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Abstract

Estimation of monotone functions has broad applications in statistics, engineering, and
science. This paper addresses asymptotic behaviors of monotone penalized spline estimators
using constrained dynamical optimization techniques. The underlying regression function is
approximated by a B-spline of an arbitrary degree subject to the first-order difference penalty.
The optimality conditions for spline coefficients give rise to a size-dependent complementarity
problem. As a key technical result of the paper, the uniform Lipschitz property of optimal spline
coefficients is established by exploiting piecewise linear and polyhedral theory. This property
forms a cornerstone for stochastic boundedness, uniform convergence, and boundary consistency
of the monotone estimator. The estimator is then approximated by a solution of a differential
equation subject to boundary conditions. This allows the estimator to be represented by a
kernel regression estimator defined by a related Green’s function of an ODE. The asymptotic
normality is established at interior points via the Green’s function. The convergence rate is
shown to be independent of spline degrees, and the number of knots does not affect asymptotic
distribution, provided that it tends to infinity fast enough.

1 Introduction

Various static or dynamic models of biologic, engineering and economic systems contain shape
constrained functions; a typical example is monotone functions. Since the exact knowledge of these
functions is usually unavailable and measurements pertaining to these functions are contaminated
by random noise and disturbances, estimation of these functions becomes a critical problem across
many fields [6, 24, 30]. In this paper, we consider the following monotone regression problem:
estimate an unknown, nondecreasing function f : [0, 1] → R using the sample {yi}, where yi =
f(xi) + σzi, i = 1, . . . , n, xi is the ith design point, yi is the ith sample, σ is the noise level, and
zi’s are independent standard normal variables. In particular, we are interested in asymptotic
behaviors of a monotone estimator, i.e., how an estimator behaves for a large n as it is expected
that the estimator will be close to the true function f when n →∞. Focused issues in asymptotic
analysis include consistency, asymptotic distribution, and convergence rates as n →∞.
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The monotone regression problem has received considerable attention in statistics. For example,
Brunk’s estimator [1]

fn(xi) = max
s≤i

min
t≥i

ys + · · ·+ yt

t− s + 1
(1)

is a well-known nonparametric maximum likelihood estimator [17]. This estimator has a non-
normal asymptotic distribution and its convergence rate is of order n1/3 [32]. Further, Brunk’s
estimator is not satisfactory when the regression function f is smooth. Another relevant approach
is monotone smoothing (spline) estimation formulated as a constrained optimal control problem,
i.e., to find a nondecreasing function f which minimizes

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (m)(t)

)2
dt (2)

where λ > 0 is the penalty parameter. Asymptotic properties of this estimator have been de-
veloped for m = 1, and the attained estimator turns out to be a piecewise linear function [16].
However, a piecewise constant or linear function may not yield a satisfactory approximation in
some applications. An example is estimation of the mass of a galaxy in astrophysics [30]. It is
known that the mass behaves as a cubic function in certain range, where a piecewise constant or
linear fit exhibits poor asymptotic behaviors. In order to obtain a smoother estimator, the second
or higher order derivative of the regression function is needed in the penalty term. But this usually
leads to tremendous difficulties in both asymptotic analysis and numerical computation due to the
presence of the monotone constraint; see [8, 9, 28] for more discussions. Also see [27] for a recent
application to (unconstrained) optimal control via smoothing splines. An alternative approach is
the polynomial spline technique that has been extensively studied in approximation theory and
statistics. Especially the penalized spline regression (simply P -splines or P -spline smoothing)
[10, 29] has become popular over the last decade thanks to its highly tractable computation us-
ing low rank bases. The methodology and applications of P -spline estimators for unconstrained
regression problems are discussed in [20], and their theoretical properties can be found in [2, 5, 7].

In this paper, we consider a monotone estimator via P -splines and investigate its asymptotic
properties using optimization and ODE techniques, along with statistical theory. The first-order
difference penalty is imposed but a B-spline can be of an arbitrary degree. This offers great flex-
ibility for various applications, e.g., the galaxy estimation problem discussed above. The major
difficulties of analyzing the monotone P -spline estimator lie in two aspects. First, due to the mono-
tone constraint, the optimal spline coefficients are the solution of a size-dependent complementarity
problem and are piecewise linear in y = (y1, . . . , yn)T . Unlike the unconstrained case, however,
the explicit forms of these piecewise linear functions are generally unavailable and the number of
linear pieces grows exponentially with respect to the number of knots. This complexity hinders
a further investigation of analytic properties of the estimator. Second, the monotone condition
hampers one from establishing an equivalent kernel of the estimator via matrix techniques widely
adopted for the unconstrained counterpart. To overcome these difficulties, new optimization and
ODE techniques are proposed that constitute the following contributions of the paper:

• The uniform Lipschitz property of optimal spline coefficients is established via piecewise lin-
ear and polyhedral theory (cf. Theorem 3.1). To the best of our knowledge, this critical property
is the first of this kind established for a general class of P -spline estimators. Using this property,
it is proved that the estimator is stochastically bounded and converges to the regression function
in probability uniformly. These results lay a foundation for the subsequent asymptotic analysis.
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For example, they lead to consistency of the estimator at boundary.
• Inspired by smoothing spline estimators [11, 16, 25], the monotone P -spline estimator is

shown to be approximated by the solution of a dynamical complementarity system subject to
boundary conditions. The estimator can be characterized by a kernel estimator, using a Green’s
function obtained from a related boundary value problem for an ODE. The asymptotic normality
of the estimator and the convergence rates are established for different choices of spline degrees
via the Green’s function.

• The convergence rates of the estimator are shown to be independent of spline degrees and
the number of knots, as long as the latter tends to infinity fast enough; see Theorems 4.1 and 4.2.
Whereas this observation is pointed out in [7] for certain unconstrained cases, no rigorous justifi-
cation has been given for the monotone P -spline estimator before. Furthermore, it is shown that
if the number of knots grows sufficiently fast, then the modeling bias due to spline approximation
is negligible compared to the shrinkage bias due to estimation by a penalized rather than ordinary
least squares.

The rest of the paper is organized as follows. The monotone P -spline estimator is formulated
and its optimality conditions are characterized in Section 2. Section 3 establishes the uniform
Lipschitz property of optimal spline coefficients and indicates its critical implications. In Section 4,
the monotone estimator is treated as an approximate solution of an ODE subject to boundary
conditions, and the estimator is represented by a kernel regression estimator defined by a related
Green’s function; its asymptotic behaviors and convergence rates are obtained. Simulations and
discussions are given in Section 5, where the proposed monotone estimator is compared with other
estimators and various extensions are discussed. Section 6 concludes the paper with summary and
remarks on future work.

2 Problem Formulation and Optimality Conditions

The regression function f is approximated by f [p](x) =
∑Kn+p

k=1 bkB
[p]
k (x), where

{
B

[p]
k : k =

1, . . . ,Kn + p
}

is the p th degree B-spline basis with knots 0 = κ0 < κ1 < · · · < κKn = 1. The
value of Kn depends upon n as discussed below. The spline coefficients b̂ = {b̂k, k = 1, . . . , Kn +p}
subject to the first-order difference penalty are chosen to minimize

n∑

i=1

[
yi −

Kn+p∑

k=1

bkB
[p]
k (xi)

]2 + λ∗
Kn+p∑

k=2

[
∆(bk)

]2
, (3)

where λ∗ > 0 and ∆ is the backward difference operator, i.e., ∆bk ≡ bk − bk−1. The P -spline
estimator is f̂ [p](x) =

∑Kn+p
k=1 b̂kB

[p]
k (x). We consider the case where both the design points and

the knots are equally spaced on the interval [0, 1]. We also assume that n/Kn is an integer denoted
by Mn. Hence every Mnth design point is a knot, i.e., κj = xjMn for j = 1, . . . ,Kn. A more
general, unequally spaced case is discussed in Subsection 5.2.

When the knots are equally spaced, it is easy to verify that if the B-spline coefficient sequence
{bk} is nondecreasing, then f [p](x) is nondecreasing. Let the polyhedral cone Ω ≡ {b ∈ RKn+p :
b1 ≤ b2 ≤ · · · ≤ bKn+p}. Therefore the monotone P -spline coefficients are the unique solution of
the following constrained quadratic programming problem

b̂ = arg min
b∈Ω

1
2

bT (Γn + λDT D)b− bT ȳ, (4)
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where D is the (Kn + p− 1)× (Kn + p) difference matrix with Db = [∆(b2), . . . ,∆(bKn+p)]T and

D =




−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0

· · · · · ·
0 0 0 0 · · · −1 1




, (5)

and
λ =

λ∗

βn
, Γn =

1
βn

XT X, and ȳ =
1
βn

XT y.

Here βn ≡ ∑n
i=1

(
B

[p]
k (xi)

)2 for k = p + 1, . . . ,Kn and the n × (Kn + p) design matrix X =[
B

[p]
k (xj)

]
j,k

. Due to the equally spaced design points, all βn’s are equal for all k = p + 1, . . . , Kn.
To characterize the optimality conditions, we introduce more notation. Let C be the (Kn +

p− 1)× (Kn + p) matrix given by

C =




1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0

· · · · · ·
1 1 1 1 · · · 1 0




.

Given two vectors a and b, we write a ≥ 0 (resp. b ≥ 0) if each component of a (resp. b) is
nonnegative and write a ⊥ b if a and b are orthogonal, i.e., aT b = 0. Hence, 0 ≤ a ⊥ b ≥ 0 means
a ≥ 0, b ≥ 0 and aT b = 0. This condition is known as the complementarity condition [3, 4]. With
this notation, we obtain the following lemmas for optimality conditions that show b̂ is the solution
of a mixed linear complementarity problem [3, 4].

Lemma 2.1. The vector b̂ is the (unique) optimal solution of (4) if and only if

0 ≤ D b̂ ⊥ −C Γn b̂ + λD b̂ + Cȳ ≥ 0, (6)

and
Kn+p∑

i=1

(
(Γnb̂)i − ȳi

)
= 0. (7)

Proof. Let h(b) ≡ 1
2 bT (Γn + λDT D)b − bT ȳ be the objective function for a given ȳ. Since h

is strictly convex and Ω is convex, b̂ is the unique (global) minimizer of h on Ω if and only if
〈∇h(b̂), b̂〉 = 0 and 〈∇h(b̂), b〉 ≥ 0, ∀ b ∈ Ω, where the gradient ∇h(b̂) = (Γn + λDT D) b̂ − ȳ.
Define vi ∈ RKn+p as vi ≡ (

0, · · · , 0,︸ ︷︷ ︸
(i−1)−copies

1, · · · , 1
)T for i = 1, · · · ,Kn + p. Therefore, Ω is

(positively) finitely generated by {v1,−v1, v2, · · · , vKn+p}. Indeed each b ≡ (b1, · · · , bKn+p)T ∈ Ω
is positively generated as b = max(0, b1)v1 + max(0,−b1)(−v1) +

∑Kn+p
i=2 (bi − bi−1) vi. Let the

matrix V ≡ [
v1 (−v1) v2 · · · vKn+p

]
such that Ω = {V u |u ≥ 0}. Hence, letting the vector u∗ ≥ 0

be u∗1 = max(0, b̂1), u∗2 = max(0,−b̂1) and u∗i = b̂i−1− b̂i−2, ∀ i = 3, · · · ,Kn + p+1, the optimality
conditions are equivalent to 0 ≤ u∗ ⊥ w ≥ 0, where w ∈ RKn+p+1 with w1 = −w2 = 〈∇h(b̂), v1〉
and wi+1 = 〈∇h(b̂), vi〉, i = 2, · · · ,Kn + p. Thus the equivalent optimality conditions become

0 ≤ Db̂ ⊥ −C
[
(Γn + λDT D) b̂− ȳ

] ≥ 0, and
Kn+p∑

i=1

[ (
(Γn + λDT D) b̂

)
i
− ȳi

]
= 0.
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Since CDT = −I and
∑Kn+p

i=1 (DT D b̂)i = 0, the lemma follows.

Lemma 2.2. The optimality conditions (6)-(7) are, respectively, equivalent to

λ∗(b̂j+1 − b̂j) =
[ j∑

k=1

n∑

i=1

B
[p]
k (xi)f̂ [p](xi)−

j∑

k=1

n∑

i=1

B
[p]
k (xi)yi

]
+
, (8)

for j = 1, . . . , Kn + p− 1, and
n∑

i=1

f̂ [p](xi) =
n∑

i=1

yi. (9)

Proof. Given λ∗ > 0, the optimality condition (6) is equivalent to

λ∗D b̂ =
[
βnCΓn b̂− λ∗D b̂− βnCȳ + λ∗D b̂

]
+

=
[
CXT X b̂− CXT y

]
+
,

which is further equivalent to (8). It is also clear that (7) is equivalent to (9).

It shall be shown in Section 4 that the optimality conditions (8)-(9) can be approximated by
an ODE with a constrained right-hand side subject to suitable boundary conditions for all large
Kn. Indeed, such an ODE gives rise to a dynamic complementarity system [22, 23].

3 Uniform Lipschitz Property of Optimal Spline Coefficients

Since (Γn + λDT D) in (4) is positive definite for each λ > 0, b̂ = (b̂1, · · · , b̂Kn+p)T is a (vector-
valued) continuous piecewise linear function of ȳ [4, 23]. However, the closed form of b̂ is hard to
obtain due to the combinatorial nature of the problem, and this poses a major technical difficulty
for asymptotic analysis. In this section it is shown that b̂(ȳ) satisfies the uniform Lipschitz property
in the sense of the `∞-norm, regardless of Kn and λ, for all sufficiently large n (see Theorem 3.1
below). This property plays a crucial role in establishing stochastic boundedness and uniform
consistency of f̂ [p] discussed at the end of this section. It should be emphasized that this property
is different from the conventional Lipschitz property of a linear complementarity problem of fixed
size [3] since the Lipschitz constant attained here is invariant to size variation.

Theorem 3.1. The following hold:

(a) Let p = 0. For any Kn ≥ 2 and λ > 0, ‖b̂(ȳ1)− b̂(ȳ2)‖∞ ≤ κ0 ‖ȳ1 − ȳ2‖∞ with κ0 = 1 for all
ȳ1, ȳ2 ∈ RKn;

(b) Let p = 1. There exists κ1 > 0 such that for all sufficiently large λ > 0 and n/Kn with Kn ≥ 2,
‖ b̂(ȳ1)− b̂(ȳ2) ‖∞ ≤ κ1 ‖ ȳ1 − ȳ2 ‖∞ for all ȳ1, ȳ2 ∈ RKn+1;

(c) Let p ≥ 2, % ∈ (0, 1), and γ ∈ (%, 1). Suppose that Kn ∼ nγ and λ ∼ n2(γ−%). Then for all
n sufficiently large, there exists κp > 0, dependent on p only, such that ‖b̂(ȳ1) − b̂(ȳ2)‖∞ ≤
κp ‖ȳ1 − ȳ2‖∞ for all ȳ1, ȳ2 ∈ RKn+p.

To prove this theorem, we establish a piecewise linear formulation of b̂ first. Let Λn ≡ (Γn +
λDT D)/(1 + 2λ), b ≡ b̂/(1 + 2λ), and z ≡ ȳ/(1 + 2λ). The optimality conditions (6)-(7) become

0 ≤ D b ⊥ C̃(Λnb− z) ≥ 0, and
Kn+p∑

i=1

[ (Λnb)i − zi ] = 0, (10)
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where the (Kn + p− 1)× (Kn + p) matrix C̃ is given by

C̃ =




0 1 1 1 · · · 1
0 0 1 1 · · · 1
...

...
. . . . . . . . .

...
0 0 · · · 0 1 1
0 0 · · · 0 0 1




. (11)

It is observed from (10) that for each z, the corresponding optimal solution b is characterized
by an index set α = { i | ( C̃(Λnb − z)

)
i

= 0} ⊆ {1, · · · ,Kn + p − 1} (α may be empty). For
the given b̄ and α, define a vector b̃α as follows: b̃α

1 ≡ b1 and b̃α
i+1 ≡ b`i+1 for i ≥ 1, where

`i+1 ≡ min
1≤j≤Kn+p

{j | bj > b̃α
i }. Hence, the elements of b̃α strictly increase as their indices increase.

Moreover, for each b̃α
i , define the index set βα

i = {j ∈ {1, · · · ,Kn+p} | bj = b̃α
i }. This gives rise to

a (finite and disjoint) partition of {1, · · · ,Kn+p}, namely,
⋃

i βα
i = {1, · · · ,Kn+p} and βα

j ∩βα
k = ∅

whenever j 6= k. It can be shown that b̃α, and thus b
α(z) which denotes b(z) corresponding to

the index set α, is a linear function of z. Hence, for any z ∈ RKn+p, b(z) ∈ {bα(z)}α, where b
α(z)

is called a selection function of b(z). Therefore, the solution mapping z 7→ b is a (continuous)
piecewise linear function with 2(Kn+p) selection functions. The same holds true for the mapping
ȳ 7→ b̂, i.e., b̂α

i (ȳ) ≡ ∑Kn+p
j=1 āα

ij ȳj , where the coefficients āα
i j pertain to each index set α.

Since the proof of Theorem 3.1 is technical, we sketch its main ideas and outline the key steps
as follows. To motivate the main ideas, consider p ≥ 2 first. In this case, it can be seen from the
above construction and Lemma 3.1 that each selection function b

α(z) is a linear function whose
coefficients are defined by the inverse of a (2p + 1)-diagonal matrix, denoted by Λ̃α. Each Λ̃α can
be decomposed into the sum of a tridiagonal matrix similar to that for p = 1 and a perturbation
matrix that consists of “small” terms (of order λ−1 indeed; see Lemma 3.4). Hence, a suitable
uniform bound of (Λ̃α)−1 in case of p = 0 or 1 will not only establish the uniform Lipschitz property
for p = 0, 1 but also for all p ≥ 2. In order to apply this perturbation technique for the latter case,
a tight bound is expected for p = 1. A major difficulty of finding such a tight bound for p = 1
is that the size and elements of (Λ̃α)−1 vary, and the number of Λ̃α’s grows exponentially with
respect to Kn. To handle this complexity, we exploit the tridiagonal structure of Λ̃α and show that
all (Λ̃α)−1 are completely determined by certain sequences with similar properties uniform in α.
By fully making use of these properties, it is shown in Proposition 3.1 that for any α, each element
of (Λ̃α)−1 is positive and bounded above by the (1, 1)-element of Λ−1

n for all large λ. Based on this,
it is then proven in Proposition 3.3 that the sum of (positive) coefficients of a selection function
defined by (Λ̃α)−1 is bounded above by the infinity norm of some Λ−1

n with the same size as that
of (Λ̃α)−1. An upper bound of ‖Λ−1

n ‖∞ uniform in n is further obtained in Proposition 3.4. These
results yield the desired bounds for p = 0 in Proposition 3.2, p = 1 in Proposition 3.5, and all
p ≥ 2 in Proposition 3.6, respectively. Finally, the polyhedral theory leads to the uniform Lipschitz
property for b̂ with an arbitrary p ∈ Z+ in Subsection 3.3.

3.1 The Case of p = 0 and p = 1

For p = 0 or p = 1, define αn =
∑n

i=1 Bk(xi)2 for k = 1,Kn + p, βn =
∑n

i=1 Bk(xi)2 for
k = 2, . . . , Kn + p − 1, and γn =

∑n
i=1 Bk(xi)Bk+1(xi) for k = 1, . . . , Kn + p − 1. Moreover, let

θ̃n = αn/βn, η̃n = γn/βn. It is easy to see that (i) for p = 0, θ̃n = 1 and η̃n = 0 for all n; and (ii)
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for p = 1, θ̃n → θ̃∗ and η̃n → η̃∗ as n/Kn →∞, where θ̃∗ = 1/2 and η̃∗ > 0. We thus have

XT X =




αn γn 0 0 · · · 0
γn βn γn 0 · · · 0

. . . . . . . . . . . .
γn βn γn 0

γn βn γn

0 0 · · · 0 γn αn




, Γn =
XT X

βn
=




θ̃n η̃n 0 0 · · · 0
η̃n 1 η̃n 0 · · · 0

. . . . . . . . .
η̃n 1 η̃n 0

η̃n 1 η̃n

0 0 · · · 0 η̃n θ̃n




,

and

Λ =
Γn + λDT D

1 + 2λ
=




θ η 0 0 · · · 0
η 1 η 0 · · · 0

. . . . . . . . . . . .
η 1 η 0

η 1 η

0 0 · · · 0 η θ




, (12)

where the subscript n in Λn is dropped for simplicity, θ ≡ (θ̃n+λ)/(1+2λ), and η ≡ (η̃n−λ)/(1+2λ)
with λ > 0. Note that −1/2 < η < 0 for all large λ. Using the notation introduced below (11), we
show as follows that each b̃α, or equivalently the selection function b

α, is linear in z.

Lemma 3.1. For each index set α ⊆ {1, · · · ,Kn + p− 1}, b̃α is the (unique) solution of the linear
equation Λ̃α b̃α = z̃ α, where the `× ` matrix Λ̃α and the `-vector z̃ α are given by

Λ̃α =




d11 η 0 · · · 0
η d22 η

. . . . . . . . .
η d(`−1)(`−1) η

0 · · · 0 η d``




, djj =
∑

p, q∈βα
j

Λp q, z̃α
j =

∑

k∈βα
j

zk

Moreover, Λ̃α is invertible and b
α
i (z) =

Kn+p∑

j=1

aα
ij zj , ∀ i, where aα

ij = [(Λ̃α)−1]i k if j ∈ βα
k .

Proof. For the given index set α, define the matrix C̄α =

[
1T

C̃α•

]
, where 1 = (1, · · · , 1)T and

C̃α• denotes the rows in C̃ indexed by α. Hence, C̄α Λb = C̄α z. It can be shown via elementary
row operations and induction that C̄α is row equivalent to the matrix Ĉα whose ith row is given

by: (Ĉα)ij =

{
1, if j ∈ β α

i

0, otherwise
. Let ᾱ be the complement of α in {1, · · · ,Kn + p − 1}. In

view of the complementarity condition in (10),
(
C̃(Λb− z)

)
ᾱ

> 0 implies (Db̂)ᾱ = 0 and, in turn,
bj = bj+1 for each j ∈ ᾱ. This shows b = (Ĉα)T b̃α. Therefore, we have Ĉα Λ(Ĉα)T b̃α = Ĉα z.
Letting Λ̃α = Ĉα Λ(Ĉα)T and z̃ α = Ĉα z, we obtain the desired linear equation for b̃α. Since Ĉα

is of full row rank, Λ̃α is positive definite and hence is invertible. Finally, the expression for the
corresponding b follows from the structure of Ĉα and the definition of β α

i .
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In the following, let mα
i ≡ |βα

i | be the cardinality of the index set βα
i . Let Kn ≥ 2. Defining

hα
i ≡ mα

i − 1, it can be shown that for a given index set α ⊆ {1, · · · ,Kn + p− 1},

dii =





θ + hα
i (1 + 2η) if ` ≥ 2 and i ∈ {1, `}

1 + hα
i (1 + 2η) if ` ≥ 2 and i ∈ {2, · · · , `− 1}

2(θ + η) + (Kn + p− 2)(1 + 2η) if ` = 1

(13)

Note that 1 + 2η = (1 + 2η̃n)(1 + 2λ)−1 > 0 for a large n and all λ > 0. Furthermore, for a given
index set α with ` ≥ 2, let hα ≡ (hα

1 , · · · , hα
` ) and its corresponding Λ̃α can be written as

Λ̃α(hα) =




d11(hα
1 ) η 0 · · · 0

η d22(hα
2 ) η

. . . . . . . . .
η d(`−1)(`−1)(hα

`−1) η

0 · · · 0 η d``(hα
` )




, (14)

where each dii(hα
i ) is defined in (13). To estimate the inverse of each Λ̃α, we present two lemmas

regarding the sequences that characterize (Λ̃α)−1 in Proposition 3.1 as follows.

Lemma 3.2. Let λ > 0 be sufficiently large. Consider the sequence {pi}∞i=1 defined by

p1 =
η

θ
, pi+1 =

η

1− η pi
, ∀ i ∈ N. (15)

Then the following hold:

(a) {pi}∞i=1 is a strictly increasing sequence with −1 < pi <
2η

1 +
√

1− 4η2
< 0;

(b) for a given ` ≥ 3, 0 < p`−1 − pi − p`−1−i ≤ (1− θ)/(−η) for all i = 1, · · · , `− 2.

Proof. Statement (a) can be proved via mathematical induction. In fact, the sequence {pi}∞i=1

monotonically converges to the negative root 2η(1 +
√

1− 4η2)−1 of the equation ηx2 − x + η = 0
from the initial term p1 = (η̃n − λ)/(θ̃n + λ) > −1. In what follows, we prove (b). The positivity
of p`−1 − pi − p`−1−i follows from (a). To establish its upper bound, define the function r(x) ≡
(η − x + ηx2)/(1− ηx). It is easily verified that r(pi) = pi+1 − pi and r′(x) < 0 for all x ∈ [−1, 0],
i.e., r(x) is decreasing on [−1, 0]. We consider i = 1 first. In this case,

p`−1 − p1 − p`−2 = (p`−1 − p`−2)− p1 = r(p`−2)− p1 ≤ r(p1)− p1,

where p1 ≤ p`−2 (cf. (a)) is used in the last step. By making use of the definitions of θ and η, it
can be shown via direct but somewhat tedious calculations that for all large λ > 0,

r(p1)− p1 =
η

1− η2

θ

− 2η

θ
=

η(θ2 − 2θ + 2η2)
θ(θ − η2)

≤ 1− θ

−η
.

As a result, (b) holds for i = 1. Furthermore, since {pi}∞i=1 is increasing and r(x) is decreasing,
we have r(pi) ≥ r(p`−i−2) for all 1 ≤ i ≤ (b`/2c − 1), where bxc ≡ max{n ∈ N : n ≤ x}.
This shows that pi+1 − pi ≥ p`−i−1 − p`−i−2 or equivalently pi+1 + p`−i−2 ≥ pi + p`−i−1. Hence
p`−1− pi+1− p`−i−2 ≤ p`−1− pi− p`−i−1 for all i = 1, · · · , (b`/2c− 1). This result, along with that
for i = 1, yields the desired upper bound for all i = 2, · · · , `− 2.
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Lemma 3.3. Let λ > 0 be sufficiently large. Consider the sequence {qj}∞j=1 defined by

q1 =
η

d11(h1)
, qj+1 =

η

d(j+1)(j+1)(hj+1)− η qj
, ∀ j ∈ N, (16)

where d11(h1) ≡ θ + h1(1 + 2η) and djj(hj) ≡ 1 + hj(1 + 2η), ∀ j > 1 with real hj ≥ 0 for all j.
Let {pj} be the sequence defined in (15). Then the following hold:

(a) −1 < qj < 0 for all j;

(b) For any ` ∈ N, if hj ∈ Z+ for each j = 1, · · · , `, then p∑`
j=1(1+hj)

≤ q`.

Proof. (a). We show by induction that −1 < qj < 0 for all j. Since 1+2η > 0, d11 ≥ θ > 0. Hence
−1 < η/θ ≤ q1 < 0. Now suppose −1 < qj < 0 for all j = 1, · · · , k with k ≥ 1, and consider qk+1.
It is easy to verify via the induction hypothesis that d(k+1)(k+1)−η qk > d(k+1)(k+1)+η ≥ 1+η > 0.
In view of −1/2 < η < 0, we have −1 < qk+1 < 0. Consequently, −1 < q j < 0 for all j.

(b). We prove this result via induction on `. Consider ` = 1. It is obvious that the desired
inequality holds when h1 = 0. Now assume that it also holds for h1 = 0, 1, · · · , k, where k ∈ Z+.
Let h1 = k + 1. Using the fact that η < 0, we obtain

η2

θ + k(1 + 2η)
+θ+(k+1)(1+2η) =

( η2

θ + k(1 + 2η)
+[θ+k(1+2η)]

)
+(1+2η) ≥ 2|η|+1+2η = 1,

and thus 1 − η2/[θ + k(1 + 2η)] ≤ θ + (k + 1)(1 + 2η). This result, along with the induction
hypothesis p1+k ≤ η/[θ + k(1 + 2η)], implies 1− η p1+k ≤ θ + (k + 1)(1 + 2η). Therefore p1+k ≤ q1,
and this completes the proof for ` = 1.

To carry out an induction for a general ` ∈ N, we show the following inequality first:

p i+(h+1) ≤
η

1 + h(1 + 2η)− η p i
, ∀ h ∈ Z+, (17)

where pi ∈ (−1, 0) is the ith term of the sequence {pj}. Clearly, this inequality holds when h = 0.
Suppose that it holds for h = 0, 1, · · · , k, where k ∈ Z+. Let h = k + 1. By the definition of
p i+(h+1), it is sufficient to show 1− ηp i+(k+1) ≤ 1 + (k + 1)(1 + 2η)− ηpi, which is equivalent to

(k + 1)(1 + 2η) ≥ η
(
pi − p i+(k+1)

)
(18)

To prove (18), define the real number a ≡ 1+k(1+2η) > 1 and the function g(x) ≡ x−η/(a−ηx).
Notice that g′(x) = [a + η(1 − x)][a − η(1 + x)]/(a − ηx)2 > 0 for all x ∈ [−1, 0], where we use
−1/2 < η < 0 for all λ sufficiently large. Hence ηg(pi) ≤ ηg(−1) = (−η)(a + 2η)/(a + η). Since
a+2η = (k+1)(1+2η) > 0 and 0 < −η/(a+η) < 1, we then have ηg(pi) ≤ ηg(−1) ≤ (k+1)(1+2η).
Moreover, using the induction hypothesis, we further deduce

η
(
pi − pi+(k+1)

) ≤ η
(

pi − η

1 + k(1 + 2η)− ηp i

)
= η g(pi) ≤ (k + 1)(1 + 2η).

Consequently, the inequality (18), as well as (17), holds.
Returning to the proof for a general ` ∈ N, we assume that the lemma holds for 1, · · · , `.

Consider ` + 1. Using the inequality (17) and the induction hypothesis, we have

p∑`+1
j=1(1+hj)

= p∑`
j=1(1+hj)+(1+h`+1)

≤ η

1 + h`+1(1 + 2η)− η p∑`
j=1(1+hj)

≤ η

1 + h`+1(1 + 2η)− η q `
= q `+1

It follows from the induction principle that (b) holds true.
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In the following, let ` = |α| and R`
+ denote the nonnegative orthant of R`. The next proposition

shows that each element of (Λ̃α)−1 is positive and is bounded above by the (1, 1)-element of Λ−1
n

under suitable order conditions. The latter result shall be used in Proposition 3.6 of Subsection 3.2.

Proposition 3.1. The following hold:

(a) Let p = 0 or 1, λ > 0 be sufficiently large, and Kn ≥ 2. For a given index set α with ` ≥ 1
and any h ∈ R`

+, each element of
(
Λ̃α(h)

)−1 is positive.

(b) Let p = 1. Suppose that n/Kn → ∞, λ(n) → ∞, and Kn/
√

λ(n) → ∞ as n → ∞. Then for
all n sufficiently large, each element of

(
Λ̃α

)−1 is not greater than (Λ−1)11 for any index set
α ⊆ {1, · · · ,Kn}.

Proof. (a). The statement holds trivially when ` = 1; we address ` ≥ 2 as follows. Given an
index set α ⊆ {1, · · · ,Kn + p − 1}, let eα

i ≡ ( 0, · · · , 0,︸ ︷︷ ︸
(i−1) copies

1, 0, · · · , 0)T ∈ R`, and
(
Λ̃α(h)

)−1eα
i ≡

(cα
i1, · · · , cα

i`)
T . To ease the presentation, we consider

(
Λ̃α(h)

)−1eα
1 first. In this case,




d11(h1) η 0 · · · 0
η d22(h2) η

. . . . . . . . .
η d(`−1)(`−1)(h`−1) η

0 · · · 0 η d``(h`)







cα
11

cα
12
...

cα
1(`−1)

cα
1`




=




1
0
...
0
0




The above linear equation is row equivalent to



d11(h1)− q`−1 η 0 0 · · · 0
q`−1 1 0

. . . . . . . . .
q2 1 0

0 · · · 0 q1 1







cα
11

cα
12
...

cα
1(`−1)

cα
1`




=




1
0
...
0
0




(19)

where q1 = η/d``(h`) , and qi+1 =
η

d(`−i)(`−i)(h`−i) − η qi
for i = 1, · · · , ` − 2. It follows from

(a) of Lemma 3.3 that −1 < qi < 0 for all i. By the definition of d11 (cf. (13)), we have
d11 − q`−1 η ≥ d11 + η = (θ̃n + h1(1 + 2η̃n) + η̃n)/(1 + 2λ) > 0. Hence, cα

11 > 0. Since each
−1 < qk < 0, this further shows 0 < cα

1j < cα
11, ∀ j = 2, · · · , ` and thus completes the case of(

Λ̃α(h)
)−1eα

1 . Moreover, note that
(
Λ̃α(h)

)−1eα
` =

(
cα
1` , cα

1(`−1), · · · , cα
12, c

α
11

)T due to symmetry.

Hence each element of
(
Λ̃α(h)

)−1eα
` is also positive.

Next we consider
(
Λ̃α(h)

)−1eα
i with 1 < i < `. It can be verified that

(
cα
i1, · · · , cα

i`

)T satisfies
the following linear equation




1 w1 0 0 · · · · · · 0
. . . . . . . . .

1 wi−1 0 · · · 0
0 · · · 0 dii(hi)− η(wi−1 + q`−i) 0 · · · 0

q`−i 1
. . . . . . . . .

0 · · · · · · 0 0 q1 1







cα
i1
...

cα
i(i−1)

cα
ii

cα
i(i+1)

...
cα
i`




=




0
...
0
1
0
...
0




(20)
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where
w1 =

η

d11(h1)
, wj+1 =

η

d(j+1)(j+1)(hj+1)− η wj
, ∀ j = 1, · · · , i− 2,

and
q1 =

η

d``(h`)
, qk+1 =

η

d(`−k)(`−k)(h`−k)− η qk
, ∀ k = 1, · · · , `− i− 1.

Following (a) of Lemma 3.3, we have −1 < wj , qk < 0 for all j, k. Since dii(hi) = 1 + hi(1 + 2η),
where hi ≥ 0 and −1/2 < η < 0 for all sufficiently large λ, we have dii(hi) − η(wi−1 + q`−i) ≥
dii(hi) + 2η = (hi + 1)(1 + 2η) > 0. Hence, cα

ii > 0, which further implies 0 < cα
ij < cα

ii, ∀ j 6= i.
To show (b) for p = 1, we address two cases as follows:
(b.1) α = {1, · · · ,Kn}. Here Λ̃α = Λ is of order ` ≡ (Kn + 1) ≥ 3. Note that (Λ−1)11 =

(Λ−1)`` = (1 − η p`−1)−1 and (Λ−1)ii = (1 − η(p`−i + pi−1))−1 for all 2 ≤ i ≤ ` − 1, where {pi}
is defined in (15). It follows from (b) of Lemma 3.2 that θ − ηp`−1 ≤ 1 − η(p`−i + pi−1) once
2 ≤ i ≤ ` − 1. Further, (a) of Lemma 3.3 shows that p`−1 > −1 (corresponding to hi = 0) such
that θ − ηp`−1 ≥ θ + η > 0. Therefore (Λ−1)11 ≥ (Λ−1)ii for all 2 ≤ i ≤ `− 1. By observing from
the proof of (a) that (Λ−1)ii is greater than off-diagonal entries in the ith column, (b) follows.

(b.2) α is a proper subset of {1, · · · ,Kn}. Consider two subcases: (i) ` = 1; (ii) ` ≥ 2. For
subcase (i), note that for all large n, Λ̃α = 2(θ + η) + (Kn − 1)(1 + 2η) ∼ Kn/(1 + 2λ) and

1/(Λ−1)11 = θ − η pKn ≤ θ − η
2η

1 +
√

1− 4η2
= θ +

√
1− 4η2 − 1

2
∼

√
λ

1 + 2λ
.

By the given asymptotic behaviors of Kn and λ, we have (Λ̃α)−1 ≤ (Λ−1)11 for all large n. For
subcase (ii), it suffices to show that cα

ii ≤ (Λ−1)11 for all i = 1, · · · , `. Consider i = 1 first. It
is seen from (19) that the sequence {qj}`−1

j=1 is defined by some hj ∈ Z+, j = 1, · · · , ` satisfying∑`
j=2(1 + hj) = Kn − h1. Moreover, by noticing that each hj here corresponds to h`+1−j in (16),

we deduce from (b) of Lemma 3.3 that pKn−h1 = p∑`
j=2(1+hj)

≤ q`−1. Therefore,

d11(h1)− ηq`−1 ≥ θ + h1(1 + 2η)− η pKn−h1 ≥ θ − ηpKn > 0,

where the second inequality follows from (18). Hence, cα
11 ≤ (Λ−1)11. Similarly cα

`` ≤ (Λ−1)11. Now
consider i ∈ {2, · · · , ` − 1}. It is seen from (20) that we have two sequences {wj}i−1

j=1 defined by
hj ∈ Z+ and {qj}`−i

j=1 defined by h`−j+1 ∈ Z+. Let s1 ≡
∑i−1

j=1(1 + hj) and s2 ≡
∑`−i

j=1(1 + h`−j+1).
Hence, s1 + s2 = Kn − hi. By (b) of Lemma 3.3 we have wi−1 ≥ ps1 and q`−i ≥ ps2 . As a result,

dii(hi)− η
(
wi−1 + q`−i

) ≥ 1 + hi(1 + 2η)− η
(
ps1 + p(Kn−hi)−s1

)

≥ 1 + hi(1 + 2η)− η
(
pKn−hi −

1− θ

−η

)
(via (b) of Lemma 3.2)

≥ θ + hi(1 + 2η)− η pKn−hi

≥ θ − η pKn (via (18))

This yields cα
ii ≤ (Λ−1)11 for all i ∈ {2, · · · , `− 1}.

Recall that for each piecewise linear function bi(z) with i ∈ {1, · · · ,Kn + p}, its selection
function (corresponding to α) is given by b

α
i (z) =

∑Kn+p
j=1 aα

ijz. According to Proposition 3.1, we
conclude that each aα

ij is positive for any i, j and α. The following proposition establishes an upper
bound of

∑Kn
j=1 |aα

ij |.
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Proposition 3.2. Let p = 0 and λ > 0. For each index set α ⊆ {1, · · · , Kn − 1} with Kn ≥ 2,∑Kn
j=1 |aα

ij | =
∑Kn

j=1 aα
ij = 1 + 2λ.

Proof. Let z∗ ≡ (1 + 2λ)−1 1, where 1 denotes the vector of ones. By making use of the matrix
Λ̃α defined in Lemma 3.1 and the formula of dii in (13), it can be verified via straightforward
computation that b̃α(z∗) = 1, and thus b

α(z∗) = 1, for each α ⊆ {1, · · · ,Kn−1}. The proposition
thus follows in view of b

α
i (z∗) =

∑Kn
j=1 aα

ij/(1 + 2λ) for each i = 1, · · · ,Kn.

In what follows, we focus on p = 1 and establish a uniform bound for the sums of the coefficients
of each selection function b

α
i (z), regardless of i, Kn, λ, and α. Note that for each i, the sum of the

positive coefficients of b
α
i is equal to b

α
i (1) and further equals to the ith element of

(
Λ̃α(hα)

)−1(1+
hα

)
, where hα = (hα

1 , · · · , hα
` )T ∈ R`

+. We show below that each element of
(
Λ̃α(h)

)−1(1 + h
)

attains its maximum at h = 0. This implies that the sum of the positive coefficients of b
α
i is

bounded above by ‖(Λ̃α(0)
)−1‖∞.

Proposition 3.3. Let p = 1, and let n/Kn and λ > 0 be sufficiently large with Kn ≥ 2. For a
given index set α and each i ∈ {1, · · · , `},

[(
Λ̃α(h)

)−1(1 + h
)]

i
<

[(
Λ̃α(0)

)−11
]
i
, ∀ 0 6= h ∈ R`

+.

Proof. The case of ` = 1 is easy to verify and thus omitted. We assume that ` ≥ 2 in the sequel.
For the given α and i, define the real-valued function g(h) ≡ eT

i

(
Λ̃α(h)

)−1(1 + h
)
. Clearly g(h) is

continuously differentiable on an open covering of R`
+. For each j,

∂ g(h)
∂ hj

= eT
i

(
Λ̃α(h)

)−1ej + eT
i

[
− (

Λ̃α(h)
)−1 ∂Λ̃α(h)

∂ hj

(
Λ̃α(h)

)−1
](

1 + h
)

=
((

Λ̃α(h)
)−1ei

)
j
− (1 + 2η)

((
Λ̃α(h)

)−1ei

)
j

((
Λ̃α(h)

)−1(1 + h
))

j

=
((

Λ̃α(h)
)−1ei

)
j

[
1− (1 + 2η)

((
Λ̃α(h)

)−1(1 + h
))

j

]

We deduce from (a) of Proposition 3.1 that
((

Λ̃α(h)
)−1ei

)
j

> 0 for all h ∈ R`
+. Noticing Λα(h)1 =

(
θ + η + h1(1 + 2η), (1 + h2)(1 + 2η), · · · , (1 + h`−1)(1 + 2η), θ + η + h`(1 + 2η)

)T , we further have

1− (1 + 2η)
((

Λ̃α(h)
)−1(1 + h

))
=

(
Λ̃α(h)

)−1
[
Λ̃α(h)1− (1 + 2η)(1 + h)

]

= (θ − η − 1)
(
Λ̃α(h)

)−1(e1 + e`

)
< 0, (21)

where we use the facts that θ − η − 1 < 0 for all large n/Kn, λ and
(
Λ̃α(h)

)−1(e1 + e`

)
> 0

for all h ≥ 0. As a result, the gradient ∇g(h) =
(∂g(h)

∂h1
, · · · , ∂g(h)

∂h`

)T
< 0 for all h ∈ R`

+. For
a nonzero h∗ in the convex cone R`

+, let (0, h∗) ≡ {µh∗ : µ ∈ (0, 1)} be the open line segment
joining 0 and h∗. It follows from the Mean Value Theorem that there exists z ∈ (0, h∗) such that
g(h∗) = g(0) + 〈∇g(z), h∗〉. Consequently, g(h∗) < g(0).

In view of the above proposition, it suffices to show that each element of
(
Λ̃α(0)

)−11 is uniformly
bounded, regardless of Kn, λ and α. This is proven in the following proposition, where Λ̃α(0) is
denoted by Λ0 for notational convenience.
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Proposition 3.4. Let p = 1, and n/Kn and λ > 0 be sufficiently large. Then for any ` ∈ N, the
following holds for each Λ0 ∈ R`×`:

0 < eT
i (Λ0)−11 ≤ 1 + 2λ

θ̃n + η̃n

, ∀ i = 1, · · · , `

Proof. When ` = 1, we have Λ0 ≥ 2(θ + η) > 0 (cf. (13)). Hence the proposition follows. Consider
` ≥ 2. Let vi ≡ eT

i (Λ0)−11 for each i. Let ρ ≡ (1−
√

1− 4η2)/(−2η) be the root of the equation
ηx2 + x + η = 0 with 0 < ρ < 1. It is known from [7] that

v1 = v` =

( ∑`−1
j=0 ρj

) [
(θ + ηρ)− ρ`−2(η + θρ)

]

(θ + ηρ)2 − ρ2(`−2)(η + θρ)2
=

∑`−1
j=0 ρj

(θ + ηρ) + ρ`−2(η + θρ)
.

Moreover, it can be shown by direct calculation that for n/Kn sufficiently large, θ + ηρ > 0 and
η + θρ < 0. Hence, (θ + ηρ) + ρ`−2(η + θρ) ≥ (θ + ηρ) + (η + θρ) = (1 + ρ)(θ + η) > 0 for all ` ≥ 2.
This shows v1 = v` > 0. Furthermore, notice

( `−1∑

j=0

ρj
)

(θ + η)− [
(θ + ηρ) + ρ`−2(η + θρ)

]

=
1− ρ`−2

1− ρ
(η + θρ)− (1− ρ`−2)ηρ =

1− ρ`−2

1− ρ

[
η + θρ− ηρ + ηρ2

]
=

1− ρ`−2

1− ρ

(
θ − η − 1

)
ρ,

where ηρ2 + ρ + η = 0 is used. Since θ − η − 1 < 0 for n/Kn sufficiently large, we have v1 = v` <

1/(θ + η) = (1 + 2λ)/(θ̃n + η̃n).
To obtain the desired result for other i’s, we see from (21) that

(1 + 2η) vi = 1 + (1 + η − θ)
[ ((

Λ0

)−1e1

)
i
+

((
Λ0

)−1e`

)
i

]

It follows from Proposition 3.1 that
[(

Λ0

)−1e1

]
i
> 0 and

[(
Λ0

)−1e`

]
i
> 0. Hence vi > 0. Further-

more,
[(

Λ0

)−1e`

]
i

=
[(

Λ0

)−1e1

]
`−i

. Therefore,
[(

Λ0

)−1e1

]
i
+

[(
Λ0

)−1e`

]
i
≤ eT

1 (Λ0)−11 = v1 ≤
(θ + η)−1. Consequently,

vi ≤ 1
1 + 2η

[
1 + (η + 1− θ)

1
θ + η

]
≤ 1 + 2λ

1 + 2η̃n

[
1 +

η̃n + 1− θ̃n

θ̃n + η̃n

]
≤ 1 + 2λ

θ̃n + η̃n

Combining Propositions 3.3 and 3.4 and recalling θ̃n → θ̃∗ and η̃n → η̃∗ as n/Kn →∞, where
θ̃∗ > 0 and η̃∗ > 0, we have

Proposition 3.5. Let p = 1. For all sufficiently large n/Kn and λ > 0, and for each index set
α ⊆ {1, · · · ,Kn + p− 1}, the coefficients aα

ij of each selection function b
α
i (z) satisfy

Kn+p∑

j=1

∣∣aα
ij

∣∣ =
Kn+p∑

j=1

aα
ij ≤

2(1 + 2λ)

θ̃∗ + η̃∗
, ∀ i.

Remark 3.1. We point out two observations to be used in the following subsection.

(1) In view of Propositions 3.3 and 3.4, we conclude that for all sufficiently large n/Kn and
λ > 0, ‖(Λ̃α(h)

)−1(1 + h
)‖∞ ≤ 2(1 + 2λ)(θ̃∗ + η̃∗)−1 for all α and h ≥ 0;

(2) All the results in this subsection remain true if η̃∗ is replaced by an arbitrary positive number
(with θ̃∗ = 1/2). This observation is instrumental to the case p ≥ 2 as shown in Proposi-
tion 3.6.
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3.2 The Case of p ≥ 2

In this case, XT X is a (2p + 1)-diagonal matrix of order (Kn + p), i.e.,

XT X =


α1n ν(2,1)n · · · ν(p,1)n γ1n 0 · · · 0
... 0 · · · 0

ν(2,1)n α2n

...
... γ1n · · · 0

... 0 · · · 0
...

. . . ν(p,p−1)n

...
. . . 0 0 · · · 0

ν(p,1)n · · · ν(p,p−1)n αp n γp n · · · · · · γ1n 0 · · · · · · 0

γ1n · · · · · · γp n βn γpn · · · · · · γ1n 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . . 0 · · · 0

0 · · · 0 γ1n · · · · · · γpn βn γpn · · · · · · γ1n

0 · · · 0 0 γ1n

. . .
. . . γpn αp n ν(p,p−1)n · · · ν(p,1)n

0 · · · 0 0 0
. . .

. . .
... ν(p,p−1)n

. . .
...

0 · · · 0 0 0 0 γ1n

...
... α2n ν(2,1)n

0 · · · 0 0 0 0 0 γ1n ν(p,1)n · · · ν(2,1)n α1n




Define
λ =

λ∗

βn
, Γn =

1
βn

XT X, and ȳ =
1
βn

XT y

and
θ̃k n ≡ αkn

βn
, τ̃(j, k)n ≡

ν(j, k)n

βn
, η̃kn ≡ γkn

βn
,

which satisfy 0 < θ̃1n < · · · < θ̃pn < 1, 0 < η̃1n < · · · < η̃pn < 1 with
∑p

j=1 η̃jn dependent on p

only, and 0 < τ̃(i,j)n < τ̃(i−1,j)n < 1 and 0 < τ̃(i,j)n < τ̃(i,j+1)n < 1. Moreover, define Λ (whose
subscript n is dropped as before) as

Λ = (1 + 2λ)−1(Γn + λDT D) =


θ1n τ(2,1)n · · · τ(p,1)n η1n 0 · · · 0
... 0 · · · 0

τ(2,1)n θ2n

...
... η1n · · · 0

... 0 · · · 0
...

. . . τ(p,p−1)n

...
. . . 0 0 · · · 0

τ(p,1)n · · · τ(p,p−1)n θp n ηp n · · · · · · η1n 0 · · · · · · 0

η1n · · · · · · ηp n 1 ηpn · · · · · · η1n 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . . 0 · · · 0

0 · · · 0 η1n · · · · · · ηpn 1 ηpn · · · · · · η1n

0 · · · 0 0 η1n

. . .
. . . ηpn θp n τ(p,p−1)n · · · τ(p,1)n

0 · · · 0 0 0
. . .

. . .
... τ(p,p−1)n

. . .
...

0 · · · 0 0 0 0 η1n

...
... θ2n τ(2,1)n

0 · · · 0 0 0 0 0 η1n τ(p,1)n · · · τ(2,1)n θ1n




,

where

θk n ≡ θ̃kn + 2λ

1 + 2λ
, τ(j, k)n ≡





τ̃(j, k)n − λ

1 + 2λ
, if k = j − 1

τ̃(j, k)n

1 + 2λ
, otherwise

, ηkn ≡





η̃kn − λ

1 + 2λ
, if k = p

η̃kn

1 + 2λ
, otherwise
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Following the similar discussions near Lemma 3.1, we obtain the matrix Λ̃α from Λ pertain-
ing to each index set α ⊆ {1, · · · ,Kn + p − 1}. Specifically, let {βα

1 , · · · , βα
` } be the parti-

tion of {1, · · · ,Kn + p} corresponding to α. Then the elements of Λ̃α are given by (Λ̃α)ij =∑
s∈βα

i , t∈βα
j

Λs t. For a given p ≥ 2, choose θ̂∗ = 1/2 and let η̂∗ ≡
∑p

j=1 η̃j n > 0 (dependent on p

only). Define θ∗ ≡ (θ̂∗ + λ)/(1 + 2λ) and η∗ ≡ (η̂∗− λ)/(1 + 2λ). Hence η∗ =
∑p

j=1 ηjn. Moreover,
for each given Kn, define a tridiagonal matrix Λ∗ of order (Kn + p) with the similar structure as
that of Λ defined in (12) but with θ and η replaced by θ∗ and η∗ respectively. Thus for each index
set α ⊆ {1, · · · ,Kn + p − 1}, we obtain the corresponding matrix Λ̃α∗ as in the prior subsection.
Let ∆Λ̃α ≡ Λ̃α − Λ̃α∗ . The lemma below shows that each element of ∆Λ̃α is of order λ−1.

Lemma 3.4. For any given p ≥ 2, there exists a positive constant χp, dependent on p only, such
that for each given Kn and index set α ⊆ {1, · · · ,Kn + p− 1}, any row and column of ∆Λ̃α has at
most (2p + 1) nonzero elements, each of which satisfies

∣∣∣(∆Λ̃α)ij

∣∣∣ ≤ χp (1 + 2λ)−1.

Proof. If ∆Λ̃α is of order no less than (2p + 1), then it is a (2p + 1)-diagonal matrix. Hence a row
or column of ∆Λ̃α has at most (2p + 1) nonzero elements. To establish the desired upper bound
for nonzero elements, we consider two cases: (1) i 6= j; and (2) i = j. For case (1), recall that
βα

i ∩βα
j = ∅. Hence, Λβα

i βα
j

is a sub-block of Λ above or below the diagonal of Λ and Λβα
i βα

j
contains

at most p(p+1)/2 nonzero elements of Λ. Moreover, for s ∈ βα
i , t ∈ βα

j , we have: (i) if |s− t| ≥ 2,
then |Λs t− (Λ∗)s t| = |Λs t| ≤ (1 + 2λ)−1; and (ii) if |s− t| = 1, then |Λs t− (Λ∗)s t| ≤ η̂∗(1 + 2λ)−1,
where η̂∗ > 0 depends on p only. Consequently, |(∆Λ̃α)ij | ≤ p(p + 1)max(1, η̂∗)/[2(1 + 2λ)] once
i 6= j. In what follows, we consider case (2) where i = j, i.e., Λβα

i βα
j

is a principal submatrix

of Λ. Recall hi = |βα
i | − 1. Letting d ≡ min(p, hi), it is noticed that (Λ̃α)ii = D0 + 2

∑d
k=1 Dk,

where D0 is the sum of the diagonal entries of Λβα
i βα

j
, and Dk is the sum of the (one-sided) kth

off-diagonal entries of Λβα
i βα

j
. Since at most 2p diagonal entries are different from 1 and each

difference is bounded by (1 + 2λ)−1, D0 = (1 + hi) + e0 with |e0| ≤ 2p(1 + 2λ)−1. Similarly,
at most (p − 1) 1st off-diagonal entries are different from ηp n and each difference is bounded
by (1 + 2λ)−1. Thus D1 = hi ηp n + e1 with |e1| ≤ (p − 1)(1 + 2λ)−1. In general, we have
Dk = (hi +1−k) η(p+1−k) n +ek with |ek| ≤ (p−k)(1+2λ)−1 for each 1 ≤ k ≤ d. Consequently, by
observing d ≤ p, (Λ̃α)ii = (1 + hi) +

∑d
k=1 2(hi + 1− k) η(p+1−k) n + ẽ, where |ẽ| ≤ ζp(1 + 2λ)−1 for

some constant ζp > 0, dependent on p only. In light of (13), we have (Λ̃α∗ )ii = (1+hi)+2hi η∗+ e′,
where |e′| ≤ 2(1 + 2λ)−1. Using η∗ =

∑p
k=1 ηk n and |η(p+1−k) n| ≤ (1 + 2λ)−1 for all k ≥ 2, we

obtain |(∆Λ̃α)ii| ≤
∑d

k=1 2(k− 1) |η(p+1−k) n|+(ζp +2)(1+2λ)−1 ≤ (p2 + ζp +2)(1+2λ)−1. Hence
χp ≡ max

(
p(p+1) max(1, η̂∗)/2, p2 + ζp +2

)
is the desired upper bound, dependent on p only.

We introduce more notation for the subsequent development. For a given matrix A = [aij ], let
|A| ≡ [|aij |] denote the matrix formed by the absolute values of the elements of A. It is easy to
verify that for matrices A and B, ‖|A|‖∞ = ‖A‖∞ and [|AB|]ij ≤ [|A| · |B|]ij , ∀ i, j.

Proposition 3.6. Let p ≥ 2, % ∈ (0, 1), and γ ∈ (%, 1). Suppose that Kn ∼ nγ and λ ∼ n2(γ−%).
Then there exists κp > 0, dependent on p only, such that for all n sufficiently large and for each
Kn and any index set α ⊆ {1, · · · ,Kn + p− 1}, the coefficients aα

ij of each selection function b
α
i (z)

satisfy
∑Kn+p

j=1 |aα
ij | ≤ κp(1 + 2λ).

Proof. It is easy to verify that the given orders of Kn and λ(n) satisfy the conditions in (b) of
Proposition 3.1. Hence, for the θ∗ and η∗ corresponding to the given p, as long as n is sufficiently
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large, each element of (Λ̃α∗ )−1 is positive and is not greater than (Λ−1∗ )11 for any Kn and index
set α. Letting ρ∗ ∈ (0, 1) be the solution of the equation η∗x2 + x + η∗ = 0, it is shown via a
similar argument as in [7] that under the given order conditions, ρKn∗ ∼ exp(−c n%) with c > 0 such
that (Λ−1∗ )11 → (θ∗ + η∗ρ∗)−1 ∼

√
λ(n) as n → ∞. Therefore, for all large n and any index set

α, each element of (Λ̃α∗ )−1 is of order no greater than
√

λ(n). Since Lemma 3.4 shows that each
column of ∆Λ̃α has at most (2p + 1) nonzero elements of order λ−1, we have, for all n sufficiently
large, ‖(Λ̃α∗ )−1 (∆Λ̃α)‖∞ ∼ λ−1/2(n) for each α, where ‖ · ‖∞ denotes the induced infinity matrix
norm. Hence (Λ̃α)−1 = (Λ̃α∗ + ∆Λ̃α)−1 =

( ∑∞
i=0

[ − (Λ̃α∗ )−1 (∆Λ̃α)
]i) (Λ̃α∗ )−1. Let hα ∈ R`

+ be
defined similarly as in the last subsection, i.e., hα

i ≡ |βα
i | − 1, ∀ i = 1, · · · , `. For the selection

function b
α
i (z) ≡ ∑Kn+p

j=1 aα
ijzj , it follows from the similar argument before Proposition 3.3 that∑Kn+p

j=1 |aα
ij | ≤ ‖|(Λ̃α)−1|(1 + hα)‖∞. Since |(Λ̃α)−1|ij ≤

[(∑∞
i=0 |(Λ̃α∗ )−1 (∆Λ̃α)|i) |(Λ̃α∗ )−1|]

ij
for

all i, j and 1 + hα > 0, we deduce that

∥∥∥|(Λ̃α)−1|(1 + hα)
∥∥∥
∞

≤
∥∥∥
( ∞∑

i=0

|(Λ̃α
∗ )
−1 (∆Λ̃α)|i) |(Λ̃α

∗ )
−1|(1 + hα)

∥∥∥
∞

≤
( ∞∑

i=0

‖(Λ̃α
∗ )
−1 (∆Λ̃α)‖i

∞
)∥∥(Λ̃α

∗ )
−1(1 + hα)

∥∥
∞,

where the last inequality is due to the fact that each element of (Λ̃α∗ )−1 is positive. Therefore, we
have ‖|(Λ̃α)−1|(1+hα)‖∞ ≤ 2 ‖(Λ̃α∗ )−1(1+hα)‖∞ for all Kn, λ and all α as long as n is sufficiently
large. Since it is observed from Remark 3.1 that ‖(Λ̃α∗ )−1(1 + hα)‖∞ ≤ 2(1 + 2λ)(θ̂∗ + η̂∗)−1 for
all Kn, λ and α (for any large n), where θ̂∗ + η̂∗ depends on p only, the proposition follows.

3.3 Proof of Theorem 3.1

Since z = ȳ/(1 + 2λ), each function b̂α
i (ȳ) =

∑Kn+p
j=1 āα

ij ȳj , where āα
i j = aα

i j/(1 + 2λ) > 0, ∀ i, j =
1, · · · ,Kn + p for each index set α. By virtue of Propositions 3.2, 3.5 and 3.6, we have, for any
p ∈ Z+, under the specified conditions in each proposition, the mapping ȳ 7→ b̂i is a continu-
ous piecewise linear function whose each selection function b̂α

i : RKn+p → R satisfies
∣∣ b̂α

i (ȳ)
∣∣ ≤( ∑Kn+p

j=1 |āα
i j |

)
max(|ȳi|) = κp ‖ ȳ‖∞, ∀ y, namely, each b̂α

i has the Lipschitz constant κp, regardless
of Kn, λ, α and i. Hence, for a given p and a fixed Kn, b̂i admits a conic subdivision of RKn+p

[4, 21, 23], i.e., RKn+p is partitioned into finitely many polyhedral cones and b̂i coincides with one
of its selection functions on each cone. For arbitrary u, v ∈ RKn+p, the line segment joining u and
v is partitioned by the conic subdivision into finitely many sub-segments, on each of which b̂i has
the same Lipschitz constant κp. It thus follows from the similar proof of [4, Proposition 4.2.2] that∣∣b̂i(u)− b̂i(v)

∣∣ ≤ κp ‖u− v‖∞, ∀ u, v ∈ RKn+p.

3.4 Implications of Uniform Lipschitz Property

The uniform Lipschitz property of b̂ leads to two important consequences that pave the way to
asymptotic analysis: stochastic boundedness and consistency at the boundary. Specifically, let
b̌ ≡ b̂(E(ȳn)), where E(·) denotes the expectation operator, and define f̄ [p](x) ≡ ∑Kn+p

k=1 b̌kB
[p]
k (x).

According to Theorem 3.1, we have

sup
x∈[0,1]

|f̂ [p](x)− f̄ [p](x)| ≤ ‖b̂(ȳ)− b̂(E(ȳ))‖∞ ≤ κp ‖ȳ − E(ȳ)‖∞ = Op

(√
n−1Kn log Kn

)
, (22)
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where “a = Op(b)” means that a/b is bounded in probability. Let µ = λ∗/(nKn). It shall be shown
that, under mild conditions on f ,

sup
x∈[0,1]

|f̄ [p](x)− f(x)| =
{

O(µ), if p = 1
O(µ) + O(K−1

n ), if p 6= 1
(23)

The development of (23) is a special case of Theorem 4.1. Combining (22) and (23), we have

sup
x∈[0,1]

|f̂ [p](x)− f(x)| =
{

Op

(√
n−1Kn log Kn

)
+ O(µ), if p = 1

Op

(√
n−1Kn log Kn

)
+ O(µ) + O(K−1

n ), if p 6= 1
(24)

Brunk’s estimator (1) is inconsistent at boundary points [31], which is known as the spiking problem.
In contrast, (24) shows that f̂ [p] is stochastically uniformly bounded and f̂ [p](0) is consistent if
n−1Kn log Kn → 0 and µ → 0 as Kn → ∞ and n → ∞. This result is critical to estimation of
error terms in asymptotic analysis in Section 4; see the proof of Lemma 4.1, for example.

4 Asymptotic Properties of Monotone P -Spline Estimator

4.1 Linear Splines: p = 1

We first concentrate on f̂ [p] with p = 1. The closed form representation of f̂ [1] is unavailable from
(8), which makes it difficult to study its properties. In this subsection, we replace the difference
equation (8) by its analogous differential equation to establish its asymptotic distributions.

Let ω be the uniform distribution on x1, . . . , xn, and let g be the piecewise constant function
for which g(xi) = yi for i = 1, . . . , n. Define F̂ (x) ≡ ∫ x

0 f̂ [1](y)dy and

G(x) ≡
∫ x

0
g(y)dω(y) =

1
n

n∑

i=1

yi I{x ∈ R |xi ≤ x},

where I denotes the indicator function of a set. Denote G̃ the greatest convex minorant of the
cumulative sum diagram G, i.e., G̃ is the supremum of all convex functions lying below G (see [3,
p.11] for a similar discussion on a convex hull of a given set of points). Hence, G̃ is a convex and
piecewise linear function. It is shown in [15] that G and G̃ are close when the derivative of the
true regression function f is bounded away from zero, and ‖G − G̃‖ = Op((n−1 log n)2/3), where
‖f‖ ≡ sup[0,1] |f(x)|. The subsequent norms are defined in the same way. For any x ∈ (0, 1), let
d = bKnxc. It is clear that F̂ ′′(x) = Kn(b̂d+2 − b̂d+1). Let

R1(x) =
[
F̂ (x)−G(x)

]−
[ 1

n

d+1∑

k=1

n∑

i=1

B
[1]
k (xi)f̂ [1](xi)− 1

n

d+1∑

k=1

n∑

i=1

B
[1]
k (xi)yi

]
. (25)

Recall that µ = λ∗/(nKn). Thus, the optimality condition (8) becomes the following ODE with a
constrained right-hand side and thus a complementarity system [22, 23]: µF̂ ′′ =

[
F̂ −G−R1

]
+
.

Define R2 = (F̂ − G̃)− µF̂ ′′. Then, F̂ solves the differential equation

µF̂ ′′(t) = F̂ (t)− G̃(t)−R2(t), t ∈ [0, 1], (26)

with two boundary conditions F̂ (0) = 0 and F̂ (1) = G̃(1)+ e1 by (9), where e1 = F̂ (1)− F̌ (1) is of
order Op(n−1) since f̂ [1] is bounded with probability one according to (22) and (23). The following
lemma shows that ‖R2‖ is small and of order Op((n−1 log n)2/3) + Op((n−1K−1

n log Kn)1/2).
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Lemma 4.1. Assume that either (i) µ and Kn satisfy µn2/3 →∞, µn2/5 → 0, and µ−1/2 log Kn/Kn →
0; or (ii) µ = c2n−2/5 and Kn ∼ nγ with γ > 1/5. Then

‖R2‖ = Op

(
(
log n

n
)2/3

)
+ Op

(
(
log Kn

nKn
)1/2

)
.

Proof. Let d̃ = bnxc. Define F̌ (x) =
∫ x
0 f̂ [1](y)dω(y). Note that

1
n

d+1∑

k=1

n∑

i=1

B
[1]
k (xi)f̂ [1](xi) =

1
n

dMn∑

i=1

f̂ [1](xi) +
1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)f̂ [1](xi)

= F̌ (x)− 1
n

d̃∑

i=dMn+1

f̂ [1](xi) +
1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)f̂ [1](xi).

Similarly, we have

1
n

d+1∑

k=1

n∑

i=1

B
[1]
k (xi)yi = G(x)− 1

n

d̃∑

i=dMn+1

yi +
1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)yi.

Hence, it follows from (25) that

R1(x) = F̂ (x)− F̌ (x) +
1
n

d̃∑

i=dMn+1

(f̂ [1](xi)− yi)− 1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)(f̂ [1](xi)− yi)

= F̂ (x)− F̌ (x) + W1(x) + W2(x),

where

W1(x) =
1
n

d̃∑

i=dMn+1

(f̂ [1](xi)− f(xi))− 1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)(f̂ [1](xi)− f(xi)),

W2(x) =
1
n

d̃∑

i=dMn+1

(f(xi)− yi)− 1
n

(d+1)Mn∑

i=dMn+1

B
[1]
d+1(xi)(f(xi)− yi).

It is clear that ‖F̂ − F̌‖ = Op(n−1) [16]. From (24), we have ‖W1‖ ≤ 2n−1Mn‖f̂ [1] − f‖ =
Op(

√
log Kn/(nKn)). Note that W2(x) is a normal random variable with mean zero and variance

of order O((nKn)−1), and hence ‖W2‖ is of order Op(
√

log Kn/(nKn)). Therefore, ‖R1‖ is of order
Op(

√
log Kn/(nKn)) + Op(n−1). Since R2 = µF̂ ′′ − (F̂ − G̃), we have

‖R2‖ = ‖(F̂ −G−R1)+ − (F̂ − G̃)‖ ≤ ‖(F̂ −G)+ − (F̂ − G̃)+‖+ ‖(F̂ − G̃)−‖+ ‖R1‖
≤ ‖G− G̃‖+ ‖(F̌ − G̃)−‖+ ‖F̂ − F̌‖+ ‖R1‖
= Op

(
(
log n

n
)2/3

)
+ Op

(
(
log Kn

nKn
)1/2

)
+ Op

( 1
n

)
,

where ‖(F̌ − G̃)−‖ = Op(n−1) is given by [16, Lemma 2]. Hence, the lemma follows.

Denote by ξ = µ−1/2. The solution to (26) can be expressed explicitly by the corresponding
Green’s function [16]: χµ(t, s) = 2−1 ξ exp(−ξ|t− s|), 0 ≤ t ≤ 1. Using this, we have

F̂ (x) =
∫ 1

0
χµ(x, s)G̃(s)ds +

∫ 1

0
χµ(x, s)R2(s)ds + c0(ξ)e−ξx + c1(ξ)e−ξ(1−x), (27)

where both c0 and c1 can be obtained from the boundary conditions and it can be shown that
|c0(ξ)|+ |c1(ξ)| ≤ 6‖G̃ + R2‖+ 4‖F̂‖, for ξ ≥ 1.
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Theorem 4.1. Assume that the true regression function f is twice continuously differentiable.
Then, the function f̂ is given by

f̂ [1](x) = f(x) + µf ′′(x) + o(µ) +
σξ

2n

n∑

i=1

e−ξ|x−xi|zi + Op

(
(

n

log n
)−2/3

)
ξ

+Op

(
(
log Kn

nKn
)1/2

)
ξ + e−ξx(1−x)Op(ξ) (28)

uniformly in λ and x ∈ (0, 1). Moreover, if f is three times continuously differentiable, then

d

dx
f̂ [1](x) = f ′(x) + µf ′′′(x) + o(µ) + Op

( 1√
nξ

)
+ Op

(
(

n

log n
)−2/3

)
ξ2

+Op

(
(
log Kn

nKn
)1/2

)
ξ2 + e−ξx(1−x)Op(ξ2) (29)

uniformly in λ and x ∈ (0, 1).

Proof. Let F (x) =
∫ x
0 f(y)dy and F́ (x) =

∫ x
0 f(y)dω(y). Obviously, ‖F́ − F‖ = O(n−1). Differen-

tiating pointwise of equation (27), we have

f̂(x) =
∫ 1

0

∂

∂x
χµ(x, s)G̃(s)ds +

∫ 1

0

∂

∂x
χµ(x, s)R2(s)ds − ξe−ξxc0(ξ) + ξe−ξ(1−x)c1(ξ)

=
∫ 1

0

d

ds
χµ(x, s)F (s)ds + V0(x) + V1(x) + V2(x), (30)

where

V0(x) =
∫ 1

0

∂

∂x
χµ(x, s)[G(s)− F́ (s)]ds = −

∫ 1

0

∂

∂s
χµ(x, s)[G(s)− F́ (s)]ds

= −χµ(x, 1)[G(1)− F̃ (1)] +
∫ 1

0
χµ(x, s)[dG(s)− dF́ (s)]

= − ξ

2n
e−ξ(1−x)

n∑

i=1

σzi +
ξ

2n

n∑

i=1

e−ξ|x−xi|σzi = Op

(ξe−ξ(1−x)

√
n

)
+

ξ

2n

n∑

i=1

e−ξ|x−xi|σzi,

V1(x) =
∫ 1

0

∂

∂x
χµ(x, s)

[
G̃(s) + R2(s)− F (s)−G(s) + F́ (s)

]
ds,

V2(x) = −ξe−ξxc0(ξ) + ξe−ξ(1−x)c1(ξ)− 1
2
ξe−ξ(1−x)F (1) = e−ξx(1−x)Op(ξ).

However, since ‖F́ − F‖ = O(n−1),

|V1(x)| <
1
2

∥∥∥G̃−G + R2 − F + F́
∥∥∥

∫ 1

0
ξ2e−ξ|x−s|ds = Op

(
(

n

log n
)−2/3

)
ξ + Op

(
(
log Kn

nKn
)1/2

)
ξ.

Furthermore,
∫ 1

0

∂

∂x
χµ(x, s)F (s)ds = −

∫ 1

0

∂

∂s
χµ(x, s)F (s)ds = −χµ(x, 1)F (1) +

∫ 1

0
χµ(x, s)f(s)ds

= −1
2
F (1)ξeξ(x−1) +

∫ 1

0
χµ(x, s)f(s)ds.

Note that f0(x) =
∫ 1
0 χµ(x, s)f(s)ds satisfies the equation µf ′′0 = f0 − f . By equation (6.4) in

[14, Theorem 2.2], we obtain
∫ 1
0 χµ(x, s)f(s)ds = f(x) + µf ′′(x) + o(µ). This gives rise to the

representation of f̂ in (28). By differentiating (30) again, (29) can be established similarly.
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Theorem 4.1 indicates that the monotone P -spline estimator is approximately a kernel re-
gression estimator. The equivalent kernel is the double-exponential or Laplace kernel and the
equivalent bandwidth is of order µ. The asymptotic mean has the bias µf ′′(x) + o(µ), which is
negligible if µ is reasonably small. On the other hand, µ can not be arbitrarily small as that will
inflate the random component. The admissible range for µ given in Theorem 4.2 is a compromise
between these two.

Theorem 4.2. Suppose that f is twice continuously differentiable with bounded second order
derivative on [0, 1].

(a) If µ and Kn satisfy µn2/3 →∞, µn2/5 → 0, and µ−1/2 log Kn/Kn → 0, then
√

nµ
1
2 (f̂ [1](x)− f(x)) −→ N

(
0,

σ2

4

)
(31)

in distribution as n →∞.

(b) If µ = c2n−2/5 and Kn ∼ nγ with γ > 1/5, then

n
2
5 (f̂ [1](x)− f(x)) −→ N

(
c2f ′′(x),

σ2

4c

)
(32)

in distribution as n →∞.

Proof. Let Πµ(x) = σξ/(2n)
∑n

i=1 e−ξ|x−xi|zi. For any fixed x, the Lindeberg-Levy Central Limit
Theorem gives √

nµ1/2 Πµ(t) −→ N
(
0,

σ2

4

)
,

in distribution. When µ and Kn satisfy µn2/3 → ∞, µn2/5 → 0, and µ−1/2 log Kn/Kn → 0, it is
easy to see that the remainder terms in (28) are op(1). If µ = c2n−2/5, we have

√
nµ1/2µf ′′(x) =

c2f ′′(x). Hence the theorem follows.

When µ ∼ n−2/3, this yields the slowest rate of convergence (∼ n1/3) in the limit, which
is the same as that of Brunk’s estimator in (1). The asymptotic results in Theorem 4.2 provide
theoretical justification of the observation that the number of knots is not important, as long as it is
above some minimal level [18]. A comparison to [7, Theorem 4] shows that both the unconstrained
P -spline estimator and the monotone P -spline estimator share the same asymptotic distribution
given in (32). It is also interesting to notice that the monotone linear P -spline estimator and the
monotone linear smoothing spline estimator in [16] are asymptotically equivalent. However, many
challenges emerge for both algorithms and asymptotic analysis when we shift from linear monotone
smoothing splines to higher-degree counterparts. On the other hand, it is relatively easier to obtain
monotone P -spline estimators of other degrees. We discuss these estimators in Subsection 4.2.

4.2 Splines of Other Degrees: p 6= 1

In this subsection, we study the asymptotic properties of f̂ [p](x) =
∑Kn+p

k=1 b̂kB
[p]
k (x) when p 6= 1.

We first define a piecewise linear function f̃ [p], where f̂ [p] and f̃ [p] share the same set of spline
coefficients. In particular, define f̃ [0](x) =

∑Kn
k=1 b̂kB

[1]
k (x), and f̃ [p](x) =

∑Kn+1
k=1 b̂

[p]
k B

[1]
k (x) if
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p ≥ 2. Note that f̃ [0] is defined on [0, 1 − 1/Kn]. Denote F̃ (x) =
∫ x
0 f̃ [p](y)dy. For any x ∈ (0, 1)

and d = bKnxc, let

R3(x) =
[
F̃ (x)−G(x)

]− 1
n

[ d+1∑

k=1

n∑

i=1

B
[p]
k (xi)f̃(xi)−

d+1∑

k=1

n∑

i=1

B
[p]
k (xi)yi

]
. (33)

Thus, the optimality condition (8) becomes µF̃ ′′(x) = [F̃ −G−R3]+. Define R4 = (F̃ − G̃)−µF̃ ′′.
Then, F̃ solves the differential equation µF̃ ′′(t) = F̃ (t)−G̃(t)−R4(t), t ∈ [0, 1], with two boundary
conditions F̃ (0) = 0 and F̃ (1) = G̃(1) + e2, where e2 = Op(n−1). Following the same discussion
as in Subsection 4.1, we can establish the asymptotic distribution for f̃ [p] as in (31) and (32),
respectively, under different admissible ranges of µ and Kn.

Lemma 4.2. For any x ∈ (0, 1), let d = bKnxc. Then,

f̂ [0](x) = f̃ [0](x) +
1
2

df̃ [0](x)
dx

[
(κd+1 − x)2 − (x− κd)2 − 1

Kn

]
, (34)

and for p ≥ 2,

f̂ [p](x) = f̃ [p](x) +
p∑

q=2

d+q+1∑

i=d+2

1
q

df̃ [p](x + i−d
Kn

)
dx

(x− κi−q)B
[q−1]
i (x). (35)

Proof. Direct algebra yields

f̂ [0](x) = Kn(F̂ (κd+1)− F̂ (κd)) = Kn(F̃ (κd + 1)− F̃ (κd))− 1
2
(b̂d+2 − b̂d+1)

= f̃ [0](x) +
1
2

df̃ [0](x)
dx

[
(κd+1 − x)2 − (x− κd)2 − 1

Kn

]
.

The B-spline basis functions have the recurrence relationship such that

B
[p]
j (x) =

Kn

p

(
x− κj−p−1

)
B

[p−1]
j−1 (x) +

Kn

p

(
κj − x

)
B

[p−1]
j (x).

Let f [p−1](x) =
∑Kn+p−1

k=1 bkB
[p−1]
k (x) with the same first (Kn + p − 1) coefficients of f̂ [p]. For

x ∈ (κd, κd+1), the difference between f [p](x) and f [p−1](x) is given by

f [p](x)− f [p−1](x) =
d+p+1∑

i=d+2

[
bi+1

Kn

p
(x− κi−p) + bi

(Kn

p
(κi − x)− 1

)]
B

[p−1]
i (x)

=
d+p+1∑

i=d+2

(bi+1 − bi)
(Kn

p
(x− κi−p)

)
B

[p−1]
i (x). (36)

Therefore,

f̂ [p](x) = f̃ [p](x) +
p∑

q=2

d+q+1∑

i=d+2

(bi+1 − bi)
(Kn

q
(x− κi−q)

)
B

[q−1]
i (x)

= f̃ [p](x) +
p∑

q=2

d+q+1∑

i=d+2

df̃ [p](x + i−d
Kn

)
dx

(1
q
(x− κi−q)

)
B

[q−1]
i (x).

Hence, the lemma follows.
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Theorem 4.3. Suppose that f is three times continuously differentiable with bounded third order
derivative on [0, 1]. Let p 6= 1.

(a) If µ and Kn satisfy µn2/3 →∞, µn2/5 → 0, and µ−1/2 log Kn/Kn → 0, then
√

nµ
1
2

(
f̂ [p](x)− f(x)− r[p]

n (x)
)
−→ N

(
0,

σ2

4

)
(37)

in distribution as n →∞, where

r[p]
n (x) =

{
− 1

2Kn
f ′(x) if p = 0

f ′(x)
∑p

q=2

∑d+q+1
i=d+2

1
q (x− κi−q)B

[q−1]
i (x) if p ≥ 2.

(b) If µ = c2n−2/5 and Kn ∼ nγ with γ > 1/5, then

n
2
5

(
f̂ [p](x)− f(x)− r[p]

n (x)
)
−→ N

(
c2f ′′(x),

σ2

4c

)
(38)

in distribution as n →∞.

Proof. We may go through the same proof as of Theorem 4.1 to establish the asymptotic distri-
bution of f̃ [p](x). For x ∈ (0, 1), equation (34) shows that the difference between f̂ [0](x) and a
piecewise linear function f̃ [0](x) is

1
2

df̃ [0](x)
dx

[ (
κd+1 − x

)2 − (
x− κd

)2 − 1
Kn

]
. (39)

By (29), we have

d

dx
f̃ [0](x) = f ′(x) + µf ′′′(x) + o(µ) + Op

( 1√
nξ

)
+ Op

(
(

n

log n
)−2/3

)
ξ2

+Op

(
(
log Kn

nKn
)1/2

)
ξ2 + e−ξx(1−x)Op(ξ2).

Hence, (39) is equal to −f ′(x)/2Kn + op(1/
√

nµ1/2 ). Combining the results in Theorem 4.2, part
(a) follows. By (29), we also have

d

dx
f̃ [p](x +

d

Kn
) = f ′(x) + O

( 1
Kn

)
+ µf ′′′

(
x +

d

Kn

)
+ o(µ) + Op

( 1√
nξ

)

+Op

(
(

n

log n
)−2/3

)
ξ2 + Op

(
(
log Kn

nKn
)1/2

)
ξ2 + e−ξx(1−x)Op(ξ2).

For any x ∈ (0, 1), the difference between f̂ [p](x) and a piecewise linear function f̃ [p](x) is given by

p∑

q=2

d+q+1∑

i=d+2

1
q

df̃ [p](x + i−d
Kn

)
dx

(x− κi−q)B
[q−1]
i (x)

=
p∑

q=2

d+q+1∑

i=d+2

1
q
f ′(x)(x− κi−q)B

[q−1]
i (x) + Op

( 1
K2

n

)
+ Op

( µ

Kn

)
+ Op

( 1
Kn
√

nξ

)
.

Thus (b) follows easily.
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Figure 1: Monotone penalized spline estimator with p = 2 (dashes), Brunk’s estimate (dots),
quadratic regression spline estimator (dot-dash), and the true regression curve (solid).

An interesting observation is that the convergence rate of f̂ [p] does not depend on the spline
degree p. Comparing Theorem 4.2 with Theorem 4.3, it is clear that the asymptotic distributions
are the same except that the asymptotic bias term of f̂ [p] has a higher order when p 6= 1, where
both r

[0]
n and r

[p]
n defined in Theorem 4.3 are of order O(K−1

n ). Further, the modeling bias due
to approximating f by a spline is asymptotically negligible if Kn ∼ nγ with γ > 2/5. While the
similar observation is attained in [7] for the unconstrained P -splines, it is the first time that this
is rigorously established for the monotone P -spline estimator.

5 Examples and Discussions

5.1 Simulation Examples

In this subsection, simulation results are presented to compare the performance of the following
three estimators: the Brunk’s estimator (BK), the monotone quadratic regression spline estimator
(QUAD) developed by [12], and the proposed monotone penalized spline estimator (PM) with
p = 2. We choose the number of knots for both quadratic regression splines and monotone
penalized splines as Kn = 20, 60, 100, respectively. The xi’s are defined in the interval [0, 1] with
sample size n = 200. The noise distribution is normal with standard deviation 0.2. Figure 1
shows the true functions of the three examples together with the estimates obtained from the
estimators. The performance criterion is the mean squared error n−1

∑n
i=1{f̂(xi)− f(xi)}2, where

f and f̂ represent the true function and estimating function, respectively. The average value of
this criterion over 1000 simulations is computed and summarized in Table 1. In addition, we also
compare the performance of the estimators at the boundary point x = 0. The average value of
the difference between f̂(0) and f(0) over 1000 simulations is summarized in Table 1 as well. The
asymptotically optimal penalty parameter µ can be found by minimizing the asymptotic integrated
mean square error, which is given by

µ2

∫ 1

0
f ′′(x)2dx +

σ2

4c
n−4/5.
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Table 1: Average mean square errors from three estimation methods
BK QUAD PM

Kn = 20 Kn = 60 Kn = 100 Kn = 20 Kn = 60 Kn = 100
Step 0.0028 0.0038 0.0031 0.0030 0.0043 0.0042 0.0042

MSE Logistic 0.0028 0.0017 0.0023 0.0025 0.0024 0.0024 0.0024
Cubic 0.0036 0.0023 0.0030 0.0032 0.0023 0.0023 0.0023
Step 0.0258 0.0074 0.0207 0.0235 0.0086 0.0092 0.0097

MSE Logistic 0.0268 0.0073 0.0198 0.0240 0.0058 0.0058 0.0057
at 0+ Cubic 0.0255 0.0143 0.0229 0.0249 0.0092 0.0093 0.0098

Therefore, the asymptotic optimal µ is

µ̃ =
[
16nσ−2

∫ 1

0
f ′′(x)2dx

]−2/5

.

Meyer and Woodroofe [13] gave a consistent estimate of σ2. We also use the kernel estimator of
f to obtain an estimate of the second derivative of f in practice. In the following examples, the
penalty parameter is chosen as 0.04.

Example 1. In this example, consider an increasing step function

f(x) =





0, 0 ≤ x < 1
3 ,

1
2 , 1

3 ≤ x < 2
3 ,

1, 2
3 ≤ x ≤ 1.

Example 2. This example focuses on the logistic function f(x) = [1 + exp(−20x + 10)]−1.

Example 3. The third example involves the cubic function f(x) = 10−3(20x− 10)3.

Since the true regression function in Example 1 is a step function, the Brunk’s estimator out-
performs the other two smooth estimators. In this case, the quadratic regression spline estimator
shows a slightly better performance than the monotone penalized spline estimator. When the true
regression function is smooth and monotone in Examples 2 and 3, the penalized monotone estima-
tor and the quadratic regression spline estimator demonstrate better behaviors than the Brunk’s
estimator. It is shown that both the quadratic regression splines and the monotone penalized
splines are robust to the number of knots. However, they behave quite differently at the boundary.
As the number of knot increases, the boundary behavior of the quadratic spline estimator tends to
that of the Brunk’s estimator. In contrast, the monotone penalized spline estimator demonstrates
consistent estimation at the boundary. This agrees with the asymptotic analysis performed before.
Finally, to be fair to unpenalized splines, it should be pointed out that unpenalized splines do not
use many knots in practice. On the other hand, more knots are expected in penalized splines since
the penalty parameter reduces the effective degrees of freedom.

5.2 Discussions

We have so far focused on the equally spaced design points and knots. When the design is not
equally spaced, one can use the ideas of [7, 26]. In specific, assume that xi’s are in (a, b). Find a
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smoothing monotone function H such that H(xi) = i/n from (a, b) to (0, 1). We use the P -spline
smoothing to fit (i/n, yi), and thus the regression function is given by f ◦ H−1. We place knots
at sample quantiles so that there are equal numbers of data points between consecutive knots.
Further study of this issue is beyond the scope of this paper and will be reported in the future.

Our methods can be applied to an estimator defined in (3) with a higher-order difference
penalty. It is conjectured that this will improve the convergence rate. Nevertheless its development
becomes much more complicated and we intend to address it in the future. We have worked
on the B-spline bases in this paper while [19] used truncated polynomials as basis functions for
unconstrained estimation. As pointed out in [20], these two bases are algebraically identical in the
unconstrained setting. For example, the penalty term in the latter case is λ∗

∑Kn+p
k=1 a2

k, where ak’s
are the coefficients.

6 Conclusions

This paper develops an asymptotic theory of monotone P -spline estimators with arbitrary spline
degrees and the first-order difference penalty from a constrained dynamic optimization perspec-
tive. The presence of the monotone constraint complicates asymptotic analysis of the estimator.
For example, the optimality conditions of spline coefficients are given by a size-dependent comple-
mentarity problem and are approximated by a dynamical complementarity system. Various tools
from constrained optimization, ODE and statistical theory are exploited to establish consistency,
asymptotic normality, and convergence rates of the estimator. These techniques can be extended
to handle additional constraints. Hence, the results developed in this paper open a door to more
complex nonparametric estimation problems subject to both dynamical and shape constraints.
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