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Abstract—In this paper, a unified framework is proposed to
study the exponential stability of discrete-time switchedlinear
systems, and more generally, the exponential growth rates of
their trajectories, under three types of switching rules: arbitrary
switching, optimal switching, and random switching. It is shown
that the maximum exponential growth rates of system trajectories
over all initial states under these three switching rules are
completely characterized by the radii of convergence of three
suitably defined families of functions called the strong, the weak,
and the mean generating functions, respectively. In particular,
necessary and sufficient conditions for the exponential stability
of the switched linear systems are derived based on these radii of
convergence. Various properties of the generating functions are
established and their relations are discussed. Algorithmsfor com-
puting the generating functions and their radii of convergence
are also developed and illustrated through examples.

Index Terms—Switched systems, stability, optimal control.

I. I NTRODUCTION

SWITCHED linear systems (SLSs) as a natural extension
of linear systems are finding increasing applications in a

diverse range of engineering systems [1]. A fundamental prob-
lem in the study of SLSs is to determine their stability. See [2],
[3] for some recent reviews of the vast amount of existing
results on this subject. These results can be roughly classified
into two main categories: absolute (or uniform) stability where
the switchings can be arbitrary; and stability under restricted
switching rules such as switching rate constraints [4] and state-
dependent switchings [5], [6]. A predominant approach to the
study of stability in both cases is through the constructionof
common or multiple Lyapunov functions [5], [7], [8]. Other
approaches include Lie algebraic conditions [9]–[11] and the
LMI methods [12]–[14], etc.

The purpose of this paper is to characterize not only the
stability of SLSs, but also the maximum exponential rates at
which their trajectories can grow starting from all possible
initial states under three switching rules: arbitrary switching,
optimal switching, and random switching. Such rates give
quantitative measures on the degree of the SLSs’ exponential
stability/stabilizability. Most existing results in thisdirection
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focus on the arbitrary switching case. The maximum expo-
nential growth rate of system trajectories in this case is called
the joint spectral radius (JSR)of subsystem matrices, and has
been studied extensively (see, e.g., [15]–[19]). In comparison,
the maximum exponential growth rate under optimal switching
remains much less studied. The smallest such rate under all
open-loop switching policies is given by thejoint spectral
subradius (JSS)of subsystem matrices [16], [17], [20], [21];
whereas in this paper, we study the smallest such rate under the
more general closed-loop, state-dependent switching policies
(see Section IV-B for an example showing their difference).
Finally, under random switching, the SLSs become instances
of random dynamical systems, for which the concept of
Lyapunov exponents[22], [23] can be used to characterize
the expected exponential growth rate of their trajectories.

It is well known that finding the maximum exponential
growth rates of SLSs are difficult problems. For example, ap-
proximating the JSR within arbitrary precision has been proved
to be an NP-hard problem [24]; and determining whether the
JSR is less than or equal to one is algorithmically undecid-
able [20]. Computing the JSS is even more difficult [20], [24].
Despite these negative results, many approximation algorithms
have been proposed in the literature, e.g. [25]–[29] for theJSR
and [17], [21], [29] for the JSS, some with prescribed accuracy.

In this paper, we propose a unified method to characterize
the maximum exponential growth rates of the SLSs’ trajecto-
ries under the above three switching rules. The method is based
on the novel concept ofgenerating functionsof SLSs, which
are suitably defined power series with coefficients determined
from the trajectories of the SLSs. The importance of these
generating functions is twofold: (i) their radii of convergence
characterize precisely the maximum exponential growth rates
of the system trajectories; and (ii) they possess many amenable
properties that make their efficient computation possible.Thus,
generating functions provide both a theoretical framework
and the computational tools for characterizing the maximum
exponential growth rates of interest. In particular, they provide
valid tests for the exponential stability/stabilizability of SLSs.

Compared with the existing methods, the proposed approach
studies the stability of SLSs from the perspective of their
optimal control: the generating functions are the value func-
tions of certain optimal control problems for the SLSs with a
varying discount factor, and automatically become Lyapunov
functions for stable SLSs. This perspective enables us to
uncover some common properties of the exponential growth
rates of the SLSs under the different switching rules (see, e.g.,
Propositions 3, 9 and 14). Moreover, it makes our approach
easily extendable to more general classes of systems, such
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as conewise linear inclusions [6], switched positive systems
[30], [31], and controlled SLSs. A similar perspective has been
adopted in [15], and by the variational approach [32], [33],
which studies the stability of SLSs under arbitrary switching
by finding their most divergent trajectories.

This paper is organized as follows. In Section II, the relevant
stability notions of SLSs are introduced. In Section III (resp.
Section IV), the strong (resp. weak) generating functions are
defined, analyzed, and used to characterize the exponential
stability of the SLSs under arbitrary (resp. optimal) switching.
Their numerical computation algorithms are also presented.
Section V discusses extensions to randomly switching linear
systems. Finally, concluding remarks are given in Section VI.

II. STABILITY OF SWITCHED L INEAR SYSTEMS

A discrete-time (autonomous) SLS is defined as follows: its
statex(t) ∈ Rn evolves by switching among a set of linear
dynamics indexed by the finite index setM := {1, . . . , m}:

x(t + 1) = Aσ(t)x(t), t = 0, 1, . . . . (1)

Here,σ(t) ∈ M for all t, or simplyσ, is called the switching
sequence; andAi ∈ Rn×n, i ∈ M, are the subsystem
(dynamics) matrices. Starting from the initial statex(0) = z
and under the switching sequenceσ, the trajectory of the SLS
is denoted byx(t; z, σ).

In this paper, unless otherwise stated,‖ · ‖ denotes both the
Euclidean norm onRn and its induced matrix norm onRn×n.

Definition 1: The SLS (1) is called

• exponentially stable under arbitrary switching(with the
parametersκ and r) if there existκ ≥ 0 and r ∈ [0, 1)
such that starting from any initial statez and under any
switching sequenceσ, the trajectoryx(t; z, σ) satisfies
‖x(t; z, σ)‖ ≤ κrt‖z‖, for all t = 0, 1, . . ..

• exponentially stable under optimal switching(with the
parametersκ and r) if there existκ ≥ 1 and r ∈ [0, 1)
such that starting from any initial statez, there exists a
switching sequenceσ for which the trajectoryx(t; z, σ)
satisfies‖x(t; z, σ)‖ ≤ κrt‖z‖, for all t = 0, 1, . . ..

As for linear systems, we can also define stability (in the
sense of Lyapunov) and asymptotic stability of SLSs under
arbitrary (resp. optimal) switching. By homogeneity, local and
global stability notions are equivalent for SLSs. Moreover,
the asymptotic stability and the exponential stability of SLSs
under arbitrary switching are equivalent [6], [34], [35]. We
show next that this is also the case under optimal switching.

Theorem 1:Under optimal switching, the asymptotic stabil-
ity and the exponential stability of the SLS (1) are equivalent.

Proof: It suffices to show that asymptotic stability implies
exponential stability. Assume that the SLS (1) is asymptot-
ically stable under optimal switching. Then, for any initial
state z on the unit sphereSn−1 := {z ∈ Rn | ‖z‖ = 1},
there is a switching sequenceσz such thatx(t; z, σz) → 0
as t → ∞; hence‖x(Tz; z, σz)‖ ≤ 1

4 for a time Tz large
enough. Asx(Tz ; z, σz) is continuous inz for fixed σz and
Tz, ‖x(Tz; y, σz)‖ ≤ 1

2 for y in a neighborhoodUz of z
in Sn−1. The union of all suchUz is an open cover of
the compact setSn−1; henceSn−1 ⊆ ∪ℓ

i=1Uzi
for some

z1, . . . , zℓ ∈ Sn−1 with ℓ < ∞. Starting from any initial
x(0) = z ∈ Sn−1, we havez ∈ Uzi

for some1 ≤ i ≤ ℓ.
By our construction,x(τ1) := x(Tzi

; z, σzi
) with τ1 := Tzi

satisfies‖x(τ1)‖ ≤ 1
2 . Assume without loss of generality

that x(τ1) 6= 0. Then x(τ1)/‖x(τ1)‖ ∈ Uzj
for some

1 ≤ j ≤ ℓ, and as a result,x(τ2) := x(Tzj
; x(τ1), σzj

) with
τ2 := τ1+Tzj

satisfies‖x(τ2)‖ ≤ 1
2‖x(τ1)‖. By induction, we

obtain a switching sequenceσz by concatenatingσzi
, σzj

, . . .
and a sequence of times0 = τ0 < τ1 < τ2 < · · · at
most τ∗ := maxi Tzi

apart such that the resulting trajec-
tory x(t; z, σz) satisfies‖x(τk+1; z, σz)‖ ≤ 1

2‖x(τk; z, σz)‖
for all k ≥ 0. Let κ :=

∑τ∗

j=0 (maxi∈M ‖Ai‖)j . Then
‖x(t; z, σz)‖ ≤ κ(0.5)t/τ∗−1‖z‖ for all t. Thus, the SLS (1)
is exponentially stable under optimal switching.

Remark 1:The above proof implies that to prove the ex-
ponential stability of the SLS (1) under optimal switching,
it suffices to show that for anyz ∈ Rn, x(t; z, σz) → 0 as
t→∞ for at least oneσz . This fact will be used in Section IV.

Another switching rule we consider is random switching.
Let p := {pi}i∈M be a probability distribution withpi ≥ 0
and

∑
i∈M pi = 1. The SLS (1) under the (stationary) random

switching probabilityp has the dynamics

x(t + 1) = A(t)x(t), t = 0, 1, . . . . (2)

Here, at each timet, A(t) is drawn independently randomly
from {Ai}i∈M with the probabilityP{A(t) = Ai} = pi.
Denote byx(t; z, p) the stochastic trajectory of the system (2)
from a deterministic initial statex(0) = z, and denote byP
andE the probability and expectation operators, respectively.

Definition 2: The SLS (2) under the random switching
probabilityp is called

• mean square exponentially stable(with the parametersκ
andr) if there existκ ≥ 0 andr ∈ [0, 1) such that for any
z ∈ Rn, E[‖x(t; z, p)‖2] ≤ κrt‖z‖2, for all t = 0, 1, . . ..

Similarly, the SLS (2) is calledmean square asymptotically
stable if E[‖x(t; z, p)‖2] → 0 as t → ∞ for all z ∈ Rn, and
almost sure asymptotically stableif P{limt→∞ ‖x(t; z, p)‖ =
0} = 1 for all z ∈ Rn. From results onrandom jumped linear
systems[36, Theorem 4.1.1], mean square asymptotic stability
and mean square exponential stability of the SLS (2) are
equivalent; and each of them implies almost sure asymptotic
stability. We shall focus on mean square exponential stability.

III. STRONG GENERATING FUNCTIONS

Central to the stability analysis of SLSs is the task of
determining the exponential rate at which‖x(t; z, σ)‖ grows
ast→∞ for trajectoriesx(t; z, σ) of the SLSs. The following
lemma, adopted from [37, Corollary 1.1.10], hints at an
indirect way of characterizing this growth rate.

Lemma 1:Given a scalar sequence{wt}t=0,1,..., suppose
the power series

∑∞
t=0 wtλ

t has the radius of convergenceR.
Then for anyr > 1

R , there exists a constantCr such that
|wt| ≤ Crr

t for all t = 0, 1, . . ..
As a result, for any trajectoryx(t; z, σ), an (asymptotically)
tight bound on the exponential growth rate of‖x(t; z, σ)‖2 as
t→∞ is given by the reciprocal of the radius of convergence
of the power series

∑∞
t=0 λt‖x(t; z, σ)‖2.
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Motivated by this, we define thestrong generating function
G(·, ·) : R+ × Rn → R+ ∪ {∞} of the SLS (1) as

G(λ, z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖2, ∀λ ≥ 0, z ∈ Rn, (3)

where the supremum is taken over all switching sequencesσ.
For a fixedz, G(·, z) is nondecreasing inλ ≥ 0. Indeed, due
to the supremum in (3),G(·, z) can be viewed intuitively as
the power series inλ corresponding to the “most divergent”
trajectories of the SLS starting fromz. Thus, by Lemma 1, its
radius of convergence defined by

λ∗(z) := sup{λ ≥ 0 |G(λ, z) <∞} (4)

is expected to characterize the fastest exponential growthrate
of the SLS trajectories starting fromz. We call λ∗(z) the
radius of strong convergenceof the SLS atz,

For each fixedλ ≥ 0, G(λ, z) is a function ofz only:

Gλ(z) := G(λ, z), ∀z ∈ Rn. (5)

By definition (3),Gλ(·) is nonnegative and homogeneous of
degree two, withG0(z) = ‖z‖2. SinceGλ(·) is nondecreasing
in λ, we haveGλ(z) ≥ ‖z‖2, ∀z, for λ ≥ 0. We will also refer
to Gλ(z) as the strong generating function of the SLS (1).

A. Properties of GeneralGλ(z)

We first prove some useful properties of the functionGλ(z).
Proposition 1: Gλ(z) has the following properties:

1. (Bellman Equation): Letλ ≥ 0 be arbitrary. Then
Gλ(z) = ‖z‖2 + λ ·maxi∈M Gλ(Aiz), ∀z ∈ Rn.

2. (Sub-Additivity): Let λ ≥ 0 be arbitrary. Then√
Gλ(z1 + z2) ≤

√
Gλ(z1)+

√
Gλ(z2), ∀z1, z2 ∈ Rn.

3. (Convexity): For eachλ ≥ 0, bothGλ(z) and
√

Gλ(z)
are convex functions ofz on Rn.

4. (Invariant Subspace): For eachλ ≥ 0, the setGλ :=
{z ∈ Rn |Gλ(z) < ∞} is a subspace ofRn invariant
under{Ai}i∈M, i.e., AiGλ ⊆ Gλ for all i ∈M.

5. For eachλ ≥ 0, Gλ(z) <∞ for all z ∈ Rn implies that
Gλ(z) ≤ c‖z‖2 for all z ∈ Rn for some finite constantc.

6. For0 ≤ λ < (maxi∈M ‖Ai‖2)−1, Gλ(z) <∞, ∀z.

Proof: 1. Note that Gλ(·) is the value function of
an infinite horizon optimal control problem maximizing the
functional

∑∞
t=0 λt‖x(t; z, σ)‖2. Property 1 is a direct conse-

quence of the dynamic programming principle.
2. For a fixedλ ≥ 0, sincex(t; z, σ) is linear inz, we have

Gλ(z1 + z2) = sup
σ

∞∑

t=0

λt‖x(t; z1, σ) + x(t; z2, σ)‖2

≤ Gλ(z1) + 2 sup
σ

∞∑

t=0

λt‖x(t; z1, σ)‖ ‖x(t; z2, σ)‖ + Gλ(z2)

≤ Gλ(z1) + 2
√

Gλ(z1)
√

Gλ(z2) + Gλ(z2), ∀z1, z2 ∈ Rn.

The Cauchy-Schwartz inequality is used in the last step.
Taking the square root yields the desired conclusion.

3. For a fixedλ ≥ 0, Gλ(z) is convex inz as by (3) it is the
pointwise supremum of a family of convex (indeed, quadratic)
functions ofz indexed byσ. The convexity of

√
Gλ(z) follows

from sub-additivity as
√

Gλ(α1z1 + α2z2) ≤
√

Gλ(α1z1) +√
Gλ(α2z2) = α1

√
Gλ(z1) + α2

√
Gλ(z2), for any z1, z2 ∈

Rn andα1, α2 ≥ 0 with α1 + α2 = 1.
4. This follows directly from Properties 1 and 2.
5. Assumeλ is such thatGλ(z) < ∞, ∀z ∈ Rn. Write

an arbitraryz ∈ Sn−1 in a standard basis{ei} of Rn asz =∑n
i=1 αi ei, where

∑n
i=1 α2

i = 1. In light of sub-additivity, we
haveGλ(z) ≤ [

∑n
i=1

√
Gλ(αiei)]

2 ≤ n
∑n

i=1 α2
i Gλ(ei) ≤

c, wherec := n ·max1≤i≤n Gλ(ei) < ∞ by our assumption
on λ. By homogeneity, we haveGλ(z) ≤ c‖z‖2, ∀z ∈ Rn.

6. We simply note that any trajectoryx(t; z, σ) of the SLS
satisfies‖x(t; z, σ)‖2 ≤ (maxi∈M ‖Ai‖2)t‖z‖2, ∀t.

From Proposition 1,Gλ is a subspace ofRn that decreases
monotonically fromG0 = Rn at λ = 0 to G∞ := ∩λ≥0Gλ as
λ → ∞. Let λ1 < λ2 < · · · < λd for some integerd < n
be the exact values ofλ at which Gλ shrinks. Then the set
of all distinct Gλ forms a filtration of subspaces ofRn as:
G0 = Gλ−

1

) Gλ+

1

= Gλ−

2

) Gλ+

2

= · · · = Gλ−

d
) Gλ+

d
= G∞,

where Gλ−

j
:= limλ↑λj

Gλj
and Gλ+

j
:= limλ↓λj

Gλj
for

eachj. Since each subspaceGλ−

j
(or Gλ+

j
) is invariant under

{Ai}i∈M, the SLS (1) restricted on it defines a sub-SLS.
Intuitively, the restricted SLS onG∞ is “the most exponen-
tially stable” as its trajectories have the slowest exponential
growth rate. On bigger subspaces, the restricted SLSs will
be “less exponentially stable” as they contain faster growing
trajectories. Equivalently, a suitable change of coordinates can
simultaneously transform{Ai}i∈M into the same row block
upper echelon form, with their last row blocks corresponding
to the restricted SLS onG∞; their last two row blocks
corresponding to the restricted SLS onGλd−, and so on.

From the above discussion, the radius of strong convergence
λ∗(z) at z ∈ Rn can have at mostd + 1 ≤ n distinct values:
{λ1, . . . , λd,∞}. In particular, if the SLS isirreducible,
namely, it has no nontrivial invariant subspaces other than
Rn and{0} (which occurs with probability one for randomly
generated SLSs), thend = 1, and Gλ(z) is either finite
everywhere or infinite everywhere for anyλ ≥ 0.

Remark 2: In the Multiplicative Ergodic Theorem for non-
switched dynamical systems,{− log

√
λ1, . . . ,− log

√
λd,∞}

are called the Lyapunov exponents of the systems [22].
Example 1:Consider a SLS onR2 with two subsystems:

A1 =

[
7
6 − 5

6
− 5

6
7
6

]
, A2 =

[
5
3

4
3

4
3

5
3

]
. (6)

Starting from any initialz = (z1, z2)
T , let x(t; z, σ1) and

x(t; z, σ2) be the state trajectories under the switching se-
quencesσ1 = (1, 1, . . .) and σ2 = (2, 2, . . .), respectively.
Then it can be proved (though by no mean trivially) thatGλ(z)
is maxi=1,2

∑∞
t=0 λt‖x(t; z, σi)‖2, or more explicitly,





max
{

9(z1+z2)
2

2(9−λ) + (z1−z2)
2

2(1−4λ) ,

(z1+z2)
2

2(1−9λ) + 9(z1−z2)
2

2(9−λ)

}
, if 0 ≤ λ < 1

9

(z1−z2)
2

2(1−4λ) · 1{z1+z2=0} +∞ · 1{z1+z2 6=0}, if 1
9 ≤ λ < 1

4

∞, if λ ≥ 1
4 .

Here, 1{z1+z2=0} denotes the indicator function for the set
{(z1, z2) ∈ R2 | z1 + z2 = 0}. Similarly for 1{z1+z2 6=0}.



IEEE-TAC FP-10-015 4

Thus, Gλ is R2 for 0 ≤ λ < 1
9 ; the 1D subspaceV :=

{(α,−α)T |α ∈ R} for 1
9 ≤ λ < 1

4 ; and {0} for λ ≥ 1
4 .

Each of these is an invariant subspace ofR2 for {A1, A2}.
For example,V is a common eigenspace ofA1 and A2. In
fact, A1 and A2 commute and can be simultaneously diago-
nalized asQ−1A1Q =diag(1

3 , 2) and Q−1A2Q =diag(3, 1
3 )

by Q =
[

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

]
. Under the transformation byQ,

V becomes the vertical axis. See also [38] for results on the
nice reachability of such SLSs.

B. Radius of Strong Convergence

We next define a quantity that characterizes the stability of
the SLS under arbitrary switching.

Definition 3: The radius of strong convergence of the
SLS (1), denoted byλ∗ ∈ (0,∞], is defined as

λ∗ := sup
{
λ ≥ 0 |Gλ(z) <∞, ∀z ∈ Rn}.

By Property 5 of Proposition 1,λ∗ can also be defined asλ∗ =
sup{λ ≥ 0 |Gλ(z) < c‖z‖2, ∀z ∈ Rn, for some finitec}.
By Property 6,λ∗ ≥ (maxi∈M ‖Ai‖2)−1 > 0. It is possible
that λ∗ = ∞. This is the case, for example, if all solutions
x(t; z, σ) of the SLS converge to the origin within a finite time
uniformly in z andσ. For the SLS in Example 1,λ∗ = 1

9 .
The following theorem shows that the radius of strong con-

vergence is sufficient for determining the exponential stability
of the SLS (1) under arbitrary switching.

Theorem 2:The following statements are equivalent:
1) The SLS (1) is exponentially stable under arbitrary

switching.
2) Its radius of strong convergenceλ∗ > 1.
3) The strong generating function atλ = 1, G1(z), is finite

for all z ∈ Rn.
Proof: To show1) ⇒ 2), suppose there exist constants

κ ≥ 1 andr ∈ [0, 1) such that‖x(t; z, σ)‖ ≤ κrt‖z‖, ∀t, for
all trajectoryx(t; z, σ) of the SLS. Then for anyλ < r−2,

Gλ(z) = sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖2

≤
∞∑

t=0

λtκ2r2t‖z‖2 =
κ2

1− λr2
‖z‖2 <∞, ∀z ∈ Rn.

It follows that λ∗ ≥ r−2 > 1. The implication2) ⇒ 3)
follows directly from the definition ofλ∗. Finally, to show
3)⇒ 1), supposeG1(z) <∞, ∀z. By Proposition 1,G1(z) ≤
c‖z‖2, ∀z, for some finite constantc. Thus, for any trajectory
x(t; z, σ) of the SLS,

∑∞
t=0 ‖x(t; z, σ)‖2 ≤ c‖z‖2. This

implies that‖x(t; z, σ)‖ ≤ √c‖z‖, ∀t; and thatx(t; z, σ)→ 0
as t → ∞. Consequently, the SLS is asymptotically stable,
hence exponentially stable [6], under arbitrary switching.

Theorem 2 implies the following stronger conclusions.
Corollary 1: Given a SLS with a radius of strong conver-

genceλ∗, for anyr > (λ∗)−1/2, there exists a constantκr such
that ‖x(t; z, σ)‖ ≤ κrr

t‖z‖, ∀t, for all trajectoriesx(t; z, σ)
of the SLS. Furthermore,(λ∗)−1/2 is also the smallest value
for the previous statement to hold.

Proof: Supposer > (λ∗)−1/2. The scaled SLS with
subsystem dynamics matrices{Ai/r}i∈M is easily seen to

have its strong generating function to beG(λ/r2, z); hence, its
radius of strong convergence isr2λ∗ > 1. By Theorem 2, the
scaled SLS is exponentially stable under arbitrary switching.
In particular, all its trajectories̃x(t; z, σ) satisfy‖x̃(t; z, σ)‖ ≤
κr‖z‖, ∀t, for someκr > 0. For all trajectoriesx(t; z, σ) of
the original SLS, sincẽx(t; z, σ) = r−tx(t; z, σ), we must
have‖x(t; z, σ)‖ = rt‖x̃(t; z, σ)‖ ≤ κrr

t‖z‖, ∀t. The second
conclusion is a direct consequence of Theorem 2.

In other words, the maximum exponential growth rate of all
the trajectories of the SLS is(λ∗)−1/2. Later on in Theorem 3,
we will study how to infer the constantκr from Gλ(z).

Remark 3:For the SLS (1), thejoint spectral radius[17],
[18] of the subsystem dynamics matrices{Ai}i∈M is defined
by ρ∗ := limk→∞ sup

{
‖Ai1 · · ·Aik

‖1/k, i1, . . . , ik ∈ M
}

;
and theLyapunov exponentof the corresponding linear differ-
ence inclusion isγ∗ := supσ,z 6=0 lim supt→∞

1
t ln ‖x(t; z, σ)‖

(see [15]). These two quantities also characterize the maximal
exponential growth rate of the SLS trajectories, and are related
to λ∗ by: (λ∗)−1/2 = ρ∗ = eγ∗

. In this sense, Corollary 1 is
equivalent to [17, Prop. 1.4] and to [18, Prop. 4.17].

C. Smoothness of FiniteGλ(z)

When λ is in the range of[0, λ∗), the functionGλ(z) is
finite everywhere. We shall focus on such finiteGλ(z), and
establish some smoothness properties of them in this section.

We first introduce a few notions. A functionf : Rn → R

is called directionally differentiableat z0 ∈ Rn if its (one-
sided) directional derivative atz0 along any directionv ∈ Rn

defined asf ′(z0; v) := limτ↓0
f(z0+τv)−f(z0)

τ exists. If f is
both directionally differentiable atz0 and locally Lipschitz
continuous in a neighborhood ofz0, it is calledB(ouligand)-
differentiableat z0. Finally, f is semismoothat z0 if it is B-
differentiable in a neighborhood ofz0 and the following limit
holds: limz→z0

z 6=z0

| f ′(z;z−z0)−f ′(z0;z−z0)|
‖z−z0‖ = 0.

Proposition 2: For λ ∈ [0, λ∗), both Gλ(z) and
√

Gλ(z)
are convex, locally Lipschitz continuous, and semismooth on
Rn. Moreover,

√
Gλ(z) is globally Lipschitz continuous.

Proof: The convexity ofGλ(z) and
√

Gλ(z) has been
proved in Proposition 1. Being convex, they must also be
semismooth according to [39, Prop. 7.4.5]. Finally, using the
sub-additivity in Proposition 1, we obtain,∀z, ∆z ∈ Rn,

−
√

Gλ(−∆z) ≤
√

Gλ(z + ∆z)−
√

Gλ(z) ≤
√

Gλ(∆z).

Thus,
∣∣√Gλ(z + ∆z)−

√
Gλ(z)

∣∣ ≤
√

Gλ(±∆z) ≤ √c‖∆z‖
for some finite constantc asλ < λ∗, i.e.,

√
Gλ(z) is globally

Lipschitz continuous onRn with the Lipschitz constant
√

c.
As a result,

√
Gλ(z), henceGλ(z), is also locally Lipschitz

continuous onRn.
Note that forλ > λ∗, Gλ(z) can not be continuous onRn.

Indeed, in this case,Gλ(z0) = ∞ at somez0 ∈ Rn. Thus as
k →∞, the sequencez0

k → 0, but Gλ( z0

k )→∞ 6= 0.

D. Quadratic Bounds of FiniteGλ(z)

For λ ∈ [0, λ∗), Gλ(z) is finite everywhere, hence quadrat-
ically bounded by Proposition 1. Define

gλ := sup{Gλ(z) | ‖z‖ = 1}, λ ∈ [0, λ∗). (7)
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By homogeneity,gλ can be equivalently defined as the smallest
constantc such thatGλ(z) ≤ c‖z‖2, ∀z ∈ Rn.

It is easy to see thatgλ is finite and strictly increasing on
[0, λ∗) (we exclude the trivial case where allAi are zero),
with g0 = 1. We next prove an affine lower bound of1/gλ.

Lemma 2: 1
gλ
≥ 1−λ·maxi∈M ‖Ai‖2, ∀λ ∈ [0, λ∗). Thus,

λ

1− 1/gλ
≥ 1

maxi∈M ‖Ai‖2
, ∀λ ∈ (0, λ∗). (8)

Proof: Let λ ∈ [0, λ∗). For an arbitrary trajectory
x(t; z, σ) of the SLS,‖x(t; z, σ)‖2 ≤ (maxi∈M ‖Ai‖2)t‖z‖2
for all t. Therefore, for0 ≤ λ < (maxi∈M ‖Ai‖2)−1,

∞∑

t=0

λt‖x(t; z, σ)‖2 ≤ 1

1− λ ·maxi∈M ‖Ai‖2
‖z‖2, ∀σ.

By definition, we havegλ ≤ (1−λ·maxi∈M ‖Ai‖2)−1, which
is the desired conclusion for0 ≤ λ < (maxi∈M ‖Ai‖2)−1.
When (maxi∈M ‖Ai‖2)−1 ≤ λ < λ∗, the desired conclusion
is trivial: 1

gλ
≥ 0 ≥ 1− λ ·maxi∈M ‖Ai‖2.

The following auxiliary result on general power series is
proved in Appendix A.

Lemma 3:Let {wt}t=0,1,... be a sequence of nonnegative
scalars such that for someλ0 > 0 andβ ≥ 1,

∞∑

t=0

wt+sλ
t
0 ≤ βws, s = 0, 1, . . . . (9)

Then the power series
∑∞

t=0 wtλ
t has its radius of conver-

gence at leastλ1 := λ0/(1− 1/β). Moreover,
∞∑

t=0

wtλ
t ≤ βw0

1− (β − 1)(λ/λ0 − 1)
<∞, ∀λ ∈ [λ0, λ1).

Using Lemma 3, we obtain the following estimate ofgλ.
Proposition 3: The functionλ/(1−1/gλ) is nondecreasing

for λ ∈ (0, λ∗), and is upper bounded by

λ

1− 1/gλ
≤ λ∗, ∀λ ∈ (0, λ∗). (10)

Proof: Consider a fixedλ0 ∈ (0, λ∗). Let x(t; z, σ) be an
arbitrary trajectory of the SLS. For eachs = 0, 1, . . ., by the
definition of gλ0

, the trajectoryx(t + s; z, σ), t = 0, 1, . . ., of
the SLS starting from the initial statex(s; z, σ) satisfies
∞∑

t=0

λt
0‖x(t + s; z, σ)‖2≤ Gλ0

(x(s; z, σ))≤ gλ0
‖x(s; z, σ)‖2.

Hence, the sequence{wt := ‖x(t; z, σ)‖2}t=0,1,... satisfies the
condition (9) withβ = gλ0

. By Lemma 3, we have
∞∑

t=0

λt‖x(t; z, σ)‖2 ≤ gλ0

1− (gλ0
− 1)(λ/λ0 − 1)

‖z‖2,

for λ ∈ [λ0, λ1), where λ1 := λ0/(1 − 1/gλ0
). As the

trajectoryx(t; z, σ) is arbitrary, we conclude that

Gλ(z) ≤ gλ0

1− (gλ0
− 1)(λ/λ0 − 1)

‖z‖2 <∞, ∀λ ∈ [λ0, λ1).

This impliesλ∗ ≥ λ1, i.e., the desired conclusion (10); and

gλ ≤
gλ0

1− (gλ0
− 1)(λ/λ0 − 1)

⇒ λ

1− 1/gλ
≥ λ0

1− 1/gλ0

,

1

λ∗ λ

1/gλ

1− λ ·maxi∈M ‖Ai‖2

0

1− λ/λ∗

(λ, 1/gλ)

λ/(1 − 1/gλ)

Fig. 1. Plot of the function1/gλ (in solid line).

for λ ∈ [λ0, λ1). Sinceλ0 ∈ (0, λ∗) is arbitrary andλ1 > λ0,
this proves the monotonicity ofλ/(1 − 1/gλ) on (0, λ∗).

In Appendix B, the following generic properties of the
functionsgλ and1/gλ are proved.

Proposition 4: The function 1/gλ is strictly decreasing,
semismooth, and Lipschitz continuous with Lipschitz con-
stant maxi∈M ‖Ai‖2 on [0, λ∗). Moreover, 1/gλ → 0 as
λ ↑ λ∗. Correspondingly,gλ is strictly increasing, convex,
semismooth, and locally Lipschitz continuous on[0, λ∗), with
gλ →∞ asλ ↑ λ∗.

Remark 4:Since gλ → ∞ as λ ↑ λ∗, the generating
function Gλ∗(z) must have infinite value at somez ∈ Rn,
according to Property 5 of Proposition 1. This implies that,
asλ increases,λ∗ is precisely the first value at whichGλ(·)
starts to have infinite values.

Fig. 1 plots the graph of a generic1/gλ as a function
of λ ∈ [0, λ∗). According to (8) and (10), the graph of
1/gλ is sandwiched between those of two affine functions:
1−λ maxi∈M ‖Ai‖2 from the left and1−λ/λ∗ from the right.
In addition, by Proposition 3, the ray (middle dashed line)
emitting from the point(0, 1) and passing through(λ, 1/gλ)
intersects theλ-axis at the point( λ

1−1/gλ
, 0) that moves

monotonically to the right towards(λ∗, 0) as λ increases in
[0, λ∗), i.e., the ray rotates around its starting point(1, 0)
counterclockwise monotonically. It is conjectured that the
function 1/gλ is indeed convex on[0, λ∗) for any SLS.

It is easy to show that the directional derivative ofgλ atλ =
0 is g′λ(0+) = maxi∈M ‖Ai‖2. Hence the directional deriva-
tive of 1/gλ at λ = 0 is: (1/gλ)′(0+) = −maxi∈M ‖Ai‖2. In
Fig. 1, this means that the graph of1/gλ is tangential to the
leftmost dashed ray emitting from(0, 1).

E. Norms Induced by FiniteGλ(z)

As an immediate result of Proposition 1, forλ ∈ [0, λ∗),√
Gλ(z) is finite, sub-additive, and homogeneous of degree

one; thus it defines a norm on the vector spaceRn:

‖z‖Gλ
:=
√

Gλ(z), ∀z ∈ Rn. (11)

As λ increases, the norm‖ · ‖Gλ
increases, hence its unit

ball shrinks. See Fig. 2 for the plots of such unit balls for the
SLS (6) in Example 1. The vector norm‖·‖Gλ

induces a matrix
norm forA ∈ Rn×n by: ‖A‖Gλ

:= supz 6=0{‖Az‖Gλ
/‖z‖Gλ

}.
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Fig. 2. Unit balls of‖ · ‖Gλ
for the SLS (6).

For λ ∈ [0, λ∗), define the constant:

dλ := sup
‖z‖=1

max
i∈M
‖Aiz‖2Gλ

= sup
‖z‖=1

max
i∈M

Gλ(Aiz). (12)

Lemma 4:For eachλ ∈ [0, λ∗), the norm‖ · ‖Gλ
satisfies:

max
i∈M
‖Ai‖Gλ

=
√

dλ/(1 + λdλ).

Proof: Using the Bellman equation, we write

max
i∈M
‖Ai‖2Gλ

= max
i∈M

sup
‖z‖=1

Gλ(Aiz)

Gλ(z)
= sup

‖z‖=1

maxi∈MGλ(Aiz)

Gλ(z)

= sup
‖z‖=1

maxi∈M Gλ(Aiz)

1 + λ ·maxi∈M Gλ(Aiz)

=
sup‖z‖=1 maxi∈M Gλ(Aiz)

1 + λ · sup‖z‖=1 maxi∈M Gλ(Aiz)
=

dλ

1 + λdλ
.

Note that the second last step follows asx/(1 + λx) is
continuous and increasing inx ∈ R+ for any λ ≥ 0.

The above results yields bounds on both the exponential
growth rate of the SLS trajectories andλ∗ as follows.

Corollary 2: Supposeλ ∈ [0, λ∗). Then

‖x(t; z, σ)‖ ≤ √gλ

(
dλ

1 + λdλ

)t/2

‖z‖, t = 0, 1, . . . ,

holds for all trajectories of the SLS (1). As a result, we have

λ∗ > λ +
1

dλ
, ∀λ ∈ [0, λ∗). (13)

Proof: We note that‖z‖ ≤ ‖z‖Gλ
≤ √gλ‖z‖, ∀z ∈ Rn,

i.e., the norm‖ ·‖Gλ
is equivalent to the Euclidean norm‖ ·‖.

For any trajectoryx(t; z, σ) of the SLS, we then have

‖x(t; z, σ)‖ ≤ ‖x(t; z, σ)‖Gλ
= ‖Aσ(t−1) · · ·Aσ(0)z‖Gλ

≤ ‖Aσ(t−1)‖Gλ
· · · ‖Aσ(0)‖Gλ

· ‖z‖Gλ
, ∀t.

Applying Lemma 4 and noting that‖z‖Gλ
≤ √gλ‖z‖, we

obtain the first conclusion. This in turn implies thatλ∗ >
(1 + λdλ)/dλ, which is the desired conclusion (13).

As λ ↑ λ∗, by (13), we must havedλ →∞; hencedλ/(1+
λdλ)→ 1/λ∗. The following then holds.

Theorem 3:For any ε > 0, there exists aλ ∈ (0, λ∗)
sufficiently close toλ∗ such that

‖x(t; z, σ)‖ ≤ √gλ(rλ)t‖z‖, t = 0, 1, . . . ,

for all trajectoriesx(t; z, σ) of the SLS (1), where

rλ =

(
dλ

1 + λdλ

)1/2

≤ (λ∗)−1/2 + ε.

Remark 5:Once Gλ(z) is computed at anyλ ∈ [0, λ∗),
(13) gives a lower bound ofλ∗. An upper bound ofλ∗ can
be derived by using a result in [27, Lemma 3.3] as

λ∗ ≤
[
inf
z 6=0

max
i∈M

Gλ(Aiz)

Gλ(z)

]−1

. (14)

This upper bound, together with the lower bound in (13), gives
an interval for the possible values ofλ∗. As λ ↑ λ∗, it can be
shown that the two bounds converge towards each other; and
the corresponding norm‖ · ‖Gλ

approaches asymptotically a
Barabanov norm[23], [27] of {Ai}i∈M.

F. Algorithms for ComputingGλ(z)

We next present some algorithms for computing the finite
strong generating functions. The idea is thatGλ(z) as the
value function of an infinite horizon optimal control problem
can be approximated by those of a sequence of finite horizon
problems. Specifically, for eachk = 0, 1, . . ., define

Gk
λ(z) := max

σ

k∑

t=0

λt‖x(t; z, σ)‖2, ∀z ∈ Rn. (15)

Maximum is used here instead of supremum as only the first
k steps ofσ affect the summation.

Proposition 5: For anyλ ≥ 0 and k = 0, 1, . . . , Gk
λ(z) is

a convex function ofz on Rn satisfying

G0
λ(z) ≤ G1

λ(z) ≤ G2
λ(z) ≤ · · · ≤ Gλ(z), ∀z ∈ Rn.

Moreover, for λ ∈ [0, λ∗), Gk
λ(z) as k → ∞ converges

exponentially fast toGλ(z): ∀k = 0, 1, . . .,

|Gk
λ(z)−Gλ(z)| ≤ gλ(1− 1/gλ)k+1‖z‖2, ∀z ∈ Rn.

Proof: The convexity proof is identical to that of Propo-
sition 1, hence omitted. Fixλ ≥ 0 andz ∈ Rn, and letσk be
a switching sequence achieving the maximum in (15). Then,

Gk
λ(z)=

k∑

t=0

λt‖x(t; z, σk)‖2≤
k+1∑

t=0

λt‖x(t; z, σk)‖2≤Gk+1
λ (z).

Similarly, we can showGk
λ(z) ≤ Gλ(z), hence the mono-

tonicity. Whenλ ∈ [0, λ∗), Gλ(z) is finite for eachz ∈ Rn.
Let x̂(t) := x(t; z, σ) be a trajectory under an optimal
switching sequenceσ that achieves the supremum in (3), i.e.,
Gλ(z) =

∑∞
t=0 λt‖x̂(t)‖2. By the Bellman equation,

Gλ(x̂(k − 1))−λ ·Gλ(x̂(k))=‖x̂(k − 1)‖2≥Gλ(x̂(k − 1))

gλ
,

for k = 1, 2, . . ., where the last step follows from the definition
of gλ. Rearranging and by induction, we obtain

Gλ(x̂(k)) ≤ λ−1(1 − 1/gλ)Gλ(x̂(k − 1)) ≤ · · ·
≤ λ−k(1− 1/gλ)kGλ(z) ≤ λ−kgλ(1− 1/gλ)k‖z‖2,
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Algorithm 1 ComputingGλ(z) on Grid Points ofSn−1

Let S = {zj}Nj=1 be a set of grid points ofSn−1;
Initialize k = 0, andĜ0

λ(zj) = 1 for all zj ∈ S;
repeat

k ← k + 1;
for eachzj ∈ S do

for eachi ∈M do
Find a minimal subsetSij of S whose elements span
a convex cone containingAizj ;
ExpressAizj as

∑
zℓ∈Sij

αℓ
ijzℓ with αℓ

ij > 0;

Setgij =
∑

zℓ∈Sij
αℓ

ij

√
Ĝk−1

λ (zℓ);
end for
Set Ĝk

λ(zj) = 1 + λ ·maxi∈M g2
ij ;

end for
until k is large enough
return Ĝk

λ(zj) for all zj ∈ S

for k = 0, 1, . . .. The optimality ofx̂(t) then implies that

∞∑

t=k

λt‖x̂(t)‖2 = λk
∞∑

t=0

λt‖x̂(t + k)‖2 = λk Gλ(x̂(k))

≤ gλ(1− 1/gλ)k‖z‖2, ∀k = 0, 1, . . . .

Consequently,Gλ(z) ≥ Gk
λ(z) ≥∑k

t=0 λt‖x̂(t)‖2 = Gλ(z)−∑∞
t=k+1 λt‖x̂(t)‖2 ≥ Gλ(z)− gλ(1 − 1/gλ)k+1‖z‖2.
Therefore,Gk

λ(z) for k large enough provide approxima-
tions of Gλ(z) within arbitrary precision. A recursive proce-
dure to compute the functionsGk

λ(z) is as follows:

G0
λ(z) = ‖z‖2

Gk
λ(z) = ‖z‖2 + λ ·max

i∈M
Gk−1

λ (Aiz), k = 1, 2, . . . . (16)

To implement the recursion numerically, one first represents
eachGk−1

λ (z) by its values on some fine grid points of the unit
sphere, and then carries out the recursion (16) by estimating
conservatively the values ofGk−1

λ (Aiz) at thoseAiz not
aligned with the direction of any grid point, using convexity

and homogeneity of the function
√

Gk−1
λ (z). The above idea

is summarized in Algorithm 1. Similar ray gridding techniques
have also been used in the previous studies [40], [41].

Algorithm 1 returns a sequence of mappingsĜk
λ : S → R+,

k = 0, 1, . . ., whereS is a set of grid points of the unit sphere.
They provide upperbounds ofGk

λ(z) on S as follows.
Proposition 6: Gk

λ(zj) ≤ Ĝk
λ(zj), ∀zj ∈ S, ∀k = 0, 1, . . .

Proof: We prove by induction. Atk = 0, we have
G0

λ(zj) = Ĝ0
λ(zj) = 1 for all zj ∈ S. Suppose the conclusion

is true for0, 1, . . . , k − 1. For anyzj ∈ S, let Sij andαℓ
ij be

as given in Algorithm 1. Then̂Gk
λ(zj) = 1 + λ ·maxi∈M g2

ij ,
where by the induction hypothesis and sub-additivity,

gij ≥
∑

zℓ∈Sij

αℓ
ij

√
Gk−1

λ (zℓ) =
∑

zℓ∈Sij

√
Gk−1

λ (αℓ
ijzℓ)

≥
√

Gk−1
λ

( ∑

zℓ∈Sij

αℓ
ijzℓ

)
=

√
Gk−1

λ (Aizj).
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Fig. 3. Top: Unit balls of‖ · ‖Gλ
for the SLS in Example 2 atλ =

0.1, 0.2, 0.3, 0.37, 0.38 (inward). Bottom: Plot of1/gλ.

Using the Bellman equation in Proposition 1, we then have
Ĝk

λ(zj) ≥ 1 + λ ·maxi∈M Gk−1
λ (Aizj) = Gk

λ(zj). Thus, the
conclusion also holds fork. This completes the proof.

Combining Proposition 6 and Theorem 2, we have the
following stability test.

Corollary 3: A sufficient condition for the SLS (1) to be
exponentially stable under arbitrary switching is that themap-
pings Ĝk

1 : S → R+, k = 0, 1, . . ., obtained by Algorithm 1
are uniformly bounded.

By repeatedly applying Algorithm 1 to a sequence ofλ
whose values increase according toλnext = λ/(1 − 1/gλ)
or by (13), increasingly accurate underestimates ofλ∗ can be
obtained. In view of Section III-E, this procedure is somewhat
similar to the norm iteration proposed in [27], although the
iterations in [27] are performed through a max-relaxation
scheme and in this paper through the Bellman equation.

As λ approachesλ∗, however, the computation time of
Algorithm 1 will get exponentially longer for two reasons.
First, the convergence ofGk

λ(z) to Gλ(z) is much slower by
Proposition 5. Second, errors of̂Gk

λ(z) over-approximating
Gk

λ(z) will accumulate quickly in time. Thus, a denser grid
and more iterations are generally needed to ensure a given ac-
curacy. This is not surprising given that the problem of finding
λ∗ (or the JSR) is known to be NP-hard [24]. Hence the com-
plexity of Algorithm 1, like other approximation algorithms,
will grow exponentially with respect to the state dimensionand
the required accuracy. Some recently developed algorithmsfor
estimating the JSR (e.g., [29]) have the desirable feature of
providing prescribed performance guarantee of the computed
estimates. Besides (13) and (14), we are currently working on
developing further performance assurance for Algorithm 1.

G. Examples

Example 2:The following example is taken from [25]:

A1 =

[
1 1
0 1

]
, A2 =

[
1 0
1 1

]
.
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Fig. 4. Top: Unit ball of‖ · ‖G1
for the SLS in Example 3. Bottom: Plot

of 1/gλ.

Algorithm 1 is used to compute the functionsGλ(z) of this
SLS for different values ofλ: λ =0.1, 0.2, 0.3, 0.37, and 0.38.
The results are shown in Fig. 3, where the top and bottom
figures plot respectively the unit balls of the norm‖ · ‖Gλ

and
the graph of the function1/gλ. From the plot, the graph of
1/gλ is very close to a straight line. Thus, by computing1/gλ

at two differentλ and extrapolating, one can obtain an accurate
estimate ofλ∗. This gives some justification to the fact that the
joint spectral radius in this case is available analytically [18]:
ρ∗ = 1+

√
5

2 . Thusλ∗ = 1/(ρ∗)2 ≃ 0.3820.
Example 3:Consider the following SLS inR3:

A1 =




0.5 0 −0.7
0 0.3 0
0 −0.4 −0.6



 , A2 =




0.5 0 0
0.4 0.2 0.3
0 0 0.3



 ,

A3 =




0 −1 0
0.9 0.2 0.3
−0.2 0.3 −0.5


 .

Overestimates of the functionGλ(z) are computed by applying
Algorithm 1 on 752 grid points of the unit sphere. The unit
ball corresponding to the estimated norm

√
G1(z) is shown at

the top of Fig. 4; the bottom figure depicts the computed1/gλ

for λ = 0.2, 0.4, 0.6, 0.8, 1, and 1.1. Sincegλ at λ = 1.1 is
finite, λ∗ > 1.1, hence the given SLS is exponentially stable
under arbitrary switching. An extrapolation of the function
1/gλ provides an estimate ofλ∗ at around1.1064.

H. Generalized Strong Generating Functions

The definition of strong generating functions can be gener-
alized. Letq be a positive integer, and let‖ · ‖ now denote an

arbitrary norm onRn. Define a generalized strong generating

function asGλ, q(z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖q. Whenq = 2

and ‖ · ‖ is the Euclidean norm,Gλ, q(z) reduces toGλ(z)
defined in (3). The functionGλ, q(z) retains most of the
properties ofGλ(z) in Proposition 1. For instance, for any
λ ≥ 0, [Gλ,q(z)]1/q is subadditive, positively homogeneous,
and convex inz; it is further finite, globally Lipschitz contin-
uous, and semismooth wheneverλ is smaller than

λq,∗ := sup{λ ≥ 0 |Gλ, q(z) <∞, ∀z ∈ Rn}.

We call λq,∗ the radius of strong convergence corresponding
to Gλ, q(z), and note that its definition does not depend on the
choice of the norm‖ · ‖. Similar to Theorem 2, we can show
that the SLS is exponentially stable under arbitrary switching
if and only if λq,∗ > 1. Indeed,λq,∗ is related toλ∗ and the
JSRρ∗ as: (λq,∗)1/q = (λ∗)1/2 = (ρ∗)−1, for all q.

Although different choices ofq and‖ · ‖ lead to equivalent
stability tests, the numerical robustness of such tests mayvary.
Noting that any nonnegative sequence{wt}t=0,1,... satisfies∑∞

t=0(wt)
qr ≤

(∑∞
t=0(wt)

q
)r

, we haveλqr,∗ ≥ (λq,∗)r,
∀q, r = 1, 2, . . .. For a barely exponentially stable SLS with
a convergence radiusλ2,∗ only slightly above 1, by choosing
r > 1, the new radiusλ2r,∗ ≥ (λ2,∗)r has a larger gap with 1;
hence it may lead to a more robust stability test.

IV. W EAK GENERATING FUNCTIONS

A. Definition and Properties

The weak generating functionH : R+ ×Rn → R+ ∪ {∞}
of the SLS (1) is defined as

H(λ, z) := inf
σ

∞∑

t=0

λt‖x(t; z, σ)‖2, ∀λ ≥ 0, z ∈ Rn, (17)

where the infimum is over all switching sequencesσ of the
SLS. ThenH(λ, z) is monotonically increasing inλ, with
H(0, z) = ‖z‖2 whenλ = 0. The threshold

λ∗(z) := sup{λ ≥ 0 |H(λ, z) <∞}

is called theradius of weak convergenceof the SLS atz. For
each fixedλ ≥ 0, write Hλ(z) := H(λ, z), ∀z ∈ Rn. Then
Hλ(·) is homogeneous of degree two, withH0(·) = ‖ · ‖2.

Some properties of the functionHλ(z) are listed below. It
is noted that many properties (e.g. convexity) of the strong
generating functionGλ(z) are not valid forHλ(z).

Proposition 7: Hλ(z) has the following properties.

1. (Bellman Equation): Letλ ≥ 0 be arbitrary. Then
Hλ(z) = ‖z‖2 + λ ·mini∈M Hλ(Aiz), ∀z ∈ Rn.

2. (Invariant Subset): For eachλ ≥ 0, the setHλ := {z ∈
Rn |Hλ(z) = ∞} is a subset ofRn invariant under
{Ai}i∈M, i.e., AiHλ ⊆ Hλ for all i ∈M.

3. For 0 ≤ λ < (mini∈M ‖Ai‖2)−1, Hλ(z) ≤ c‖z‖2 for
some finite constantc > 1.

Proof: Property 1 is proved by applying the dynamic
programming principle to the optimal control problem of mini-
mizing

∑∞
t=0 λt‖x(t; z, σ)‖2. Property 2 follows directly from

Property 1. For Property 3, by choosingσ0 := (i0, i0, i0, . . .)
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with no switching wherei0 = argmini∈M‖Ai‖, we have
‖x(t; z, σ0)‖2 ≤ (mini∈M ‖Ai‖2)t‖z‖2, ∀t. Therefore, for
0 ≤ λ < (mini∈M ‖Ai‖2)−1,

Hλ(z) ≤
∞∑

t=0

λt‖x(t; z, σ0)‖2 ≤
1

1− λ ·mini∈M ‖Ai‖2
‖z‖2,

which is finite and bounded by a quadratic function.
Note thatHλ, unlike Gλ, cannot be a subspace ofRn as it

does not contain the origin.

B. Radius of Weak Convergence

Definition 4: The radius of weak convergence of the
SLS (1), denoted byλ∗ ∈ (0,∞], is defined by

λ∗ := sup{λ ≥ 0 |Hλ(z) <∞, ∀z ∈ Rn}.
By Proposition 7, we must haveλ∗ ≥ (mini∈M ‖Ai‖2)−1.

The value ofλ∗ could reach∞ if starting from anyz, a
switching sequenceσz exists so thatx(t; z, σz) reaches the
origin within a uniform timeT <∞.

The next result shows that a functionHλ(z) finite ev-
erywhere onRn must be bounded by a quadratic function.
Thus, λ∗ can also be defined to besup{λ ≥ 0 |Hλ(z) ≤
c‖z‖2, ∀z ∈ Rn, for some constantc}.

Proposition 8: For eachλ ≥ 0, the following statements
are equivalent:

1) Hλ(z) <∞, ∀z ∈ Rn;
2) Hλ(z) ≤ c‖z‖2, ∀z ∈ Rn, for some positive constantc;
3) The scaled SLS with subsystem matrices{

√
λAi}i∈M

is exponentially stable under optimal switching.
Proof: It is obvious that2) ⇒ 1). We show in the

following that 1)⇒ 3), and3)⇒ 2).
To prove1)⇒ 3), assumeλ ≥ 0 is such that 1) holds. Then

for any z ∈ Rn, there exists a switching sequenceσz such
that

∑∞
t=0 λt‖x(t; z, σz)‖2 < ∞. Consider the scaled SLS

with subsystem dynamics matrices{
√

λAi}i∈M, and denote
by x̃(t; z, σz) = λt/2x(t; z, σz) its solution starting fromz
underσz . Since

∑∞
t=0 ‖x̃(t; z, σz)‖2 < ∞, x̃(t; z, σz) → 0

as t → ∞ for each z. By Remark 1, the scaled SLS is
exponentially stable under optimal switching.

To show3) ⇒ 2), assume the scaled SLS is exponentially
stable under optimal switching. Then there exist constantsκ >
0 andr ∈ (0, 1) such that for eachz, the trajectorỹx(t; z, σz)
of the scaled SLS under at least one switching sequenceσz

satisfies‖x̃(t; z, σz)‖2 ≤ κrt‖z‖2, ∀t. As a result,∀z,

Hλ(z) ≤
∞∑

t=0

λt‖x(t; z, σz)‖2 =

∞∑

t=0

‖x̃(t; z, σz)‖2 ≤
κ‖z‖2
1− r

,

which is exactly the conclusion of 2) withc = κ/(1− r).
We next show that the radius of weak convergenceλ∗ char-

acterizes the exponential stability of the SLS under optimal
switching just asλ∗ does for the exponential stability under
arbitrary switching.

Theorem 4:The SLS (1) is exponentially stable under op-
timal switching if and only ifλ∗ > 1.

Proof: To prove necessity, we observe that for a SLS
exponentially stable under optimal switching with the param-
etersκ > 0 and r ∈ [0, 1), by a similar argument as in the

proof of Theorem 2, we must haveHλ(z) ≤ κ2

1−λr2 ‖z‖2, ∀z,
for λ < r−2; henceλ∗ ≥ r−2 > 1. To show sufficiency,
supposeλ∗ > 1. Then atλ = 1, H1(z) is finite for all z. By
Proposition 8, this implies that the scaled SLS with subsystem
matrices{

√
λAi}i∈M, which is also the original SLS (1), is

exponentially stable under optimal switching.
Following similar steps as in the proof of Corollary 1, we

can prove the subsequent result.
Corollary 4: Consider the SLS (1). For anyr > (λ∗)−1/2,

there is a constantκr such that starting from eachz ∈ Rn,
‖x(t; z, σz)‖ ≤ κrr

t‖z‖, ∀t, for at least one switching
sequenceσz . Furthermore,(λ∗)−1/2 is the smallest possible
value for the previous statement to be true.

To sum up, the maximum exponential growth rate over all
initial states of the trajectories of the SLS (1) under optimal
switching is given by precisely(λ∗)−1/2. Another related (but
generally larger) quantity characterizing such a rate is the joint
spectral subradiusof {Ai}i∈M defined by [17]:

ρ̌ := lim
k→∞

inf
{
‖Ai1 · · ·Aik

‖1/k, i1, . . . , ik ∈ M
}

. (18)

Difference between these two rates is shown via the following
SLS (inspired from [42, pp. 1135]) with subsystem matrices:

A1 =

[
2
3 0
0 3

2

]
, A2 = QA1Q

T , A3 = QA2Q
T ,

whereQ ∈ R2×2 is the rotation matrix of60◦ counterclock-
wise. Let C be the symmetric cone consisting of all those
x ∈ R2 ≃ C with phase angle within the range of either
[−30◦, 30◦] or [150◦, 210◦]. It is easy to check that‖A1x‖ ≤√

43
48‖x‖ for x ∈ C; ‖A2x‖ ≤

√
43
48‖x‖ for x ∈ QC; and

‖A3x‖ ≤
√

43
48‖x‖ for x ∈ Q2C. SinceR2 = C ∪QC ∪Q2C,

a state feedback switching policy can be designed as follows:
σ(x) = 1, 2, and 3, for x in C, QC, and Q2C, respectively
(if x is in more than one set, any tie breaking rule can be
applied). Then starting from anyz, the resulting closed-loop

trajectory satisfies‖x(t+1; z, σ)‖ ≤
√

43
48 · ‖x(t; z, σ)‖ for all

t. Thus, the SLS is exponentially stable underσ(x), and we

have (λ∗)−1/2 ≤
√

43
48 , i.e., λ∗ > 48

43 . In comparison, since
each of the subsystem matrices has determinant one, any finite
productAi1 · · ·Aik

also has determinant one, hence norm at
least one. By (18), we must havěρ ≥ 1, henceρ̌ > (λ∗)−1/2.
This gap can be explained ašρ defined by (18) satisfies

ρ̌ = lim
k→∞

inf
i1,...,ik∈M

sup
‖x‖=1

‖Ai1 · · ·Aik
x‖1/k

≥ lim
k→∞

sup
‖x‖=1

inf
i1,...,ik∈M

‖Ai1 · · ·Aik
x‖1/k,

where the right hand side is exactly(λ∗)−1/2. In other
words, the JSSρ̌ and the rate(λ∗)−1/2 studied in this
paper characterize the smallest possible worst-case exponen-
tial growth rate over all initial states of the SLS trajecto-
ries achievable byopen-loopswitching policies of the form
(i1, . . . , ik, i1, . . . , ik, . . .) and byclosed-loopswitching poli-
cies with state feedback switching laws, respectively.
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C. Quadratic Bounds of FiniteHλ(z)

For eachλ ∈ [0, λ∗), define the constanthλ as the smallest
constantc such thatHλ(z) ≤ c‖z‖2 for all z:

hλ := sup{Hλ(z) | ‖z‖ = 1}. (19)

Obviously,hλ is strictly increasing inλ, with h0 = 1.
Similar to Proposition 3 forgλ, we have the following

estimates ofhλ.
Proposition 9: The functionλ/(1−1/hλ) is nondecreasing

for λ ∈ (0, λ∗), and is upper bounded by

λ

1− 1/hλ
≤ λ∗, ∀λ ∈ (0, λ∗). (20)

Proof: Let λ0 ∈ (0, λ∗). For any z ∈ Rn, let
σz be a switching sequence so that the resulting trajec-
tory x(t; z, σz) achieves the infimum in (17):Hλ0

(z) =∑∞
t=0 λt

0‖x(t; z, σz)‖2 < ∞. By the optimality of σz, for
each s = 0, 1, . . ., the time shifted trajectory of the SLS,
x(t + s; z, σz), ∀t, starting from the initial statex(s; z, σz) is
also optimal:

∑∞
t=0 λt

0‖x(t + s; z, σz)‖2 =Hλ0
(x(s; z, σz))≤

hλ0
‖x(s; z, σz)‖2. In other words, the sequence defined by

{wt := ‖x(t; z, σz)‖2}t=0,1,... satisfies the condition (9) with
β = hλ0

. By Lemma 3, we then have
∞∑

t=0

λt‖x(t; z, σz)‖2 ≤
hλ0

1− (hλ0
− 1)(λ− λ0)/λ0

‖z‖2,

for λ ∈ [λ0, λ1), whereλ1 := λ0/(1− 1/hλ0
). Therefore,

Hλ(z) ≤
∞∑

t=0

λt‖x(t; z, σz)‖2 ≤
hλ0
‖z‖2

1− (hλ0
− 1)(λ− λ0)/λ0

is finite for all z ∈ Rn and λ ∈ [λ0, λ1). This implies that
λ∗ ≥ λ1, which is the desired (20); and that forλ ∈ [λ0, λ1),

hλ≤
hλ0

1− (hλ0
− 1)(λ− λ0)/λ0

⇒ λ

1− 1/hλ
≥ λ0

1− 1/hλ0

.

This proves the monotonicity ofλ/(1− 1/hλ) on (0, λ∗).
The following result follows directly from Proposition 9.
Corollary 5: For eachλ ∈ [0, λ∗), 1/hλ ≤ 1− λ/λ∗. As a

result,1/hλ → 0 andhλ →∞ asλ ↑ λ∗.
The directional derivative ofhλ at λ = 0 is computed in

Appendix C as follows.
Lemma 5:The directional derivative ofhλ at 0 exists and

is given byh′
λ(0+) := lim

λ↓0

hλ − h0

λ
= sup

‖z‖=1

min
i∈M
‖Aiz‖2.

As a result of Lemma 5,

lim
λ↓0

λ

1− 1/hλ
=

1

h′
λ(0+)

=
1

sup‖z‖=1 mini∈M ‖Aiz‖2
.

Since by Proposition 9,λ/(1 − 1/hλ) is nondecreasing inλ
on (0, λ∗), the above limit implies that, forλ ∈ (0, λ∗),

λ

1− 1/hλ
≥ lim

λ↓0

λ

1− 1/hλ
=

1

sup‖z‖=1 mini∈M ‖Aiz‖2
.

This leads to the following estimate ofhλ, which is the
counterpart of Lemma 2 forgλ.

Corollary 6:
1

hλ
≥ 1−λ · sup

‖z‖=1

min
i∈M
‖Aiz‖2, ∀λ ∈ [0, λ∗).

rh

rg

E2

E1

E3

Fig. 5. Geometric interpretation of the Lipschitz constants in Propositions 4
and 10:maxi∈M ‖Ai‖2 = 1/r2

g andsup‖z‖=1
mini∈M ‖Aiz‖2 = 1/r2

h
.

1

λ∗
λ

1/hλ

1− λ · sup‖z‖=1 mini∈M ‖Aiz‖2

0

1− λ/λ∗

(λ, 1/hλ)

λ/(1 − 1/hλ)

Fig. 6. Plot of the function1/hλ (in solid line).

Similar to the proof of Proposition 4 in Appendix B, we
can use Proposition 9 and Corollary 6 to prove the following.

Proposition 10: The function 1/hλ defined on[0, λ∗) is
strictly decreasing and Lipschitz continuous with Lipschitz
constantsup‖z‖=1 mini∈M ‖Aiz‖2. The functionhλ is strictly
increasing and locally Lipschitz continuous on[0, λ∗).

Remark 6:The Lipschitz constants of 1/gλ in
Proposition 4 and of1/hλ in Proposition 10 are given
as sup‖z‖=1 maxi∈M ‖Aiz‖2 and sup‖z‖=1 mini∈M ‖Aiz‖2,
respectively. An overestimate of the latter is given by
mini∈M sup‖z‖=1 ‖Aiz‖2 = mini∈M ‖Ai‖2. For a geometric
interpretation, associate each matrixAi with an ellipsoid
Ei := {z ∈ Rn | ‖Aiz‖2 ≤ 1} in Rn. The intersection of
all such ellipsoids,∩i∈MEi, is a convex set that can embed
a maximal ball centered at0 with the radiusrg; whereas
their union ∪i∈MEi can embed a maximal ball centered
at 0 with the radiusrh (see Fig. 5). Further, letrℓ :=
maxi∈M{the length of the shortest principal axis ofEi}.
The two Lipschitz constants and the overestimate can then be
expressed asmax

i∈M
‖Ai‖2 = 1/r2

g, sup
‖z‖=1

min
i∈M
‖Aiz‖2 = 1/r2

h,

and min
i∈M
‖Ai‖2 = 1/r2

ℓ .

A generic plot of the function1/hλ for λ ∈ [0, λ∗)
is shown in Fig. 6. The function decreases strictly from1
at λ = 0 to 0 as λ ↑ λ∗. Its graph is sandwiched by
those of two affine functions:1 − λ/λ∗ from the right, and
1 − λ · sup‖z‖=1 mini∈M ‖Aiz‖2 from the left. Moreover,
as λ increases from0 towards λ∗, the ray emitting from
the point (1, 0) and passing through the point(λ, 1/hλ)
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rotates counterclockwise monotonically, and intersects the λ-
axis at a point whoseλ-coordinate,λ/(1−1/hλ), provides an
asymptotically tight underestimate ofλ∗.

D. Approximating FiniteHλ(z)

For eachλ ∈ [0, λ∗), the functionHλ(z) is finite every-
where onRn. We next show that it is the limit of a sequence
of functionsHk

λ(z), k = 0, 1, . . ., defined by

Hk
λ(z) := min

σ

k∑

t=0

λt‖x(t; z, σ)‖2, ∀z ∈ Rn. (21)

As the value functions of an optimal control problem with
variable finite horizons,Hk

λ(z) can be computed recursively
as follows:H0

λ(z) = ‖z‖2, ∀z ∈ Rn; and fork = 1, 2, . . .,

Hk
λ(z) = ‖z‖2 + λ · min

i∈M
Hk−1

λ (Aiz), ∀z ∈ Rn. (22)

Equivalently, we can write

Hk
λ(z) = min{zT Pz : P ∈ Pk}, ∀z ∈ Rn, (23)

wherePk, k = 0, 1, . . ., is a sequence of sets of positive
definite matrices defined by:P0 = {I}; and fork = 1, 2, . . .,

Pk = {I + λAT
i PAi |P ∈ Pk−1, i ∈M}. (24)

Proposition 11: The sequence of functionsHk
λ(z) is mono-

tonic: H0
λ ≤ H1

λ ≤ H2
λ ≤ · · · ≤ Hλ; and for λ ∈ [0, λ∗), it

converges exponentially fast toHλ(z): for k = 0, 1, . . .,

|Hk
λ(z)−Hλ(z)| ≤ h2

λ(1 − 1/hλ)k+1‖z‖2, ∀z ∈ Rn. (25)

Proof: Fix k ≥ 1. For eachz ∈ Rn, let σk be a switching
sequence achieving the minimum in (21). Then,Hk

λ(z) =∑k
t=0 λt‖x(t; z, σk)‖2 ≥∑k−1

t=0 λt‖x(t; z, σk)‖2 ≥ Hk−1
λ (z).

Similarly, we haveHk
λ(z) ≤ Hλ(z), proving the monotonicity.

Next assumeλ ∈ [0, λ∗). For anyz ∈ Rn andk = 0, 1, . . .,
we note that‖z‖2 ≤ Hk

λ(z) ≤ Hλ(z) ≤ hλ‖z‖2. Let σk be
such thatx̂(t) := x(t; z, σk) achieves the minimum in (21).
For eachs = 0, 1, . . . , k − 1, sincex̂(t) is also optimal over
the time horizont = s, s + 1, . . . , k, we have

Hk−s
λ (x̂(s)) = ‖x̂(s)‖2 + λ

k−s−1∑

t=0

λt‖x̂(t + s + 1)‖2

= ‖x̂(s)‖2 + λHk−s−1
λ (x̂(s + 1)).

Since‖x̂(s)‖2 ≥ Hk−s
λ (x̂(s))/hλ, the above implies that

Hk−s−1
λ (x̂(s + 1)) ≤ λ−1(1− 1/hλ)Hk−s

λ (x̂(s)).

Applying this inequality fors = k − 1, . . . , 0, we have

‖x̂(k)‖2 = H0
λ(x̂(k)) ≤ λ−1(1− 1/hλ)H1

λ(x̂(k − 1))

≤ · · · ≤ λ−k(1− 1/hλ)kHk
λ(z) ≤ λ−khλ(1 − 1/hλ)k‖z‖2.

Algorithm 2 Computing Over Approximations ofHk
λ(z).

Initialize k = 0, P̃ε
0 = {In}, andPε

0 = P̃ε
0 ;

repeat
k ← k + 1;
P̃ε

k = {I + λAT
i PAi | i ∈M, P ∈ Pε

k−1};
Find anε-equivalent subsetPε

k ⊂ P̃ε
k;

until k is large enough
return Hk,ε

λ (z) = min{zT Pz |P ∈ Pε
k}.

Using this inequality, and adopting the switching sequencethat
first follows σk for k steps and thereafter follows an infinite-
horizon optimalσ∗ starting fromx̂(k), we obtain

Hλ(z) ≤
k∑

t=0

λt‖x̂(t)‖2 +

∞∑

t=k+1

λt‖x(t− k; x̂(k), σ∗)‖2

= Hk
λ(z) + λk

[
Hλ(x̂(k))− ‖x̂(k)‖2

]

≤ Hk
λ(z) + (hλ − 1)λk‖x̂(k)‖2

≤ Hk
λ(z) + h2

λ(1− 1/hλ)k+1‖z‖2.
This, together withHk

λ(z) ≤ Hλ(z), proves (25).
By (25), for anyλ0 ∈ [0, λ∗), Hk

λ(z), k = 0, 1, . . ., is a
sequence of functions of(λ, z) converging uniformly toHλ(z)
on [0, λ0] × Sn−1. As eachHk

λ(z) is continuous in(λ, z)
on [0, λ0] × Sn−1, so is Hλ(z). Using homogeneity and the
arbitrariness ofλ0 ∈ [0, λ∗), we obtain the following result.

Corollary 7: The functionHλ(z) = H(λ, z) is continuous
in (λ, z) on [0, λ∗)× Rn.

E. Relaxation Algorithm for ComputingHλ(z)

According to (25),Hk
λ(z) for largek provide increasingly

accurate estimates ofHλ(z). By (23), to characterizeHk
λ(z),

it suffices to compute the setPk. To deal with the rapidly
increasing size ofPk ask increases, we introduce the follow-
ing complexity reduction technique, inspired by [43], [44]. A
subsetPε

k ⊆ Pk is calledε-equivalentto Pk for someε > 0 if

Hk,ε
λ (z) := min

P∈Pε
k

zT Pz ≤ min
P∈Pk

zT Pz + ε‖z‖2, ∀z ∈ Rn.

A sufficient (though not necessary) condition for this to hold
is that, for eachP ∈ Pk, P + εIn is bounded from below
by a convex combination of matrices inPε

k, i.e., there exist
constantsαQ ≥ 0, ∀Q ∈ Pε

k, adding up to 1 such that
P + εIn �

∑
Q∈Pε

k
αQ ·Q. This leads to a natural procedure

of removing matrices fromPk iteratively until a minimalε-
equivalent subsetPε

k is achieved. By applying this procedure
at each step of the iteration (24), we obtain Algorithm 2, which
returns approximations ofHk

λ(z) for all k with uniformly
bounded approximation errors as follows.

Proposition 12: Assumeλ ∈ [0, λ∗). Then fork = 0, 1, . . .,

Hk
λ(z) ≤ Hk,ε

λ (z) ≤ (1 + ε)Hk
λ(z), ∀z ∈ Rn. (26)

Proof: Obviously, (26) holds fork = 0. Assume it holds
for somek − 1 ≥ 0. Define, forz ∈ Rn,

H̃k,ε
λ (z) := min

P∈P̃ε
k

zT Pz = ‖z‖2 + λ · min
i∈M

Hk−1,ε
λ (Aiz).
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Fig. 7. Plots of1/hλ for SLSs in Example 2 (top) and Example 3 (bottom).

By our hypothesis,Hk−1,ε
λ (Aiz) ≤ (1 + ε)Hk−1

λ (Aiz). Thus,

H̃k,ε
λ (z) ≤ ‖z‖2 + λ(1 + ε)Hk−1

λ (Aiz), ∀z ∈ Rn, i ∈ M.

SincePε
k is ε-equivalent toP̃ε

k, we then have,

Hk,ε
λ (z) ≤ H̃k,ε

λ (z)+ε‖z‖2 ≤ (1 + ε)
[
‖z‖2 + λHk−1

λ (Aiz)
]
,

for eachi ∈ M. By (22), we haveHk,ε
λ (z) ≤ (1 + ε)Hk

λ(z),
∀z. ThatHk,ε

λ (z) ≥ Hk
λ(z) can be trivially proved.

The estimated1/hλ obtained by Algorithm 2 are plotted
in Fig. 7 for the SLSs in Example 2 (top) and Example 3
(bottom). In both cases,1/hλ decreases from 1 atλ = 0 to 0
at λ = λ∗. (For Example 3, high computational complexity of
Algorithm 2 prevents us from getting accurate estimates for
λ close toλ∗). We observe that in each case,1/hλ is convex
and “more curved” than the plots of1/gλ. It is conjectured
that the function1/hλ is convex on[0, λ∗) for all SLSs.

According to Propositions 11 and 12, by choosingk large
enough andε small enough, Algorithm 2 can return estimates
of Hλ(z), henceλ∗, with an error as small as possible.
See [44] for the expressions of the approximation error in
terms ofk, ε, and matricesAi’s. On the other hand, to attain
a higher accuracy, the computation time of Algorithm 2 still
grows exponentially, as is reflected by the rapidly increasing
size of the setP ε

k , despite our relaxation effort. Our numerical
experiments suggest that computingλ∗ is no less challenging
than computing the joint spectral subradius, which in itself
is an NP-hard problem [20], [24]. A future direction of our
research is to prove this formally and to see if the algorithms
for computing the joint spectral subradius (e.g. [29]) can be
adapted to compute the radius of weak convergenceλ∗.

V. M EAN GENERATING FUNCTIONS

The notion of generating functions can also be extended to
the SLS (2) under the random switching probabilityp. Define

its mean generating functionF : R+ × Rn → R+ ∪ {∞} as

F (λ, z) :=E

[ ∞∑

t=0

λt‖x(t; z, p)‖2
]

=

∞∑

t=0

λt
E
[
‖x(t; z, p)‖2

]
,

(27)

for z ∈ Rn, λ ≥ 0. For eachλ ≥ 0, Fλ(z) := F (λ, z) is the
averaged sum of the power series along the random system
trajectory; thus, its value lies between two extremes:

Hλ(z) ≤ Fλ(z) ≤ Gλ(z), ∀z ∈ Rn. (28)

The absence of maximum or minimum in the definition
of Fλ(z) makes its characterization much easier compared to
Gλ(z) andHλ(z). For example,Fλ(z) is quadratic inz ∈ Rn:

Fλ(z) = zT
E

[
I +

∞∑

t=1

λt
t−1∏

s=0

A(s)T
0∏

s=t−1

A(s)

]
z. (29)

We write Fλ(z) = zT Qλz, whereQλ ∈ Rn×n is positive
definite (with possibly infinite entries) and increasing inλ.

The functionFλ(z) has a similar set of properties asGλ(z).
Proposition 13:Fλ(z) has the following properties.
1. (Bellman Equation): Letλ ≥ 0 be arbitrary. Then

Fλ(z) = ‖z‖2 + λ
∑

i∈M pi Fλ(Aiz), ∀z ∈ Rn.
2. (Sub-Additivity and Convexity): For anyλ ≥ 0,√

Fλ(z1 + z2) ≤
√

Fλ(z1) +
√

Fλ(z1), ∀z1, z2 ∈ Rn.
As a result,

√
Fλ(z) is a convex function ofz on Rn.

3. (Invariant Subspace): For eachλ ≥ 0, the setFλ :=
{z ∈ Rn |Fλ(z) < ∞} is a subspace ofRn invariant
under{Ai}i∈M′ , whereM′ := {i ∈ M| pi > 0}.

4. For anyλ ≥ 0, if Fλ(z) is finite for all z, thenFλ(z) ≤
c‖z‖2 for some finite constantc.

The proof of Proposition 13 is straightforward, hence omitted.
The radius of convergence ofFλ(z) is defined as

λ∗
p := sup{λ ≥ 0 |Fλ(z) <∞, ∀z ∈ Rn},

which depends on the probability distributionp. By (27),λ∗
p is

the minimal radius of convergence of the deterministic series{
E
[
‖x(t; z, p)‖2

]}
t=0,1,...

over all z ∈ Rn.
Theorem 5:The following statements are equivalent:
1) The SLS (2) under the random switching probabilityp

is mean square exponentially stable;
2) Its mean generating functionFλ(z) has a radius of

convergenceλ∗
p > 1;

3) The mean generating function atλ = 1, F1(z), is finite
everywhere onRn.

Proof: To show1) ⇒ 2), suppose the SLS (2) is mean
square exponentially stable, i.e., there existκ > 0 and r ∈
[0, 1) such thatE

[
‖x(t; z, p)‖2

]
≤ κrt‖z‖2, ∀t, ∀z. Then,

Fλ(z) ≤
∞∑

t=0

λtκrt‖z‖2 ≤ κ

1− λr
‖z‖2 <∞, ∀z ∈ Rn,

whenever0 ≤ λ < r−1. Consequently,λ∗
p ≥ r−1 > 1.

That 2) ⇒ 3) is obvious. Finally, to show3) ⇒ 1), we
note thatF1(z) =

∑∞
t=0 E

[
‖x(t; z, p)‖2

]
< ∞ implies that

E
[
‖x(t; z, p)‖2

]
→ 0 as t → ∞, for all z. It follows that

the SLS (2) is mean square asymptotically stable, hence mean
square exponentially stable by [36, Theorem 4.1.1].
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For λ ∈ [0, λ∗
p), Fλ(·) is finite everywhere. Define

fλ := sup{Fλ(z) | ‖z‖ = 1} <∞, λ ∈ [0, λ∗
p). (30)

Then,fλ = σmax(Qλ), the largest eigenvalue ofQλ in (29).
Proposition 14: For λ ∈ (0, λ∗

p), the functionλ/(1−1/fλ)
is nondecreasing and upper bounded byλ/(1− 1/fλ) ≤ λ∗

p.
Proof: Let λ0 ∈ (0, λ∗

p). For eachz ∈ Rn, define the
sequencewt := E

[
‖x(t; z, p)‖2

]
, t = 0, 1, . . ., which satisfies

∞∑

t=0

wt+sλ
t
0 =E

[ ∞∑

t=0

λt
0‖x(s + t; z, p)‖2

]
=E[Fλ0

(x(s; z, p))]

≤E
[
fλ0
‖x(s; z, p)‖2

]
= fλ0

ws, ∀s = 0, 1, . . . .

Applying Lemma 3 withβ = fλ0
, we conclude thatFλ(z) =∑∞

t=0 wtλ
t is finite for λ ∈ [λ0, λ1), whereλ1 := λ0/(1 −

1/fλ0
). Therefore,λ∗

p ≥ λ1, which is the second conclusion.
That λ/(1 − 1/fλ) is nondecreasing is proved in exactly the
same way as in Proposition 9 (withhλ replaced byfλ).

As a result, we have the following estimate.
Corollary 8: For eachλ ∈ [0, λ∗

p), 1/fλ ≤ 1 − λ/λ∗
p.

Hence,1/fλ → 0 andfλ →∞ asλ ↑ λ∗
p.

We next compute the directional derivative offλ at λ = 0.
Lemma 6:The directional derivative offλ at 0 exists and

is given byf ′
λ(0+) := lim

λ↓0

fλ − f0

λ
= σmax

(
∑

i∈M
piA

T
i Ai

)
.

Proof: Let z ∈ Sn−1 be arbitrary. For smallλ > 0, we can
use (27) to writeFλ(z)−1

λ = zT
(∑

i∈M piA
T
i Ai

)
z + O(λ),

whereO(λ) ≥ 0 is uniform in z. Therefore, we can exchange
the order of the limit and supremum below to obtain

f ′
λ(0+) = lim

λ↓0
sup

‖z‖=1

Fλ(z)− 1

λ
= sup

‖z‖=1

lim
λ↓0

Fλ(z)− 1

λ
,

which is exactlysup‖z‖=1 zT
(∑

i∈M piA
T
i Ai

)
z.

Similar to Corollary 6 and Proposition 10, we can show the
following two results.

Corollary 9:
1

fλ
≥ 1−λσmax

(
∑

i∈M
piA

T
i Ai

)
, ∀λ∈ [0, λ∗

p).

Proposition 15: The function 1/fλ defined on[0, λ∗
p) is

strictly decreasing and Lipschitz continuous with Lipschitz
constantσmax

(∑
i∈M piA

T
i Ai

)
. Hence, the functionfλ is

strictly increasing and locally Lipschitz continuous on[0, λ∗
p).

From (28), we havehλ ≤ fλ ≤ gλ, thus1/gλ ≤ 1/fλ ≤
1/hλ. The Lipschitz constants of the functions1/hλ, 1/fλ,
and 1/gλ in Propositions 10, 15, and 4, respectively, satisfy

sup
‖z‖=1

min
i∈M
‖Aiz‖2 ≤ σmax

(
∑

i∈M
piA

T
i Ai

)
≤ max

i∈M
‖Ai‖2.

By setting the probability distributionp to be pi∗ = 1 for
i∗ = arg maxi∈M ‖Ai‖2 and pi = 0 for i 6= i∗, the
second inequality becomes equality. On the other hand, the
first inequality is in general strict regardless of the choice of
p, due to the generally lossy nature of the S-procedure [45].
Indeed, when the cardinality|M| ≥ 3 and the state dimension
n ≥ 2, there exist matrices{Ai}i∈M and a constantγ > 0
such that: (i)mini∈M zT AT

i Aiz ≤ γ‖z‖2, ∀z ∈ Rn; (ii) there
exists nop such that

∑
i∈M piA

T
i Ai � γI. Then for all p,

sup‖z‖=1 mini∈M ‖Aiz‖2 ≤ γ < σmax

(∑
i∈M piA

T
i Ai

)
.

1

λ∗ λ∗λ∗
p λ

1/hλ

1/gλ

1/fλ

Lh: 1 − λ · sup‖z‖=1 mini∈M ‖Aiz‖
2

Lg: 1 − λ · maxi∈M ‖Ai‖
2

Lf : 1 − λ · infp σmax(
∑

i∈M piA
T
i Ai)

0

Fig. 8. Plot of the function1/fλ.

A general plot of the function1/fλ is shown in Fig. 8. The
graph of1/fλ is sandwiched between those of1/gλ and1/hλ.
By Proposition 14, the ray emitting from(0, 1) and passing
through(λ, 1/fλ) rotates counterclockwise monotonically as
λ increases. The discussions in the preceding paragraph further
imply that the graph of1/fλ leaves(0, 1) along a direction
within the shaded conic region bounded by the linesLg

and Lf ; whereas generally a gap exists betweenLf and
the asymptotic directionLh in which 1/hλ leaves (0, 1).
Algorithms based on the Bellman equation can also be devised
to computeFλ(z), henceλ∗

p. The details are omitted here.

VI. CONCLUSION

Generating functions (more precisely their radii of conver-
gence) of switched linear systems provide effective character-
izations of the growth rates of the system trajectories, andin
particular their exponential stability, under various switching
rules. Numerical algorithms for their computation have also
been developed based on their many properties derived here.

APPENDIX A
PROOF OFLEMMA 3

Proof: Write
∞∑

t=0

wt+sλ
t
0 = ws +λ0

∞∑

t=0

wt+s+1λ
t
0. Since

by assumption the left hand side is at mostβws, we have
∞∑

t=0

wt+s+1λ
t
0 ≤

β − 1

λ0
ws, s = 0, 1, . . . . (31)

Define the power series:W (λ) :=
∞∑

t=0

wtλ
t, λ ∈ R.

Denote byRW its radius of convergence. SinceW (λ0) =∑∞
t=0 wtλ

t
0 ≤ βw0 < ∞, we haveRW > λ0. We cannot

haveRW = λ0 since the power seriesW (λ) with nonnegative
coefficients must have its radius of convergence as a singular
point, at whichW (λ) diverges (see [47, Theorem 5.7.1]).

As a power series defines an analytic function within its
radius of convergence [47],W (λ) is analytic hence infinite
time differentiable atλ0. Its first order derivative atλ0 is

W ′(λ0) =

∞∑

t=1

twtλ
t−1
0 =

∞∑

t=0

(t + 1)wt+1λ
t
0

=

∞∑

t=0

t∑

s=0

wt+1λ
t
0 =

∞∑

s=0

λs
0

∞∑

t=0

wt+s+1λ
t
0.
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Applying (31), we obtain the estimate

W ′(λ0) ≤
β − 1

λ0

∞∑

s=0

wsλ
s
0 ≤ β

β − 1

λ0
w0. (32)

Similarly, the second order derivativeW ′′(λ0) is

W ′′(λ0) =

∞∑

t=0

(t + 2)(t + 1)wt+2λ
t
0

= 2

∞∑

t=0

t∑

s=0

(s + 1)wt+2λ
t
0 = 2

∞∑

s=0

(s + 1)λs
0

∞∑

t=0

wt+s+2λ
t
0.

Using (31) and (32), we can derive the estimateW ′′(λ0) ≤
2β−1

λ0

∑∞
s=0(s+1)ws+1λ

s
0 = 2β−1

λ0
W ′(λ0) ≤ 2β

(
β−1
λ0

)2

w0.
By induction, we can show, fork = 0, 1, 2, . . .,

W (k)(λ0) ≤ k! β

(
β − 1

λ0

)k

w0. (33)

Let W̄ (λ) :=

∞∑

k=0

1

k!
W (k)(λ0)(λ−λ0)

k be the Taylor series

expansion ofW (λ) at λ0. For λ ≥ λ0 and close toλ0,
W̄ (λ) = W (λ) asW (λ) is analytic atλ0; and by (33),

W̄ (λ) ≤
∞∑

k=0

β

(
β − 1

λ0

)k

w0(λ− λ0)
k

≤ βw0

1− (β − 1)(λ/λ0 − 1)
,

where the last inequality holds if(β − 1)(λ/λ0 − 1) < 1, or
equivalently, if λ ∈ [λ0, λ1) with λ1 defined in the lemma
statement. Therefore, the power seriesW̄ (λ) centered atλ0 is
convergent, and thus defines an analytic function, on[λ0, λ1).
The concatenation ofW (λ) and W̄ (λ) yields an analytic
continuation ofW (λ) defined at least on[0, λ1). Being a
power series of nonnegative coefficients,W (λ) does not admit
any analytic continuation beyond its radius of convergence
RW [47, Definition 5.7.1]. Hence,RW ≥ λ1. This implies
in particular that anyλ ∈ [λ0, λ1) is within the radius of
convergence of bothW (λ) and W̄ (λ) and as such we must
haveW (λ) = W̄ (λ), ∀λ ∈ [λ0, λ1). This together with the
last inequality above proves the desired conclusion.

APPENDIX B
PROOF OFPROPOSITION4

Proof: The monotonicity ofgλ, hence of1/gλ, is obvious
asGλ(z) is nondecreasing inλ. For convexity, letλ = αλ1 +
(1 − α)λ2 for someλ1, λ2 ∈ [0, λ∗), α ∈ [0, 1]; and letz ∈
Sn−1 be such thatGλ(z) = gλ. Since Gλ(z) is a convex
function ofλ ∈ [0, λ∗) for any fixedz (it is the maximum of a
family of convex functions ofλ ≥ 0), we havegλ = Gλ(z) ≤
αGλ1

(z) + (1−α)Gλ2
(z) ≤ αgλ1

+ (1−α)gλ2
. This proves

the convexity ofgλ and hence its semismoothness [39, Prop.
7.4.5]. Being the composition of two semismooth functionsgλ

andx 7→ 1/x, 1/gλ is also semismooth [39, Prop. 7.4.4].
Pick anyλ0, λ ∈ (0, λ∗) with λ0 < λ. Proposition 3 implies

that λ/(1− 1/gλ) ≥ λ0/(1− 1/gλ0
). Thus by Lemma 2,

1

gλ
− 1

gλ0

≥ −(λ− λ0)
1 − 1/gλ0

λ0
≥ −(λ− λ0) max

i∈M
‖Ai‖2,

By Lemma 2, the above inequality also holds forλ0 = 0.
This proves the Lipschitz continuity of1/gλ, hence the local
Lipschitz continuity ofgλ, on [0, λ∗).

Finally, by (10),0 ≤ 1/gλ ≤ 1 − λ/λ∗ for λ ∈ (0, λ∗).
Thus, limλ↑λ∗ 1/gλ = 0. Consequently,limλ↑λ∗ gλ =∞.

APPENDIX C
PROOF OFLEMMA 5

Proof: Fix an arbitraryz ∈ Sn−1 and letλ > 0 be small.
Recalling the definition ofHλ(z), we write

Hλ(z)− 1

λ
=

infσ

∑∞
t=0 λt‖x(t; z, σ)‖2 − 1

λ

= inf
σ

∞∑

t=1

λt−1‖x(t; z, σ)‖2 = inf
σ

∞∑

t=0

λt‖x(t + 1; z, σ)‖2.

Since for all σ, ‖x(t; z, σ)‖2 ≤ (maxi∈M ‖Ai‖2)t, ∀t; and
infσ ‖x(1; z, σ)‖2 = mini∈M ‖Aiz‖2, the above implies

min
i∈M
‖Aiz‖2 ≤

Hλ(z)− 1

λ
≤ min

i∈M
‖Aiz‖2 + O(λ),

for some termO(λ) uniform in σ and z. Thus, we can
exchange the order of limit and supremum below to obtain:

h′
λ(0+) = lim

λ↓0

hλ − 1

λ
= lim

λ↓0
sup

‖z‖=1

Hλ(z)− 1

λ

= sup
‖z‖=1

lim
λ↓0

Hλ(z)− 1

λ
= sup

‖z‖=1

min
i∈M
‖Aiz‖2.

This completes the proof of Lemma 5.
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