary 5.2 and the following condition hold: there exists µ ∈ R+ such that AT
•S∇f(Ax∗ − y) =

−µ · 1, and AT
•Sc∇f(Ax∗ − y) ≥ −µ · 1.

We next consider the linear inequality constraint with C = D1 and d = 0, where D1 is the first-order

difference matrix defined in (23). In other words, the variable x is subject to the monotone increasing

constraint which appears in such applications as order statistics. For the purpose of illustration, we

consider the BP-like problem (5) with g(·) = ∥ · ∥1 for a feasible x∗. Since the elements of x∗ are

monotonically increasing, we can write it as

x∗ =
(
x∗1, . . . , x

∗
k−︸ ︷︷ ︸

<0

, 0, . . . , 0, x∗k+ , . . . , x
∗
N︸ ︷︷ ︸

>0

)T
∈ RN ,

where x∗k− is the last negative element and x∗k+ is the first positive element, both from the left. Define

the index sets S− := {1, . . . , k−}, and S+ := {k+, . . . , N}. Then the support of x∗ is S = S− ∪ S+, and

b̂S− = −1 and b̂S+ = 1. Further, the index set of active constraints is α = α−∪α0∪α+, where α− and α+

are the index sets of active constraints associated with (x∗1, . . . , x
∗
k− , 0)

T ∈ Rk−+1 and (0, x∗k+ , . . . , x
∗
N )T ∈

RN−k++2 respectively, and α0 = {k−+1, k−+2, . . . , k+−2}. Note that Sc = {k−+1, k−+2, . . . , k+−1},
α− ⊂ S−, α+ ⊂ S+, and (D1)α0S− = 0, (D1)α+S− = 0, (D1)α0S+ = 0, (D1)α−S+ = 0. Furthermore,

defining α− + 1 := {i + 1 | i ∈ α−} and α+ + 1 := {j + 1 | j ∈ α+}, we let α− := α− ∪ (α− + 1) ⊂ S−,

and α+ := α+ ∪ (α+ + 1) ⊂ S+. Since the null spaces of (D1)α−α− and (D1)α+α+ are spanned by 1

respectively, and (D1)α−(S−\α−) = 0, (D1)α+(S+\α+) = 0, we have

[
A•S

(D1)αS

]
=


A•S− A•S+

(D1)α−S− 0

0 0

0 (D1)α+S+

 =


A•α− A•(S−\α−) A•α+ A•(S+\α+)

(D1)α−α (D1)α−(S−\α−) 0 0

0 0 0 0

0 0 (D1)α+α+ (D1)α+(S+\α+)

 .

Therefore, condition (i) of Corollary 4.3 holds, i.e.,

[
A•S

(D1)αS

]
has full column rank, if and only if[

A•(S−\α−) A•(S+\α+) (A•α−1+A•α+1)
]
has full column rank. Moreover, in light of the above de-

velopment, we see that condition (ii) of Corollary 4.3 is equivalent to the existence of u ∈ Rm and
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(u′−, u
′
0, u

′
+) > 0 such that AT

•S−
u + [(D1)α−S− ]

Tu′− = −1, AT
•S+

u + [(D1)α+S+ ]
Tu′+ = 1, and ∥AT

•Scu +

[(D1)α0Sc ]Tu′0∥∞ < 1, where the last inequality follows from the fact that (D1)α−Sc = 0 and (D1)α+Sc = 0.

Lastly, we consider the Dantzig selector [5] (cf. Section 3.5). As shown in Section 3.5, this problem

can be formulated as the basis pursuit subject to a polyhedral constraint, i.e., minx∈RN ∥x∥1 subject to

−ε · 1 ≤ ATAx−AT y ≤ ε · 1, where ε > 0 is given. For a feasible vector x∗, let S be its support, and α+

and α− be the active index sets of the constraints ATAx ≥ AT y − ε · 1 and −ATAx ≥ −(AT y + ε · 1)
at x∗, respectively. Clearly, α+ ∩ α− = ∅. It thus follows from Corollary 4.3 that x∗ is the unique

optimizer of the Dantzig selector if and only if (i)

[
AT

•α+

−AT
•α−

]
A•S has full column rank, and (ii) there

exists u′ ∈ R|α+|+|α−|
++ such that AT

•S
[
A•α+ −A•α−

]
u′ = sgn(x∗S) and ∥AT

•Sc

[
A•α+ −A•α−

]
u′∥∞ < 1.

Note that condition (i) holds if and only if A•S has full column rank and N(

[
AT

•α+

AT
•α−

]
) ∩R(A•S) = {0}.

6 Numerical Verification of the Solution Uniqueness Conditions

In this section, we discuss numerical verification of the solution uniqueness conditions developed in

the previous sections. It is observed that each set of solution uniqueness criteria involving a convex

PA function and a C1 strictly convex loss function established in Sections 3-4 consists of the following

conditions: (a) the full column rank condition for a matrix; (b) the consistency of a linear inequality

system with at least one strict inequality; and/or (c) the consistency of another linear inequality system

with non-strict inequalities. The first two conditions characterize solution uniqueness, while the last

condition pertains to solution optimality. Numerically, the first condition can be determined via standard

linear algebraic tools, and the last condition can be checked via the feasibility test of a suitable linear

program. To effectively verify the conditions involving strict inequalities, we show in the following lemma

that the verification of such conditions can be formulated as a linear program.

Lemma 6.1. Let ẑ ∈ Rn, F ∈ Rn×m, G ∈ Rn×r, and H ∈ Rn×s be given. Then the linear inequality

system (I) : ẑ + Fw +Gw′ +Hw′′ = 0, w ∈ Rm, w′ ∈ Rr
+, w′′ ∈ Rs

++ has a solution if and only if the

following linear program is solvable and attains a positive optimal value:

max
(w,w′,w′′, ε)∈Rm×Rr×Rs×R

ε subject to ẑ + Fw +Gw′ +Hw′′ = 0, w′ ≥ 0, w′′ ≥ ε · 1, ε ≤ 1. (25)

Proof. To show the “if” part, let (w∗, w
′
∗, w

′′
∗ , ε∗) ∈ Rm × Rr

+ × Rs × R be an optimal solution to the

linear program (25) with ε∗ > 0. Hence, we have w′′
∗ ≥ ε∗ · 1 > 0. This shows that the system (I) has

a solution. For the “only if” part, suppose there exists a triple (w̃, w̃′, w̃′′) ∈ Rm × Rr
+ × Rs

++ such that

ẑ + Fw̃ + Gw̃′ + Hw̃′′ = 0. Since w̃′′ > 0, there exists a real number θ ∈ (0, 1] such that w̃′′ ≥ θ · 1.
Therefore, the linear program (25) is feasible. Furthermore, since its objective function is bounded above

by 1 (and bounded below by θ) on the feasible set, the linear program (25) attains an optimal solution

and its optimal value ε∗ ≥ θ > 0. This yields the desired result.

In what follows, we apply Lemma 6.1 to check various uniqueness conditions involving strict inequal-

ities. Particularly, we show how to formulate these conditions in the requested form in Lemma 6.1.

1) Condition (ii) of Theorem 3.1, i.e., there exist z ∈ Rm, z′ ∈ R|α|
++, and z′′ ∈ R|I|

++ such thatAT z −
CT
α•z

′ +W T z′′ = 0. Letting ẑ = 0, F = AT , G = 0, and H =
[
−CT

α• W T
]
, Lemma 6.1 can be applied.

2) Conditions for (C.1) of Theorem 3.3, which is equivalent to the existence of z ∈ R|α|
++ and z′ ∈ R|I|

++

such that CT
α•z = W T z′. Letting ẑ = 0, F = 0, G = 0, and H =

[
−CT

α• W T
]
, we use Lemma 6.1.

3) Condition (b) of Proposition 4.1, i.e., there exist u ∈ Rm, u′ ∈ R|α|
++, and u′′ ∈ R|Sc| with ∥u′′∥∞ < 1

such that ATu + CT
α•u

′ − ET
Sc•u

′′ = b. This condition is equivalent to the consistency of the following
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linear inequality system in (u, u′, u′′, v, w):

ATu+ CT
α•u

′ −ET
Sc•u

′′ = b, u′′ + v = 1, u′′ − w = −1, (u′, v, w) > 0.

Suitable ẑ, F,G, and H can be easily found from the above system in order to make use of Lemma 6.1.

4) Condition (ii) of Corollary 4.3, i.e., there exist u ∈ Rm and u′ ∈ R|α|
++ such that AT

•Su+CT
αSu

′ = b̂

and ∥AT
•Scu + CT

αScu′∥∞ < 1. It is equivalent to the consistency of the linear inequality system in

(u, u′, v, w): AT
•Su+ CT

αSu
′ = b̂, AT

•Scu+ CT
αScu′ + v = 1, AT

•Scu+ CT
αScu′ − w = −1, and (u′, v, w) > 0.

5) Condition (ii) of Corollary 5.2, i.e., there exists u ∈ Rm such that (ATu)S = 1 and (ATu)Sc < 1.

This condition is equivalent to the consistency of the linear inequality system in (u, v): AT
•Su = 1,

AT
•Scu+ v = 1, and v > 0. This paves the way to exploit Lemma 6.1.

Remark 6.1. We briefly discuss the complexity of the linear program based verification for ℓ1 mini-

mization. To facilitate the discussion, we focus on the case without linear inequality constraints, i.e.,

C = 0 and d = 0. In the most general scenario given in case 1) above, the complexity of the associated

linear program depends on the size of I defined in (3), which corresponds to the active index set of the

max-formulation of a convex PA function g. Indeed, the number of variables for case 1) is m+ |I|. Note

that in ℓ1 minimization problems such as basis pursuit, we usually have m ≪ N and |S| ≪ N for a

sparse vector x∗, where S is the support of x∗. Hence, |Sc| ≈ N and |I| = 2|S
c| ≈ 2N , leading to a high

computational cost. Instead, using the specialized conditions given in cases 3)-5) and Lemma 6.1, we

obtain linear programs whose numbers of variables are small multiples of N . This yields the complexity

of O(N3/ lnN) based on state-of-art linear programming techniques [1]. In comparison with the verifica-

tion schemes developed in [28, 29] for basis pursuit without polyhedral constraints, we provide a simple,

systematic, and yet effective verification scheme applicable to broader uniqueness conditions.

7 Conclusions

This paper studies the solution uniqueness of a class of convex optimization problems involving convex

PA functions and subject to general polyhedral constraints. By exploiting the max-formulation of convex

PA functions and convex analysis techniques, we develop simpler and unifying approaches to derive dual

variable based solution uniqueness conditions for an individual vector. These results are applied to a

variety of ℓ1 minimization problems subject to possible polyhedral constraints. An effective scheme is

also proposed to verify the obtained uniqueness conditions. The uniqueness conditions developed in the

current paper assume the exact knowledge of a minimizer. As a future research topic, we will consider

various robustness issues and their implications when a minimizer is unknown.
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