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Abstract—In this paper, a unified framework is proposed to
study the exponential stability of discrete-time switchedlinear
systems, and more generally, the exponential growth ratesfo
their trajectories, under three types of switching rules: abitrary
switching, optimal switching, and random switching. It is siown
that the maximum exponential growth rates of system trajecbries
over all initial states under these three switching rules ag
completely characterized by the radii of convergence of thee
suitably defined families of functions called the strong, tke weak,
and the mean generating functions, respectively. In partialar,
necessary and sufficient conditions for the exponential shality
of the switched linear systems are derived based on these radf
convergence. Various properties of the generating functios are
established and their relations are discussed. Algorithmg&r com-
puting the generating functions and their radii of convergeice
are also developed and illustrated through examples.

Index Terms—Switched systems, stability, optimal control.

I. INTRODUCTION

focus on the arbitrary switching case. The maximum expo-
nential growth rate of system trajectories in this case ieda
thejoint spectral radius (JSR)f subsystem matrices, and has
been studied extensively (see, e.g., [15]-[19]). In conspat
the maximum exponential growth rate under optimal switghin
remains much less studied. The smallest such rate under all
open-loop switching policies is given by theint spectral
subradius (JSSpf subsystem matrices [16], [17], [20], [21];
whereas in this paper, we study the smallest such rate umeler t
more general closed-loop, state-dependent switchingipsli
(see Section IV-B for an example showing their difference).
Finally, under random switching, the SLSs become instances
of random dynamical systems, for which the concept of
Lyapunov exponentf?], [23] can be used to characterize
the expected exponential growth rate of their trajectories

It is well known that finding the maximum exponential
growth rates of SLSs are difficult problems. For example, ap-
proximating the JSR within arbitrary precision has beervedo

WITCHED linear systems (SLSs) as a natural extensidf P& an NP-hard problem [24]; and determining whether the
of linear systems are finding increasing applications in*oR iS 1ess than or equal to one is algorithmically undecid-
diverse range of engineering systems [1]. A fundamentdi-prg?le [20]. Computing the JSS is even more difficult [20], [24]
lem in the study of SLSs is to determine their stability. Sgje [ Despite these negative results, many approximation afgos
[3] for some recent reviews of the vast amount of existing@ve been proposed in the literature, e.g. [25]-{29] foJBR
results on this subject. These results can be roughly titessi 2nd [17], [21], [29] for the JSS, some with prescribed accyra

into two main categories: absolute (or uniform) stabilitiyexe
the switchings can be arbitrary; and stability under rettd
switching rules such as switching rate constraints [4] datks

In this paper, we propose a unified method to characterize
the maximum exponential growth rates of the SLSs’ trajecto-
ries under the above three switching rules. The method icbas

dependent switchings [5], [6]. A predominant approach t 1" the novel concept ajenerating functionsf SLSs, which
study of stability in both cases is through the constructibn are suitably defined power series with coefficients deteethin
common or multiple Lyapunov functions [5], [7], [8]. Otherfrom th_e traject(_)rles_of the SLS_S. The importance of these
approaches include Lie algebraic conditions [9]-[11] amel t 9€nerating functions is twofold: (i) their radii of converce

LMI methods [12]-[14], etc.

characterize precisely the maximum exponential growtbsrat

The purpose of this paper is to characterize not only i the system trajectories; and (ii) they possess many abhena

stability of SLSs, but also the maximum exponential rates 8

foperties that make their efficient computation possibieis,

which their trajectories can grow starting from all IOOSSib|generating functions provide both a theoretical framework

initial states under three switching rules: arbitrary shiing,

and the computational tools for characterizing the maximum

optimal switching, and random switching. Such rates gi\;@(ponential growth rates of_interest_.lln part@(?ular_, .thewtde
quantitative measures on the degree of the SLSs’ expohen‘fl%}'d tests for the exponential stability/stabilizalyiliof SLSs.

stability/stabilizability. Most existing results in thidirection
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Compared with the existing methods, the proposed approach
studies the stability of SLSs from the perspective of their
optimal control: the generating functions are the valuecfun
tions of certain optimal control problems for the SLSs with a
varying discount factor, and automatically become Lyapuno
functions for stable SLSs. This perspective enables us to
uncover some common properties of the exponential growth
rates of the SLSs under the different switching rules (seg, e
Propositions 3, 9 and 14). Moreover, it makes our approach
easily extendable to more general classes of systems, such
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as conewise linear inclusions [6], switched positive syste z1,...,2, € S* ! with / < oco. Starting from any initial
[30], [31], and controlled SLSs. A similar perspective hasb z(0) = z € S"~!, we havez € U,, for somel < i < /.
adopted in [15], and by the variational approach [32], [33By our constructionz(ry) := x(T%,; z,0.,) with 7, := T,
which studies the stability of SLSs under arbitrary switchi satisfies||z(r;)|| < 3. Assume without loss of generality
by finding their most divergent trajectories. that x(m1) # 0. Then z(r)/[|z(m)|| € U., for some
This paper is organized as follows. In Section Il, the reféval < j < ¢, and as a resulty(z) := x(T%;;x(71),0.,) with
stability notions of SLSs are introduced. In Section llisfpe 75 := 71 +7%, satisfies|z(72)|| < i||z(r1)||. By induction, we
Section 1V), the strong (resp. weak) generating functiores aobtain a switching sequenee by concatenating,, o, . ..
defined, analyzed, and used to characterize the exponerdiadl a sequence of times = 70 < 74 < 7» < --- at
stability of the SLSs under arbitrary (resp. optimal) siMbg. most 7. := max; T,, apart such that the resulting trajec-
Their numerical computation algorithms are also presentedry z(t; z,0.) satisfies||z(mx11;2,0.)|| < 3llz(m; 2,02
Section V discusses extensions to randomly switching fine@r all ¥ > 0. Let x = >0 (maxie e [|A4]]). Then
systems. Finally, concluding remarks are given in Sectitin Vf|;(¢; 2, 0, )|| < %(0.5)/™ 1| z| for all ¢. Thus, the SLS (1)
is exponentially stable under optimal switching. [ ]
Il. STABILITY OF SWITCHED LINEAR SYSTEMS Remark 1:The above proof implies that to prove the ex-

A discrete-time (autonomous) SLS is defined as follows: jRonential stability of the SLS (1) u:der optimal switching,
statez(t) € R" evolves by switching among a set of lineaft Suffices to show that for any € R", z(t;2,0.) — 0 as

dynamics indexed by the finite index s&t := {1,...,m}: ¢ — oo foratleastone.. This fact will be used in Section IV.
Another switching rule we consider is random switching.
r(t+1) = Aspz(t), t=0,1,.... (1) Letp := {pi}ier be a probability distribution withp; > 0

and) ;.\ pi = 1. The SLS (1) under the (stationary) random

Here,o(t) € M for all ¢, or simplyo, is called the switching switching probability has the dynamics

sequence; andd; € R"*", i € M, are the subsystem
(dynamics) matrices. Starting from the initial stat@) = = x(t+1)=At)x(t), t=0,1,.... 2)
and under the switching sequentgethe trajectory of the SLS ) i )
is denoted byz(t; z, o). Here, at each time, A(¢) is drawn independently randomly

In this paper, unless otherwise statdd|| denotes both the oM {Ai}iem with the probability P{A(l) = Ai} = pi.
Euclidean norm oiR” and its induced matrix norm ar™x™. Denote byx(t; z, p) the stochastic trajectory of the system (2)
Definition 1: The SLS (1) is called from a deterministic initial state(0) = z, and denote byP

andE the probability and expectation operators, respectively.
Definition 2: The SLS (2) under the random switching
probability p is called

« mean square exponentially stalflgith the parameters
z(t; 2, 0)|| < wrt||2]], for all t = 0,1, ... andr) if there existx > 0 andr € [0, 1) such that for any

n . 2 t 2 _

. exponentially stable under optimal switchirggith the  * €K 'E[”X(t"z’p_)H | < wrt|lz]% forall t = 0,1,
parameters: andr) if there exists > 1 andr € [0,1) Similarly, the SLS (2) is callednean square asymptotically
such that starting from any initial state there exists a Stableif E[|x(t; z, p)||°] — 0 ast — oo for all = € R", and
switching sequence for which the trajectoryz(t; z,0) almost sure asymptotically stabieP {lim; ... [|(t; 2, p)|| =
satisfies||z(t; z, 0)|| < wrt||z||, forall t = 0,1, .. .. 0} =1 for all z € R™. From results omandom jumped linear

As for linear systems, we can also define stability (in theYStem$36, Theorem 4.1.1], mean square asymptotic stability

sense of Lyapunov) and asymptotic stability of SLSs und8Pd mean square exponential stability of the SLS (2) are
arbitrary (resp. optimal) switching. By homogeneity, Ibaad equ_alent; and each of them implies almost sure asymptotic
global stability notions are equivalent for SLSs. Moreove?tab'“ty' We shall focus on mean square exponential stabil

the asymptotic stability and the exponential stability &fSS

under arbitrary switching are equivalent [6], [34], [35].eW Ill. STRONG GENERATING FUNCTIONS

show next that this is also the case under optimal switching. Central to the stability analysis of SLSs is the task of
Theorem 1:Under optimal switching, the asymptotic stabil-determining the exponential rate at whith(¢; z, o)|| grows

ity and the exponential stability of the SLS (1) are equintile ast — oo for trajectoriesc(t; z, o) of the SLSs. The following

Proof: It suffices to show that asymptotic stability impliedemma, adopted from [37, Corollary 1.1.10], hints at an

exponential stability. Assume that the SLS (1) is asymptatdirect way of characterizing this growth rate.

ically stable under optimal switching. Then, for any iritia Lemma 1:Given a scalar sequendeu; };—o.1...., SUppose

statez on the unit spher&™~! := {z € R"||z|| = 1}, the power seried_;°,w:\* has the radius of convergente

there is a switching sequenee such thatz(¢;z,0.) — 0 Then for anyr > %, there exists a constaidt, such that

ast — oo; hence|z(T.;z,0.)| < % for atimeT. large |wi| < C,rf forallt=0,1,....

enough. Asz(T.;z,0,) is continuous inz for fixed o, and As a result, for any trajectory(¢; z,0), an (asymptotically)

T., |2(T:;y,0:)| < 4 for y in a neighborhood/. of » tight bound on the exponential growth rate|ef(t; 2, )|/ as

in S"~!. The union of all suchU, is an open cover of t — oo is given by the reciprocal of the radius of convergence

the compact sef"~!; henceS"~! C U{_,U., for some of the power seried ;" A!|z(t; z, o).

« exponentially stable under arbitrary switchir{ith the
parameters: andr) if there exists > 0 andr € [0,1)
such that starting from any initial stateand under any
switching sequence, the trajectoryz(t; z, o) satisfies
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Motivated by this, we define th&trong generating function from sub-additivity aS\/G)\(ozlzl + anze) < \/GA(ozlzl) +
G(,"): Ry x R® - R, U{cc} of the SLS (1) as VG (a2z2) = a1y/Ga(21) + a2y/Ga(22), for any zy, z9 €
00 R™ and oy, as > 0 with aq + a9 = 1.
G\ 2) = supZ)\fHI(t;Z,g)H?, YA >0, zeR", (3) 4. This follows directly from Properties 1 and 2.

Gi— 5. Assume) is such thatGy(z) < oo, Vz € R™. Write
where the supremum is taken over all switching sequences2" arbitraryz € annm aQStandard_ basige; } of R" asz =
For a fixedz, G(-, z) is nondecreasing i > 0. Indeed, due 2i=1 % ©i» where;izl o; = 1. In light of sub-additivity, we
to the supremum in (3)3(-, z) can be viewed intuitively as NaVe Ga(2) < [37, /Gaaiei)]* < n3 i, afGa(e:) <
the power series in corresponding to the “most divergent’¢: Wherec := n - maxi <<, G(e;) < oo by our assumption
trajectories of the SLS starting from Thus, by Lemma 1, its ©N A- By homogeneity, we havé/s(z) < cl|z]|?, ¥z € R™.

radius of convergence defined by 6. We simply note that any trajectomyt; z, o) of the SLS
satisfies||z(t; z, 0)||? < (max;en || Ai]|%)E]| 2|2, Vt. [ |
A" (2) == sup{A > 0| G(A, z) < oo} (4)  From Proposition 1¢, is a subspace dk" that decreases

ateh monotonically fromGy, = R™ at A = 0 to G, := Nx>0Gx as
A — oo, Let Ap < Ay < -+ < Mg for some integed < n
be the exact values of at which G, shrinks. Then the set
of all distinct G, forms a filtration of subspaces ®" as:
Go=0G,- 20+ =G,- 20+ = =G,- 2G,+ = G
GA(Z) = G()\,Z), vz e R™ (5) where g;— 221 limkp\zj g)\j 5nd g)\_+ = dlim)\ujdgkj for

. J J . . .

By definition (3), GA(:) is nonnegative and homogeneous gpachj. Since each subspagt;; (or gAj) is invariant under
degree two, Wit (z) = ||z||2. SinceG,(+) is nondecreasing {4i}icam, the SLS (1) restricted on it defines a sub-SLS.
in \, we haveG, (z) > ||z]|?, Vz, for A > 0. We will also refer Intuitively, the restricted SLS ol is “the most exponen-

to G\(z) as the strong generating function of the SLS (1). tially stable” as its trajectories have the slowest exptiaén
growth rate. On bigger subspaces, the restricted SLSs will
be “less exponentially stable” as they contain faster gngwi

: ) trajectories. Equivalently, a suitable change of cooridisnaan

We first prove some useful properties of the funciin(z).  simultaneously transfornj4;};cr¢ into the same row block

is expected to characterize the fastest exponential gr
of the SLS trajectories starting from. We call A*(z) the
radius of strong convergenas the SLS atz,

For each fixed\ > 0, G(\, z) is a function ofz only:

A. Properties of Generalry (z)

Proposition 1: G (z) has the following properties: upper echelon form, with their last row blocks correspogdin
1. (Bellman Equation): Let\ > 0 be arbitrary. Then to the restricted SLS org..; their last two row blocks
G (2) = ||2]|* + X - max;e pm Ga(A;2), V2 € R™. corresponding to the restricted SLS 6R,_, and so on.

2. (Sub-Additivity): Let A > 0 be arbitrary. Then From the above discussion, the radius of strong convergence
VGa(z1 + 22) < \/Ga(21)+1/Ga(22), V21,22 ER". A*(2) at 2z € R” can have at mosi + 1 < n distinct values:
3. (Convexity): For eachh > 0, bothG,(z) and \/Gx(z) {A1,...,Aq,00}. In particular, if the SLS isirreducible,

are convex functions of on R™. namely, it has no nontrivial invariant subspaces other than

4. (Invariant Subspace): For eaéh> 0, the setG, := R™ and{0} (which occurs with probability one for randomly
{z € R"|Gx(2) < oo} is a subspace dR" invariant generated SLSs), thed = 1, and G\ (z) is either finite
under{A4;}icm, i-€., A;Gy C Gy forall i € M. everywhere or infinite everywhere for any> 0.

5. For each\ > 0, Gi(z) < oo for all z € R™ implies that ~ Remark 2:In the Multiplicative Ergodic Theorem for non-
Ga(z) < c||z||* for all z € R™ for some finite constant  switched dynamical systemé;-log /A1, ..., — log v/ g, 00}

6. For0 < A\ < (max;en || 4:|?) 7, Ga(2) < o0, Vz. are called the Lyapunov exponents of the systems [22].

Proof: 1. Note thatG,(-) is the value function of Example 1:Consider a SLS ofR* with two subsystems:
an infinite horizon optimal control problem maximizing the 7 5 5 4
functional >5° ) A*||2(t; 2, o) ||>. Property 1 is a direct conse- Ay = [_65 zﬁ} , Ag= {ﬁ 3] : (6)
quence of the dynamic programming principle. 6 6 3.3
2. For a fixed\ > 0, sincex(t; z,0) is linear inz, we have Starting from any initialz = (21, 22)7, let z(¢;z,01) and
x(t; z,09) be the state trajectories under the switching se-

Ga(z1 + 22) = SUPE :/\t”aj(t;zhg) + z(t; 22, 0)||? quencess; = (1,1,...) andoy = (2,2,...), respectively.
° 20 Then it can be proved (though by no mean trivially) that ~)
% is max;—1,2 > ;o0 Al|z(t; 2, 04)[|?, or more explicitly,
< Gx(z1) 4+ 2sup E M|zt 21, 0)|| |z(t; 22, 0)|| + Ga(z2) ) ,
o = max { Qeitze)” | (21 —22)
£=0 2(9—N) 2(1—4\) °
n 2 2
< Ga(z1) + 24/Ga(21)V Ga(2z2) + Ga(22), V21,22 € R™. (;(1&2?) T 9(QZ(191zA2)) }’ if 0< )< %

The Cauchy-Schwartz inequality is used in the last step. (;(11112}; o peem0y 00 1o popzoy, If <A< L
Taking the square root yields the desired conclusion. T

3. For a fixed\ > 0, G (2) is convex inz as by (3) it is the &0 -4
pointwise supremum of a family of convex (indeed, quadyati¢iere, 1., .,—o; denotes the indicator function for the set
functions ofz indexed byo. The convexity of,/G(z) follows  {(z1,22) € R?|z + 2o = 0}. Similarly for 1g,, ., 0}
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Thus, G, is R? for 0 < A\ < L; the 1D subspac® := have its strong generating function to ¢\ /r2, z); hence, its

{(o, —)" | € R} for 1 < A < 1; and {0} for A > 1. radius of strong convergenceni$\* > 1. By Theorem 2, the
Each of these is an invariant subspaceR3f for {A4;, A>}. scaled SLS is exponentially stable under arbitrary switghi
For example,V is a common eigenspace of; and As. In  In particular, all its trajectories(¢; z, o) satisfy||Z(t; z, 0)|| <
fact, A; and A, commute and can be simultaneously diagos. | z||, V¢, for somes, > 0. For all trajectoriese(t; z, o) of
nalized asQ'4,Q =diag(3,2) and Q '4,Q =diag(3,3) the original SLS, since(t;z,0) = r~'z(t;z,0), we must
by @ = [ /4 (/9 "Under the transformation b,  have|a(t: =, o)|| = r*||i(t;,0)]| < rr*||2]], vi. The second
V becomes the vertical axis. See also [38] for results on tf8Nclusion is a direct consequence of Theorem 2.
nice reachability of such SLSs. In ot_her vv_ords, the maX|murrlexponent|aI growth rate of all
the trajectories of the SLS {g\*)~'/2. Later on in Theorem 3,
we will study how to infer the constant. from G (z).
Remark 3:For the SLS (1), thgoint spectral radius[17],
We next define a quantity that characterizes the stability 9]‘8] of the subsystem dynamics matrices; };c 14 is defined

B. Radius of Strong Convergence

the SLS under arbitrary switching. by p* = limp_oo SUP{IIAZ-I "'Aik”l/k, i1y, ik € /\/l};
Definition 3: The radius of strong convergence of th@nd thelyapunov exponertf the corresponding linear differ-

SLS (1), denoted bn* € (0, oc], is defined as ence inclusion isy* := sup,, , .o limsup,_, o, 11n(|z(t; 2, 0)||
A" = sup {/\ > 0|Gr(2) < 00, ¥z € R"). (see [15]). These two quantities also characterize the mmexi

- _ exponential growth rate of the SLS trajectories, and aedl
By Property 5 of Proposition 1y* can also be defined @ = to \* by: (A*)~1/2 = p* = ¢*". In this sense, Corollary 1 is
sup{A > 0|Ga(2) < c|#]*, V= € R", for some finitec}. equivalent to [17, Prop. 1.4] and to [18, Prop. 4.17].
By Property 6,\* > (max;eaq [|4i]?)~! > 0. It is possible
that \* = oo. This is the case, for example, if all solutionss smoothness of Finitg) ()

x(t; z, o) of the SLS converge to the origin within a finite time o . . .
uniformly in z ando. For the SLS in Example 1)* = 1 When X is in the range of0, A"), the function, () is

5 - -
The following theorem shows that the radius of strong corf1'pIte everywhere. We shall focus on such fin@@&(z), and

. _ - - establish some smoothness properties of them in this sectio
vergence is sufficient for determining the exponentialifitgb We first introduce a few notions. A functiofi: R* — R
of the SLS (1) under arbitrary switching. ' ;

Theorem 2:The following statements are equivalent: is called directionally differentiableat zo € R™ if its (one

) i .. sided) directional derivative at, along any directiony € R"™
1) The SLS (1) is exponentially stable under arbltraraeﬁned asf'(z0;v) := limy o f(z0+7'17)—)—f(zo) exists. If f is

switching.

both directionally differentiable aty; and locally Lipschitz
2) lts radius of strong convergengé > 1. y 2 y Up

. ) L continuous in a neighborhood 6§, it is called B(ouligand)-
3) The strong %eneratlng function at= 1, G1(z), is finite differentiableat zy. Finally, f is semismootfat z if it is B-
for all z € R™. ) differentiable in a neighborhood ef, and the following limit
Proof: To show1) = 2), suppose there exist constant§,qqs: jim. ... L (zz=20=f"(z0iz=20)| _ 5.
k>1andr € [0,1) such that|z(t; z,0)|| < krt|z]|, Vt, for £ 70 l==zo]

all trajectoryz(t; z, o) of the SLS. Then for anp\ < 72, Proposition 2: For A € [0, A%), both G\(z) and \/Gx(z)
~ are convex, locally Lipschitz continuous, and semismoath o
G (2) = su A|z(t: 2, 0)||2 R™. Moreover,/G(z) is globally Lipschitz continuous.
A(2) ap; Jat )l Proof: The convexity ofGx(z) and \/Gx(z) has been

oo 12 proved in Proposition 1. Being convex, they must also be
< Z/\thrthzHQ =3 |z||* < oo, ¥z € R".  semismooth according to [39, Prop. 7.4.5]. Finally, using t
t=0 AT sub-additivity in Proposition 1, we obtainz, Az € R",

It follows that A* > r~2 > 1. The implication2) = 3) —/GA(=A2) < /Ga(z + Az2) — /Ga(2) < VGA(A2).
follows directly from the definition ofA*. Finally, to show il Bl

3) = 1), sUpPos&s; (z) < oo, Vz. By Proposition 1 () < Thus,|/Ga(z + A2)—/Ga(2)| < /Ga(£Az) < /e[| Az]|

c||z||2, Vz, for some finite constant Thus, for any trajectory for some finite constantas < \*, i.e., /G x(z) is globally

z(t;z,0) of the SLS, > i, |lz(t;2,0)[|> < c|2||?. This Lipschitz continuous o™ with the Lipschitz constan{/c.

implies that||z(¢; z, 0)|| < v/c||z|, V¢; and thatz(t; z,0) — 0 As a result,\/Gx(z), henceG(z), is also locally Lipschitz

ast — oo. Consequently, the SLS is asymptotically stablgontinuous oriR™. u

hence exponentially stable [6], under arbitrary switching Note that forA > \*, G\(z) can not be continuous dR".
Theorem 2 implies the following stronger conclusions. Indeed, in this casei\(z0) = oo at somez, € R". Thus as
Corollary 1: Given a SLS with a radius of strong conver& — oo, the sequencé2 — 0, but G (32) — oo # 0.

gence\*, for anyr > (\*)~1/2, there exists a constanf such

that ||z(¢; z,0)|| < k.rt||z]], Vt, for all trajectoriesz(t; z,0) D. Quadratic Bounds of Finit&ry (z)

of the SLS. Furthermore{)\*)_l/z is also the smallest value For )\ ¢ [07 )\*)’ G)\(Z) is finite everywhere, hence quadrat-

for the previous statement to hold. ically bounded by Proposition 1. Define
Proof: Supposer > (\*)~'/2. The scaled SLS with

subsystem dynamics matricds!;/r}:crq is easily seen to gx = sup{Gr(2) | [|z[| = 1}, A €[0,A%). (")
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By homogeneityy, can be equivalently defined as the smallest

constantc such thatG,(z) < ¢[|z||?, Vz € R™.

It is easy to see thaj, is finite and strictly increasing on
[0,\*) (we exclude the trivial case where all; are zero),
with go = 1. We next prove an affine lower bound bfg,.

Lemma 2: - > 1—\-maxjen [|[Ai]|*, VA € [0, A"). Thus,

A 1
> , 8
1—1/gx — max;enm || 4] (8)

Proof: Let A\ € [0,A\*). For an arbitrary trajectory
a(t; z,0) of the SLS,[lz(t; z,0) || < (maxien || Ail[)"[|2]?
for all . Therefore, for) < \ < (max;en || 4i]]%) 71,

> 1
ZA‘EHHC(M%U)H2 <
t=0

VA € (0, A%).

2
Vo.
T maxen A2 I 70

By definition, we havey, < (1—X-max;ea ||4;]?) 71, which
is the desired conclusion fdr < A < (max;en [|4i]|?) 1.

When (max;e n | Ai]|?) 71 < A < A%, the desired conclusion

is trivial: = >0 > 1 — X - max;en || Ai

AT - . .
The foﬂowmg auxiliary result on general power series |§

proved in Appendix A.

Lemma 3:Let {w;}=0,1,.. be a sequence of nonnegativ

scalars such that for somg > 0 and g > 1,

Zwt+5/\t0§ﬁws, s=0,1,.... (9)
t=0

Then the power seriey ,”  w:\’ has its radius of conver-
gence at leask; := \g/(1 — 1/3). Moreover,

= Bwo
D T B VIFY PRy

Using Lemma 3, we obtain the following estimate of
Proposition 3: The function\/(1—1/g,) is nondecreasing
for A € (0, \*), and is upper bounded by

A

1—1/gx

Proof: Consider a fixed\; € (0, \*). Letz(¢; z,0) be an

arbitrary trajectory of the SLS. For each=0,1,..., by the

definition of g,,, the trajectoryz(t + s;2,0), t = 0,1, ..., of
the SLS starting from the initial state(s; z, o) satisfies

< oo, VA€ [/\0,)\1).

<N, YA€ (0,0%). (10)

D Azt + 512,0)17 < Gag (a(s52,0)) < gaoll2(s; 2, 0) 1.
t=0

Hence, the sequendey;, := ||z(t; 2,0)|*}1=0.1,... Satisfies the
condition (9) withg = g,,. By Lemma 3, we have

;xux(t;z,o)ll ST (g D= 1)

for A € [Ao, A1), where Ay = Xo/(1 — 1/g»,). As the
trajectoryz(t; z, o) is arbitrary, we conclude that
9o
(9r0 = D(A Ao —1)
This impliesA* > )\, i.e., the desired conclusion (10); and
Ixo A Ao
PET (g DM -1 T 1o = 11,

9o

217,

1z]|? < o0, VA € [Ao, A1).

G)\(Z) < -

1

// \ \\
1= A maxjen |42\
AY
0 M(1-1/g1) X A
Fig. 1. Plot of the functionl/gy (in solid line).

for A € [Ao, A1). Since)o € (0, A*) is arbitrary and\; > X,
this proves the monotonicity of/(1 — 1/g») on (0, A*). H

In Appendix B, the following generic properties of the
functionsg, and1/g, are proved.

Proposition 4: The function 1/g, is strictly decreasing,
emismooth, and Lipschitz continuous with Lipschitz con-

Stant max;e a | 4;]|> on [0,\*). Moreover,1/gy — 0 as

A T A*. Correspondinglyg, is strictly increasing, convex,
semismooth, and locally Lipschitz continuous [On)\*), with
grx — 00 asA T A%,

Remark 4:Since g, — oo as A T A, the generating
function G- (z) must have infinite value at some € R",
according to Property 5 of Proposition 1. This implies that,
as \ increases\* is precisely the first value at whiof ()
starts to have infinite values.

Fig. 1 plots the graph of a generit/g, as a function
of A € [0,)\*). According to (8) and (10), the graph of
1/g» is sandwiched between those of two affine functions:
1—\ max;enp || A;||? from the left andl—\/\* from the right.

In addition, by Proposition 3, the ray (middle dashed line)
emitting from the point0,1) and passing througb\, 1/g,)
intersects the\-axis at the point(ﬁ,o) that moves
monotonically to the right towardé\*,0) as A increases in
[0,\*), i.e., the ray rotates around its starting poiit0)
counterclockwise monotonically. It is conjectured thae th
function1/g, is indeed convex off), \*) for any SLS.

It is easy to show that the directional derivativegafat A =
0 is g4 (04) = max;ea || Ai||>. Hence the directional deriva-
tive of 1 /gy atA = 0is: (1/g2) (0+) = — max;ea || A% In
Fig. 1, this means that the graph bfg, is tangential to the
leftmost dashed ray emitting frot, 1).

E. Norms Induced by Finité:,(z)

As an immediate result of Proposition 1, fare [0, \*),
Ga(z) is finite, sub-additive, and homogeneous of degree
one; thus it defines a norm on the vector sp&ée

1zllas = VG (2),

As )\ increases, the nornj - ||¢, increases, hence its unit
ball shrinks. See Fig. 2 for the plots of such unit balls far th
SLS (6) in Example 1. The vector norjii| ¢, induces a matrix
normforA € R™*" by: || Aflg, = sup..o{llAz]lc,/l1z]le}-

Vz € R™. (11)
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-1 -08 06 -04 -02 [ 0.2 04 0.6 0.8 1

Fig. 2. Unit balls of| - ||, for the SLS (6).

For A € [0, A*), define the constant:

dy := sup maXHA Z”G)\ = sup maXGA(A z).  (12)

Izl =1 ¢EM flzll=1"

Lemma 4:For each) € [0, \*), the norm|| - ||, satisfies:

max | Aillgy = vda/(1+ Ady).

Proof: Using the Bellman equation, we write

x| Ay 2 s G (Aiz) . max;e mG(4iz)
max||4; = max sup ————~ = su
ieM! HOTEM 1D 1D Gaz) a=a Ga(2)
— s max;e pm Ga(4;2)
” =1 14+ A maxX;e m G)\(A Z)
SUp||z||=1 MaXje M G (Azz) . dx

- 1+ A supj, = maxiem Ga(Aiz) 1T+ Xdy

Note that the second last step follows ag(l + A\z) is
continuous and increasing in€ R, for any A > 0. ]

The above results yields bounds on both the exponentmbreover for\ ¢

growth rate of the SLS trajectories and as follows.
Corollary 2: Suppose\ € [0, \*). Then

d /2
t; < —_— t=20,1,...
etz < Var (g ) el t=0.0,0.

NS A+ di, VA € [0, 1), (13)

A
Proof: We note that||z|| < ||z|la, < voxrllzll, ¥z € R™,
i.e., the norm| - ||, is equivalent to the Euclidean norjn |.
For any trajectoryz(t; z, o) of the SLS, we then have

lz(t; 2, 0)|| < [|2(t; 2,0)lay = [[Ao—1) - Ac0)2llG
< As-plles - Acollas - I2llay, Yt

Applying Lemma 4 and noting thatz||q, < \/gx||z|, we
obtain the first conclusion. This in turn implies that >
(14 Ada)/dx, which is the desired conclusion (13). =
As )\ T \*, by (13), we must havé, — oo; henced, /(1 +
Ady) — 1/A*. The following then holds.
Theorem 3:For anye > 0, there exists a\ € (0,\*)
sufficiently close toA* such that

lo(t; 2, )l < Vax(ra)'llzll, t=0,1,...,

for all trajectoriesc(¢; z,0) of the SLS (1), where

d)\ 1/2 /
— AT < )\* —1/2 .
A (1+/\d)\> - ( ) te

Remark 5:0nce G,(z) is computed at any\ € [0, \*),
(13) gives a lower bound ok*. An upper bound ofA* can
be derived by using a result in [27, Lemma 3.3] as

A< {mf max M]

27#0 ieM Gk() (14)

This upper bound, together with the lower bound in (13), giive
an interval for the possible values af. As A T A*, it can be
shown that the two bounds converge towards each other; and
the corresponding nortfh - ||, approaches asymptotically a
Barabanov norn{23], [27] of {A;}ic -

F. Algorithms for Computing~(z)

We next present some algorithms for computing the finite
strong generating functions. The idea is that(z) as the
value function of an infinite horizon optimal control protvie
can be approximated by those of a sequence of finite horizon
problems. Specifically, for each= 0,1, ..., define

k
G5 (2) = maxZ/\tH:v(t;z,U)HQ, Vz € R™.
t=0

(15)

Maximum is used here instead of supremum as only the first
k steps ofo affect the summation.

Proposition 5: For anyA > 0 andk = 0,1,...,
a convex function of: on R" satisfying

GR(2) < G(2) S GR(2) <

Gh(2) is

- < Ga(z), Yz e R"™.

[0,\*), G5(z) ask — oo converges
exponentially fast ta7(z): Vk =0,1,.. .,

GA(2) = GA(2)] < ga(1 = 1/g)* |2, V2 € R™

Proof: The convexity proof is identical to that of Propo-

holds for all trajectories of the SLS (1). As a result, we haydltion 1, hence omitted. FiXx > 0 andz € R", and letoy, be

a switching sequence achieving the maximum in (15). Then,
k+1

k
= Nlz(t; 2,0 H2<Z/\t|\xt
t=0

Similarly, we can showG%(z) < Gi(z), hence the mono-
tonicity. When\ € [0, \*), Gi(z) is finite for eachz € R™.
Let #(t) := «(t;z,0) be a trajectory under an optimal
switching sequence that achieves the supremum in (3), i.e.,

on) [P <G5 (2).

Ga(2) = Doy A12()||%. By the Bellman equation,

- . . Gr(z(k -1
Ga (ol = 1) -2+ Ga(a(0) = ok - D> 2EEZD),
fork =1,2,..., where the last step follows from the definition

of g. Rearranging and by induction, we obtain

Ga(&(k)) < AN = 1/g0) Ga(2(k — 1)) <
<SATF1 =1/ Ga(z) < X Fga(1 = 1/g2)" |2,
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Algorithm 1 ComputingG(z) on Grid Points ofS™~! osf
Let S = {z;}/L, be a set of grid points a8"~';
Initialize k = 0, andGY(z,) = 1 for all z; € S; I
repeat

k—k+1; T
for eachz; € S do T
for eachi € M do
Find a minimal subse$;; of S whose elements span e

a convex cone containing;z;; o8

0 H 4 .
ExpressA;zj as}_, cs,. ai;jze With aj; > 0;

Setgij = ZZ(GSi]‘ Oéqu/Glf\*l(Zg);
end for
SetGh(z;) = 1+ X - max;e m gfj;
end for
until  is large enough
return G%(z;) forall z; € S

02

Fig. 3. Top: Unit balls of|| - ||g, for the SLS in Example 2 ah =
0.1,0.2,0.3,0.37,0.38 (inward). Bottom: Plot ofL/g.
for k =0,1,.... The optimality ofz(¢) then implies that

- N - . . Using the Bellman equation in Proposition 1, we then have
t 2 _ \k t 2 _ \k e
;A l2®I = A ;A 2+ RIF =X GAEE) G > 11N maxien GE 1 (Aiz;) = GA(z,). Thus, the
= - conclusion also holds fok. This completes the proof. =
kL2
S =1/g)%=]°, VE=0,1,.... Combining Proposition 6 and Theorem 2, we have the
Conseguentl > k() > S D2 = @ _ following stability tesp. N
) qlitH;((t;)ﬂgzl_C;A&()zz ;A%l:tjol/glﬁ’(“gl”|\z||2. 39 Corollaw 3: A sufficient coqd|t|on fqr th_e S_LS (1) to be
}rﬂk(;riefore G’;(z)_for k large enough provide approxima-e?(ponﬁgt'a”y stable under arbitrary switching is that thep-
tions of G\ (z) within arbitrary precision. A recursive proce—IOIngS Gi: & =Ry, k=0,1,..., obtained by Algorithm 1

NS i ) are uniformly bounded.
dure to compute the functiors (=) is as follows: By repeatedly applying Algorithm 1 to a sequence Jof

GS(2) = ||Iz|1? whose values increase according X@ext = A/(1 — 1/gx)
kooy _ 2 ) k=1, 4 . or by (13), increasingly accurate underestimatesa’otan be
GX(2) = [I=17 + A fent Gy (Aiz), k=1.2,.... (16) obtained. In view of Section IlI-E, this procedure is somatvh

To implement the recursion numerically, one first represertmilar to the norm iteration proposed in [27], although the
eachG*~1(z) by its values on some fine grid points of the unitterations in .[27] are performed through a max—relgxatlon
sphere, and then carries out the recursion (16) by estigiatffheme and in this paper through the Bellman equation.
conservatively the values of¥~!(4,z) at thoseA;z not ~ AS A approaches\”, however, the computation time of
aligned with the direction of any grid point, using convgxitAlgor'thm 1 will get exponentially longer for two reasons.

: . . First, th @ (2) to G i h sl b
and homogeneity of the funcuov/G’i*@). The above idea Irst, the convergence df}(z) to Giy(2) is much slower by

. ; ) . v _— .~ Proposition 5. Second, errors 6#;(z) over-approximating
is summarized in Algorithm 1. Similar ray gridding technégu Gk (2) will accumulate quickly in time. Thus, a denser grid
have also been used in the previous studies [40], [41]. A

lqorith ¢ ) iy and more iterations are generally needed to ensure a given ac
Algorithm 1 returns a sequence of mappirtes: S — R, curacy. This is not surprising given that the problem of fimgdi

k=0,1,. whereS is a set ofkgrld points of the unit sphere., . (or the JSR) is known to be NP-hard [24]. Hence the com-
They provide UppirboundSA?A(Z) on S as follows. plexity of Algorithm 1, like other approximation algorittsn
Proposition 6: GX(z;) < GX(2)), Vzj € S, ¥k = 0,1,... il grow exponentially with respect to the state dimensiorn
. PrOOf:AgNe prove by induction. Atk = 0, we have he required accuracy. Some recently developed algorithms
G (zj) = GX(zj) = 1 forall z; € S. Suppose the conclusionggtimating the JSR (e.g., [29]) have the desirable featéire o
is true for0,1,...,k — 1. For anyz; € S, let S;; andey; be  providing prescribed performance guarantee of the condpute
as given in Algorithm 1. The:5 (z;) = 1+ X-maxicam 97, estimates. Besides (13) and (14), we are currently working o

where by the induction hypothesis and sub-additivity, developing further performance assurance for Algorithm 1.
gii = Y al/GY ) = D Gz G. Examples
20E€Sij 20 €S

Example 2: The following example is taken from [25]:

2\/@;—1( S afa) = ok (A). Al_F 1}’ A2_[1 0]

ZeESi,j 0 1 1 1 ’
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arbitrary norm onR™. Define a generalized strong generating
function asG» 4(z) == supz Mz(t; z,0)||7. Wheng = 2

and| - || is the Euclidean tnoormGk,q(z) reduces toG) (z)
defined in (3). The function&, ,(z) retains most of the
properties ofG(z) in Proposition 1. For instance, for any
A >0, [Gy4(2)]*/7 is subadditive, positively homogeneous,
and convex inz; it is further finite, globally Lipschitz contin-
uous, and semismooth wheneveis smaller than

A" = sup{A > 0| G 4(2) < o0, Vz € R"}.

We call A%* the radius of strong convergence corresponding
to G\ 4(2), and note that its definition does not depend on the
choice of the nornj| - ||. Similar to Theorem 2, we can show
that the SLS is exponentially stable under arbitrary sviitgh

if and only if A2* > 1. Indeed, \?* is related toA* and the
JSRp* as: (A\*)19 = (\)1/2 = (p*)~1, for all q.

Although different choices of and|| - || lead to equivalent
stability tests, the numerical robustness of such testsvagy
Noting that any nonnegative sequenge,};—o,1,... satisfies
Sro(w) < (072 (wn)?)", we have st > (A1),
VYq,r = 1,2,.... For a barely exponentially stable SLS with
14 a convergence radius>* only slightly above 1, by choosing

r > 1, the new radius\>"* > (\>*)" has a larger gap with 1;

F;g-/4- Top: Unit ball of|| - ||, for the SLS in Example 3. Bottom: Plot hence it may lead to a more robust stability test.
of 1/gx.

1/g}

IV. WEAK GENERATING FUNCTIONS
Algorithm 1 is used to compute the functions (z) of this A Definition and Properties
SLS for different values (_)I\: )\ =0.1, 0.2, 0.3, 0.37, and 0.38. The weak generating functiofl : R, x R™ — R, U {oo}
The results are shown in Fig. 3, where the top and bottor? . .
) . . of the SLS (1) is defined as
figures plot respectively the unit balls of the nofm||¢, and
the graph of the functiori/g,. From the plot, the graph of . e . 9 n
1/gx is very close to a straight line. Thus, by computing H(A z) = 1ngA z(t;z,0)[7, VYAZ=0, z€R", (17)
at two different\ and extrapolating, one can obtain an accurate o =0 ) o
estimate of\*. This gives some justification to the fact that thavhere the infimum is over all switching sequencesf the
joint spectral radius in this case is available analytjcglig]: SLS. ThenH(), z) is monotonically increasing in\, with

P = 1+2_\/5 ThusA* = 1/(p*)? =~ 0.3820. H(0,2) = ||z||> when\ = 0. The threshold
Example 3:Consider the following SLS ifR3: Ae(2) = sup{A > 0| H(\, 2) < oo}
[0.5 0 —0.7] 05 0 0 . .
A —=l0o 03 0 A, — lo4 02 03 is called theradius of weak convergencd the SLS atz. For
b 0 —04 —o6l T 0 o o3l each fixed\ > 0, write H\(z) := H(), z), ¥z € R". Then
- ' = ' H, () is homogeneous of degree two, with(-) = || - ||°.
0 -1 0 Some properties of the functiol ), (z) are listed below. It
Az = 0(')92 8; 0(')35 : is noted that many properties (e.g. convexity) of the strong

generating functiorG,(z) are not valid forH,(z).
Overestimates of the functiai, (») are computed by applying  Proposition 7: Hy(z) has the following properties.
Algorithm 1 on 752 grid points of the unit sphere. The unit 1. (Bellman Equation): Let\ > 0 be arbitrary. Then

ball corresponding to the estimated nogfG; (z) is shown at Hx(2) = ||2]|> + X - mingep Ha(A;2), V2 € R™.
the top of Fig. 4; the bottom figure depicts the compuitégh 2. (Invariant Subset): For each> 0, the setH) := {z €
for A =0.2,0.4, 0.6,0.8, 1, and 1.1. Singg at A = 1.1 is R"| Hy(z) = oo} is a subset ofR™ invariant under

finite, A* > 1.1, hence the given SLS is exponentially stable {Ai}Yiem, i€, AiHy C H,, for all i € M.
under arbitrary switching. An extrapolation of the functio 3. For0 < A\ < (min;en [|A]?) 71, Ha(z) < cl|2||? for
1/gx provides an estimate of* at aroundl.1064. some finite constant > 1.
Proof: Property 1 is proved by applying the dynamic
H. Generalized Strong Generating Functions programming principle to the optimal control problem of imin
The definition of strong generating functions can be genenizing >_,° ) \'||z(t; z, o)||2. Property 2 follows directly from
alized. Letg be a positive integer, and I8t || now denote an Property 1. For Property 3, by choosiag := (io, o, i0, - - .)
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2

with no switching wherei, =argminea|4;:]|, we have proof of Theorem 2, we must havé, (z) < 2 ||z||% Vz,

= 1-X\r2
llz(t; z,00)||? < (minjen ||A:]|?)|2]|?, Vt. Therefore, for for A < r~2; hencel, > r~2 > 1. To show sufficiency,
0 < X < (minjenq ||Ai]]%)71, suppose\, > 1. Then at\ = 1, Hi(z) is finite for all z. By

1 Proposition 8, this implies that the scaled SLS with sulesyst
- 5 |z||?, matrices{v/AA;};cm, which is also the original SLS (1), is
1= A minge r || Ai| exponentially stable under optimal switching. [ ]
which is finite and bounded by a quadratic function. m Following similar steps as in the proof of Corollary 1, we
Note that?,, unlike G, cannot be a subspace Bf* as it can prove the subsequent result.

Ha(2) <) Ma(t; z,00)* <
t=0

does not contain the origin. Corollary 4: Consider the SLS (1). For any> (\.)~ /2,
there is a constant,. such that starting from each € R",
B. Radius of Weak Convergence lx(t; 2,0.)|| < rKrt|z], Vt, for at least one switching
Definition 4: The radius of weak convergence of th€duencer. Furthermore(\.)~'/2 is the smallest possible
SLS (1), denoted by, € (0, 0], is defined by value for the previous §tatement to be. true.
To sum up, the maximum exponential growth rate over all
As 1= sup{A = 0| Hx(2) < o0, Vz € R"}. initial states of the trajectories of the SLS (1) under opiim

By Proposition 7, we must have, > (min;e g || As]|2) 2. switching is given by p_recisely)\*)*l_/?. Another relat_e_d (but
The value of\. could reachoo if starting from anyz, a generally Iarger) guantity charactgnzmg such a rateagdimt
switching sequence., exists so thate(t; 2, o.) reaches the SPectral subradiuef {A;},c ¢ defined by [17]:
origin within a uniform timeT" < oc. § o Uk _

The next result shows that a functic,(z) finite ev- = lim mf{HAn"'AikH SITRRRIN IS M} (18)
erywhere onR™ must be bounded by a quadratic function.

Thus, A, can also be defined to beip{\ > 0|H,(z) < Difference between these two rates is shown via the follgwin

c||z||?, Vz € R™, for some constant}. SLS (inspired from [42, pp. 1135]) with subsystem matrices:
Proposition 8: For each)\ > 0, the following statements 2 g
are equivalent: A = {g §] . Ay =0QA.QT, As=QAQ7,
2

1) Hi(z) < o0, Yz € R™;
2 n it -
g) ?ﬁ(z) SICUJIZQL,SVZ _EAR ,kf)or some p03|_t|\g/eégznstat whereQ € R2*?2 is the rotation matrix of50° counterclock-
) The scaled with subsystem matrigagAAdilicm  ise. LetC be the symmetric cone consisting of all those
is exponentially stable under optimal switching. x € R? ~ C with phase angle within the range of either
o P_roof:hlt |§ Ob:\gl)lous(;gﬁm)z? 1). We show in the [—30°,30°] or [150°, 210°]. It is easy to check thafA,z| <
ollowing that1) = 3), and3) = 2). [13 _ [13 .
To provel) = 3), assume\ > 0 is such that 1) holds. Then wlel for z € & fAse] < y/55]le] for = € QC; and
for any z € R, there exists a switching sequeneg such || Asz|| < /23|z| for z € Q*C. SinceR? = C U QC U Q*C,
that 3-,° M |lz(t; z,0.)[|> < oc. Consider the scaled SLSa state feedback switching policy can be designed as follows
with subsystem dynamics matricés/\A;};c,, and denote o(r) =1, 2, and 3, for z in C, QC, and QC, respectively
by Z(t;2,0.) = A/%x(t;z,0.) its solution starting fromz  (if = is in more than one set, any tie breaking rule can be
undero.. Since .7 ||Z(t; z,0.)[|? < oo, T(t;2,0.) — 0 _applied). Then starting from any, the resulting closed-loop
ast — oo for eachz. By Remark 1, the scaled SLS IStrajectory satisfie§a(t+1;2,0)[| < /2 - ||«(t; 2, 0)|| for all

exponentially stable under optimal switching. t. Thus, the SLS is exponentially stable under:), and we

To show3) = 2), assume the scaled SLS is exponentialll\q/ 172 P 18 ’ )
stable under optimal switching. Then there exist constants 11ave (A«) < /15 €, A > 3. In comparison, since

0 andr € (0, 1) such that for each, the trajectoryz(t; z,0,) €ach of the subsystem matrices has determinant one, ary finit
of the scaled SLS under at least one switching sequenceProductd, - - 4;, also has determinant one, hence norm at
satisfies||Z(t; 2,0, )||? < wrt||z||%, Vt. As a resultyz, least one. By (18), we must haye> 1, hencej > (\.)~'/2.
This gap can be explained @sdefined by (18) satisfies

- (5 K|z
Hy(z) < Z/\tHx(t;ZvUZ)”z:Z ||$(t;Z,UZ)H2 < 11—’
t=0 t=0

5= li inf 3 A A pl|VE
p kilgoil,...l,rilkeMHZlelH i+ Ay |

which is exactly the conclusi_on of 2) with=x/(1—7r). ® > lim sup inf |4y, - Ay, ]| VE
We next show that the radius of weak convergehcehar- k=00 ||g|=1 150k EM
acterizes the exponential stability of the SLS under ogtima
switching just as\* does for the exponential stability undemwhere the right hand side is exacti\,)~ /2. In other
arbitrary switching. words, the JSSp and the rate(\,)~'/? studied in this
Theorem 4:The SLS (1) is exponentially stable under oppaper characterize the smallest possible worst-case erpon
timal switching if and only ifA, > 1. tial growth rate over all initial states of the SLS trajecto-
Proof: To prove necessity, we observe that for a SL8es achievable bypen-loopswitching policies of the form
exponentially stable under optimal switching with the para (i1, ..., ik, i1,...,%,...) and byclosed-loopswitching poli-
etersk > 0 andr € [0,1), by a similar argument as in thecies with state feedback switching laws, respectively.
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C. Quadratic Bounds of Finité7) (z)

For each) € [0, \,), define the constarit, as the smallest
constantc such thati(z) < c||z||? for all 2:

ha := sup{Hx(z) [ [|z]| = 1}.

Obviously, hy is strictly increasing in\, with hy = 1.

Similar to Proposition 3 forg,, we have the following
estimates ofh,.

Proposition 9: The function\/(1—1/h,) is nondecreasing
for A € (0, \.), and is upper bounded by

_r
1—1/hy
Proof: Let \g

(19)

<A, YAE(0,N). (20)

€ (0,\). For any z € R", let

o, be a switching sequence so that the resulting trajec

tory z(t;z,0.) achieves the infimum in (17)H,,(2)
Yoo Abllz(t; z,0.)||> < oo. By the optimality ofo., for
eachs = 0,1,..., the time shifted trajectory of the SLS,
x(t + s;z,0,), Vt, starting from the initial state:(s; z,0.) is
also optimal:} "2 A||z(t + s; 2,0.)||> = Hx, (2(s; 2, 02)) <

hy, |l (s;2,02)||?. In other words, the sequence defined by

{wy = ||z(t; 2,0,)||? }i=0.1,... satisfies the condition (9) with
08 = hy,. By Lemma 3, we then have

> h
S N la(t: 2, 02| < X0
t=0

T 1= (ha = 1A= X0)/ Ao
for A € [Ao, A1), whereX; := \o/(1 — 1/hy,). Therefore,
hoxo Iz
(haog = D(A = A0)/ Ao

is finite for all z € R™ and A € [Ap, \1). This implies that
A« > A1, which is the desired (20); and that fare [\, A1),
h>\0 A )\O
= > .

hko—l)(x\—/\o)/x\o 1—1/h)\_1—1/h)\0
This proves the monotonicity of/(1 — 1/hy) on (0, A.). W

The following result follows directly from Proposition 9.

Corollary 5: For each\ € [0, M), 1/hy <1—X/).. As a
result,1/hy — 0 andhy — oo as\ T A,.

The directional derivative of, at A = 0 is computed in

Appendix C as follows.
Lemma 5:The directional derivative ok, at 0 exists and

12117,

Hy(z) <Y Xtz 00)* < 1
t=0

hy <
,\_1_(

L hy —
is given byh’ (04) := lim = sup min |[|4;z]%
given by, (0.) := lim —— Sup iy 14|
As a result of Lemma 5,
. A 1 1
lim = = . 5
Mo 1—1/hy  BA\(04)  supj, =y minea [|Aiz||

Since by Proposition 9)/(1 — 1/h)) is nondecreasing it
on (0, A\.), the above limit implies that, fok € (0, \.),

1
SUP|, =1 Minjem [|Aiz||?

AN F -
1= 1/hy = Al0 1 —1/hy

This leads to the following estimate dfy, which is the
counterpart of Lemma 2 fagy.

1
Corollary 6: — > 1—\- sup min || 4;z[|%, YA € [0, \,).
I ||Z||:1i€MH I [0, Ax)

10

s
NG
Sy

Fig. 5. Geometric interpretation of the Lipschitz conssaint Propositions 4
and 10:max;e g || A5 ]2 = 1/7’3 andsup, =1 min;e m |Aiz||? = 1/r2.

0 M= 1/hy)

Fig. 6. Plot of the functionl /A, (in solid line).

Similar to the proof of Proposition 4 in Appendix B, we
can use Proposition 9 and Corollary 6 to prove the following.

Proposition 10: The function1/h, defined on|0, A,) is
strictly decreasing and Lipschitz continuous with Lipszhi
constanbup, , _; mine 1 | 4;z||*. The functionn, is strictly
increasing and locally Lipschitz continuous fig \,.).

Remark 6:The Lipschitz constants of 1/gy in
Proposition 4 and ofl/h, in Proposition 10 are given
assup|. -1 maxjem || Aiz]|* andsupy ., minjen [|Ai2?,
respectively. An overestimate of the latter is given by
minje pm sup) =y [|[Aiz]|> = mingeaq | Ai]|?. For a geometric
interpretation, associate each matrk with an ellipsoid
& = {z € R"|||A;z||> < 1} in R". The intersection of
all such ellipsoids;c A&, is a convex set that can embed
a maximal ball centered & with the radiusr,; whereas
their union U;c & can embed a maximal ball centered
at 0 with the radiusr, (see Fig. 5). Further, let,
max;¢c A {the length of the shortest principal axis &f}.
The two Lipschitz constants and the overestimate can then be
expressed alael%chAiHQ =1/r, ”suE min |Aiz||> = 1/73,

andirgiMn | A||* = 1/72.

A generic plot of the functionl/hy for A € [0,),)
is shown in Fig. 6. The function decreases strictly fram
at A\ = 0to0asA T \. Its graph is sandwiched by
those of two affine functionst — A/A. from the right, and
1 — X - supy, = minie | 4iz[|* from the left. Moreover,
as A increases from0 towards A., the ray emitting from
the point (1,0) and passing through the poift\,1/h))
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rotates counterclockwise monotonically, and intersemgsit
axis at a point whosg-coordinate \/(1 —1/h,), provides an
asymptotically tight underestimate aof..

D. Approximating FiniteH ) (z)

For eachA € [0, \.), the functionH)(z) is finite every-

11

Algorithm 2 Computing Over Approximations o ¥(z).

Initialize k = 0, P§ = {I,}, andP§ = P¢;
repeat

k—k+1;

P; = {I+ ATPA;|ie M, PP |}

Find anc-equivalent subseP: C Ps;
until k is large enough

k, .
where onR”™. We next show that it is the limit of a sequence return H,*(z) = min{z" Pz | P € P}}.

of functions H¥(z), k = 0,1,. .., defined by

k
HEY(2) := minZ)\tHx(t;z,o)HQ, Vz € R".
t=0

(21)

As the value functions of an optimal control problem with

variable finite horizonsH%(z) can be computed recursively
as follows: HY(z) = ||z||?, Vz € R"; and fork = 1,2,. ..,

Using this inequality, and adopting the switching sequehae
first follows oy, for k steps and thereafter follows an infinite-
horizon optimale.. starting fromz(k), we obtain

k [e%)
Hy(z) <> Mz@))2+ > Ma(t — ks 2(k), 0.)|
t=0 t=k+1

= H(2) + \¥ [Ha(a(k)) — [|2(k)[|]

HE(z) = ||z)> + - min HYy Y (Ajz), VzeR™  (22) \ .
© < HJ(2) + (ha = DA"[|2 (k)]
Equivalently, we can write < HY(2) + R3(1 = 1/hy)" Y212
: —
H¥(2) = min{z"Pz: P e Py}, VzeR" 23) This, together withH§ () < H,(z), proves (25). [ |
A(z) = min{z" Pz kb vz (23) By (25), for any X\ € [0,)\.), H¥(2), k = 0,1,..., is a
where P, k = 0,1,..., is a sequence of sets of positive€duence of functions @4, z) converging uniformly taf , (z)

definite matrices defined by?, = {I}; and fork =1,2,..,

Pr={I+ AT PA;|P€Pr_1,ic M}.  (24)

Proposition 11: The sequence of functior$} () is mono-
tonic: H) < H} < H} <--- < H,; and for\ € [0, \,), it
converges exponentially fast #,(z): for k = 0,1, ...,

[H3(2) = Ha(2)] < B3(1 = 1/ha)*F1|2]%, ¥z € R™. (25)

Proof: Fix k£ > 1. For eachz € R", let o, be a switching
sequence achieving the minimum in (21). Theh}(z)
iz Mt 2, 00)[2 = 3020 Mt 2,002 = HY ' (2).
Similarly, we havel{ ¥ (z) < H,(z), proving the monotonicity.

Next assume\ € [0, \,). For anyz € R™ andk =0,1,.. .,
we note that|z||> < HY¥(z) < Hx(z) < hy||z||. Let oy be
such thati(t) := z(t; z, 0k) achieves the minimum in (21).
For eachs = 0,1,...,k — 1, sincei(t) is also optimal over

the time horizont = s, s+ 1,...,k, we have
k—s—1
HY 72 (@(s) = [2(s)|IP+ A Y Ala(t+s+ 1)
t=0

= [|&(s)1? + AHYT" 7! (d(s + 1))
Since ||2(s)||? > HY™*(i(s))/hy, the above implies that
Hy 7 Ha(s +1)) S ATHL = 1/ha) HY *(i(s)).
Applying this inequality fors =k —1,...,0, we have

|2(k)|1? = H3(2(k)) < A1 = 1/ha)Hy(&(k — 1))
< S AR =1/ )R HE(2) < ATRRA(L = 1/hp)R |22

on [0,)] x S"~!. As eachH¥(z) is continuous in(A, 2)
on [0, \g] x S"~1, so is Hy(z). Using homogeneity and the
arbitrariness o\, € [0, A\.), we obtain the following result.

Corollary 7: The functionH,(z) = H(\, z) is continuous
in (A, z) on[0,\,) x R™.

E. Relaxation Algorithm for Computing,(z)

According to (25),H%(z) for large k provide increasingly
accurate estimates df(z). By (23), to characterizéf}(z),
it suffices to compute the sé%,. To deal with the rapidly
increasing size oP;, ask increases, we introduce the follow-
ing complexity reduction technique, inspired by [43], [44]
subsetP;, C P, is callede-equivalento P, for somes > 0 if

HY(2)

min 27 Pz < min 27 Pz +¢| 2%, Vz € R™
PEP; PEPy
A sufficient (though not necessary) condition for this tochol
is that, for eachP € Py, P + I, is bounded from below
by a convex combination of matrices #;, i.e., there exist
constantsag > 0, VQ € Py, adding up to 1 such that
P+el, = ZQGP; ag - Q. This leads to a natural procedure
of removing matrices fronP; iteratively until a minimale-
equivalent subseP;, is achieved. By applying this procedure
at each step of the iteration (24), we obtain Algorithm 2,chhi
returns approximations off¥(z) for all & with uniformly
bounded approximation errors as follows.

Proposition 12: Assumel € [0, \.). Thenfork =0, 1,. ..,

HY(2) < HYS(2) < (1 +€)HE(2), VzeR"  (26)
Proof: Obviously, (26) holds fok = 0. Assume it holds
for somek — 1 > 0. Define, forz € R",

Y5 (2) -

min 27 Pz = ||z||2 + X min HY~19(A;2).
PeP; ieM
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its mean generating functiof’ : R, x R® — R, U {0} as

=E ZAtIIX(t; p)|I? ZV [l1x(t; 2, p) 7] ,
=0 27)

for z € R™, A > 0. For each\ > 0, F\(z) := F(\, z) is the
averaged sum of the power series along the random system
trajectory; thus, its value lies between two extremes:

Hy(z) < FA(z) < Gia(z), VzeR"™ (28)

The absence of maximum or minimum in the definition
of F\(z) makes its characterization much easier compared to
G(z) and H»(z). For exampleFy(z) is quadratic inz € R™:

[eS) t—1 0
Fr(z) =2'E {I + Z A H A(s)T H A(s)} z. (29)
t=1 s=0

s=t—1

I I I I I I I I |
0 0.5 1 15 2 25 3 35 4 45
»

_ T i it
Fig. 7. Plots ofl /hy for SLSs in Example 2 (top) and Example 3 (bottom)\Ne write F(z) = 2" Qxz, where@, € R™*" is positive
definite (with possibly infinite entries) and increasingiin

The functionF) (z) has a similar set of properties &5,(z).

By our hypothesst 1, “(Aiz) < (1 +€)Hk L(A,2). Thus, Proposition 13: F)\(z) has the following properties.
1. (Bellman Equation): Let\ > 0 be arbitrary. Then

HY(2) < |22+ A1 + ) HE 1 (Ai2), V2 € R™, i € M. F(2) = ||2]* + A e p i Fa(Aiz), Vz € R™.
2. (Sub-Additivity and Convexity): For anyn > 0,
SinceP; is e-equivalent toP;, we then have, VEA(z1+ 22) < VEA(z1) +V/Fa(21), Vi, 20 € R
As a result,\/F)(z) is a convex function ot on R™.
HES(2) < HYS(2)+el|2)? < 1+ o) [||2]1> + AHE " (A4;2)], 3. (Invariant Subspace): For each> 0, the setF) :=
{z € R"| Fx\(z) < oo} is a subspace dR™ invariant
for eachi € M. By (22), we havel}*(z) < (1+¢)H{(2), under{A;}icrv, where M’ := {i € M|p; > 0}.
Vz. That HY®(2) > H%(z) can be trivially proved. m 4 For z;myA > 0, if Fi(2) is finite for all z, then ) (2) <
The estimatedl /h, obtained by Algorithm 2 are plotted c||z||* for some finite constant.

in Fig. 7 for the SLSs in Example 2 (top) and Example 3he proof of Proposition 13 is straightforward, hence oeuitt
(bottom). In both cased,/hy decreases from 1 at= 0 to 0 The radius of convergence @f\(z) is defined as

at A = A« (For Example 3, high cor_‘nputational complexity of A: = sup{A > 0| Fa(2) < oo, Vz € R},

Algorithm 2 prevents us from getting accurate estimates for P

A close to)\.). We observe that in each cade/), is convex Which depends on the probability distributipnBy (27), A}, is
and “more curved” than the plots df/g,. It is conjectured the minimal radius of convergence of the determlnlsnceﬂarl

that the functionl /h, is convex on|0, \,) for all SLSs. {E[lx(t2p)?]},_,, overallzeR"

yeen

According to Propositions 11 and 12, by choosingarge Theorem 5:The following statements are equivalent:
enough and small enough, Algorithm 2 can return estimates 1) The SLS (2) under the random switching probability

of Hyx(z), hence\,, with an error as small as possible. is mean square exponentially stable;

See [44] for the expressions of the approximation error in2) Its mean generating functiofi(z) has a radius of
terms ofk, €, and matrices4;’s. On the other hand, to attain convergence\, > 1;

a higher accuracy, the computation time of Algorithm 2 still 3) The mean generating function at= 1, Fi(z), is finite
grows exponentially, as is reflected by the rapidly incnegsi everywhere orR™.

size of the sef’;, despite our relaxation effort. Our numerical  Proof: To show1) = 2), suppose the SLS (2) is mean
experiments suggest that computikgis no less challenging square exponentially stable, i.e., there exist- 0 andr €
than computing the joint spectral subradius, which in ftseo, 1) such thatE [||x(t; z, p)”ﬂ < wrt||z||?, Vt, Vz. Then,

is an NP-hard problem [20], [24]. A future direction of our

research is to prove this formally and to see if the algorghm Fy(2) < Z)\tm”tHZHQ ||ZH2 < 00, ¥z € R™,

for computing the joint spectral subradius (e.g. [29]) can b

adapted to compute the radius of weak conver ce
P P gen whenever0 < A < r~1L Consequently\; > r~t > 1.

That 2) = 3) is obvious. Finally, to show3) = 1), we
V. MEAN GENERATING FUNCTIONS note thatF(z) = 320 E [|[x(t; 2, p)||?] < oo implies that
E [|[x(t;2,p)|?] — 0 ast — oo, for all 2. It follows that
The notion of generating functions can also be extendedttee SLS (2) is mean square asymptotically stable, hence mean
the SLS (2) under the random switching probabilityDefine square exponentially stable by [36, Theorem 4.1.1]. =
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/,L_,,: 1 — X maxjen ||Ai?

0 Ly 1= A-inf, Omaz(Siem piAT A;)

4" Ly 1 — X+ supj -y mine | Az
7

For A € [0, ), Fi(:) is finite everywhere. Define

I i=sup{Fi(2) |[]z]| =1} <oo, A€[0,A)). (30)

Then, f\ = omax(Q2), the largest eigenvalue @j, in (29).

Proposition 14:For A € (0, \y), the function)\/(1—1/f»)

is nondecreasing and upper bounded\gy1 — 1/fy) < A7,
Proof: Let Ao € (0,A;). For eachz € R", define the
sequencey; := E [||x(¢; z,p)||?], t = 0,1,.. ., which satisfies

Z Wi A =B Z Mollx(s + t; 2, p) 1> |=E[Fx, (x(s; 2,p))] Fig. 8. Plot of the functionl /fy.
t=0 t=0

<E [f,\0||x(s;z,p)||2} = fr,Wws, Vs =0,1,....
Applying Lemma 3 withg = f,,, we conclude thaf(z) =

2o wiA' is finite for A € [Ao, A1), where, == Ao/(1 — By Proposition 14, the ray emitting frof0, 1) and passing
1/ Fx)- Therefore,/\;; = M, Wh'Ch. IS t_he seconq Cor‘Clus'o'f]'through(/\7 1/fx) rotates counterclockw:tsﬁe rr)10notonically as
ThatA/(1 — 1/.fA) IS nor_lc_jecrea5|_ng is proved in exactly the}\ increases. The discussions in the preceding paragraptefurt
same way as in Proposition 9 (W'_fh* rep!aced bY/f)- imply that the graph ofi/f, leaves(0,1) along a direction
As a result, we have the foIIong estimate. . Wwithin the shaded conic region bounded by the lings
Corollary 8: For eachA < [0,1;), j/fA < 1=MA and L¢; whereas generally a gap exists betwekp and
Hence,1/fx — 0 andfy —ooasA A, the asymptotic directionl;, in which 1/h, leaves (0,1).
We next compute the directional derivative ff at A = 0. Aigorithms based on the Bellman equation can also be devised
Lemma 6:The directional derivative of’ at 0 exists and . computeF; (z), hence\’. The details are omitted here.
o . ax—Jo T
is given by 5 (04) := lim “>—— = omax AL AL .
J YA04) Ao A i;:/lp ’ ) VI. CONCLUSION
Proof: Let > € S"~' be arbitrary. For smalk > 0, we can  Generating functions (more precisely their radii of conver
use (27) to write> =1 — T (3. piAT A) 2 + O(), gence) of switched linear systems provide effective charac
whereO(}) > 0 is uniform in z. Therefore, we can exchangezations of the growth rates of the system trajectories, iand

A general plot of the function/ f) is shown in Fig. 8. The
graph ofl/ f, is sandwiched between thoselgfy, and1/h,.

the order of the limit and supremum below to obtain particular their exponential stability, under various thing
. Fa(z)—1 Fr(z)—1 rules. Numerical algorithms for their computation haveoals
fA(04) =lim sup —=—— = sup lim ———, been developed based on their many properties derived here.
’ MOjz=1 A =1 M0 A P Y prop
which is exactlysup,—; 2" (X;er PiAT Ai) 2. [ ] APPENDIXA
Similar to Corollary 6 and Proposition 10, we can show the PROOF OFLEMMA 3

following two results.

) . Proof: Write Y " w4 Ay = we+0 > wers41Ah. Since
Corollary 9: — > 1— )\ 0max WA Ai |, VAE[0, X%).
ry 9 > dop 0,5)

=, by assumption thtéoleft hand side is att_n%)ﬁﬂts, we have
Proposition 15: The function1/f, defined on|0, \%) is o0 3-1
strictly decreasing and Lipschitz continuous with Lipszhi Zwt+s+l/\t0 < N Wse ST 0,1,.... (31)
constantomax (3, PiAT Ai). Hence, the functionfy is t=0 0
strictly increasing and locally Lipschitz continuous [0n ). _ _ i
From (28), we havéi, < fi < gi, thus1/gy < 1/fx < Define the power seriestV()\) := Zwt/\t, A € R
1/hy. The Lipschitz constants of the functionghy, 1/ fa,
and 1/g, in Propositions 10, 15, and 4, respectively, satis

oo

owiAhy < Pwy < oo, we haveRy > Ag. We cannot
sup min [|4;2]]? < omax Z piATA; | < max| 4% haveRy = Ao since the power seridd (\) with nonnegative

|| 2[|=1 €M iemM ieM coefficients must have its radius of convergence as a singula
By setting the probability distributiop to be p;, = 1 for point, at whichiV()\) diverges (see [47, Theorem 5.7.1]).

ix = argmax;c,||Ai* and p; = 0 for i # i, the As a power series defines an analytic function within its
second inequality becomes equality. On the other hand, aglius of convergence [47})()\) is analytic hence infinite

first inequality is in general strict regardless of the ckod time differentiable at\,. Its first order derivative al is
p, due to the generally lossy nature of the S-procedure [45]. o

o0
Indeed, when th_e cardmaht;/vﬂ > 3 and the state dimension W'(Xo) = Z tw Gt = Z(t + Vw1 A
n > 2, there exist matrice$4;};cr and a constany > 0 =1
such that: ()min;e pq 27 AT A2 < 5||2]|2, V2 € R™; (ii) there ot o
exists nop such thaty",_,, p; AT A; =< yI. Then for allp, = W1\ = Z)\g Zwt+5+1)‘6'
S|, =1 Miljem |4iz]|?> < v < Oumax (ZieM piA;TFAZ-). t=0 s=0 s=0  t=0

t=0
rJ;X):enote by Ry its radius of convergence. Sind& (\o) =

t=0
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Applying (31), we obtain the estimate

8—1
Ao

Zwsx\g < ﬁ?wo.

s=0 0
Similarly, the second order derivatii&” (o) is

W' (Xo) < (32)

oo

W’ (Xo) =D (t+2)(t + L)wr g2\
t=0

oo t 00 o]
=2 Z Z(S + Dwe2y =2 Z(S + 1A Z Wit s 205
t=0 s=0 s=0 t=0
Using (31) and (32), we can derive the estiméite (\)
2
26}\__01 Yoaco(s+ws 1Ay = QBA—_OIWI(/\O) <28 (BA—_Ol) w
By induction, we can show, fok =0,1,2, ...,

ﬁ—l)’“
wo.

0
- > 1 .
LetW()) =) EW(’“) (Ao)(A=Xo)* be the Taylor series
k=0
e_xpansion of(W(\) at \g. For A > )y and close to)\,

W(A) =W (\) asW(A) is analytic athy; and by (33),

<
0-

W® (A) < K13 ( (33)

14

By Lemma 2, the above inequality also holds fay = 0.
This proves the Lipschitz continuity df/g,, hence the local
Lipschitz continuity ofgy, on [0, \*).

Finally, by (10),0 < 1/gx < 1 — A/A* for A € (0, \%).

Thus,limya- 1/gx = 0. Consequentlylimyy- gy = c0. W

APPENDIXC
PROOF OFLEMMA 5

Proof: Fix an arbitraryz € S*~! and letA > 0 be small.

Recalling the definition off(z), we write

Hy(z) =1  inf, > .20 Nlz(t; z,0)[> — 1
A N A

oo o0
= inf g MY 2(t; 2, 0)||? = inf g Mzt + 1; 2,0)]2.
o o
t=1 t=0

Since for allo, |z(t;2,0)||? < (max;enm ||A:]%)!, Vt; and
inf, ||z(1; z,0)||> = min;erq || Ai2]|?, the above implies

H)\(Z) -1

mip [ 4;z]? < 22

< min [|4:2]2 + O(),
ieEM

for some termO(X) uniform in ¢ and z. Thus, we can

exchange the order of limit and supremum below to obtain:

g—1
Ao
- Bu
STV 1)
where the last inequality holds {8 — 1)(A/Ao — 1) < 1, or

W) < :Oﬁ( )kwou o)

equivalently, if A € [\g, A1) with \; defined in the lemma This completes the proof of Lemma 5.

statement. Therefore, the power sefi€$)) centered ad, is
convergent, and thus defines an analytic functionpen\, ).

H,\(z) -1
A

lim sup
MO iz)=1

Hy(2) —
A

hy—1
4 = 1 _—
hx(04) —&1?8

sup min || 4;z]°.

sup lim 1
||zl =1 1€M

l|zl|l=1 A0
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any analytic continuation beyond its radius of convergence
Ry [47, Definition 5.7.1]. HenceRy > A;. This implies
in particular that any\ € [)\0,/\_1) is within the radius of [1]
convergence of bothV’(\) and W () and as such we must [2]
have W (\) = W(A), YA € [Xo, \1). This together with the

last inequality above proves the desired conclusion. = 3]

APPENDIXB
PROOF OFPROPOSITION4

Proof: The monotonicity oy, hence ofl /g,, is obvious
as(G,(z) is nondecreasing in. For convexity, leth = a\; +
(1 — a)Xs for somed;, Ay € [0,1%), a € [0,1]; and letz €
S"~! be such thatG(z) = gx. Since Gy (z) is a convex
function of A € [0, A*) for any fixedz (it is the maximum of a
family of convex functions of\ > 0), we haveg, = GA(z) <
aGy, (z) + (1 — a)Gy, (2) < agx, + (1 — a)ga,. This proves
the convexity ofgy and hence its semismoothness [39, Prop.
7.4.5]. Being the composition of two semismooth functigns
andz — 1/x, 1/g» is also semismooth [39, Prop. 7.4.4].

Pick anyXo, A € (0, A*) with Ao < A. Proposition 3 implies
that \/(1 —1/gx) > Xo/(1 —1/g»,)- Thus by Lemma 2,

i_iz_(/\_/\o)mZ_
Ao

9x  Gxo

(4]

(5]

(6]

[7

El

(A= do) max A2,
0 ?El.a’/\il( 1 3
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