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Abstract
This paper presents a stability analysis of switched homogenous systems on cones under arbi-

trary and optimal switching rules with extensions to conewise homogeneous or linear inclusions.
Several interrelated approaches, such as the joint spectral radius approach and the generating
function approach, are exploited to derive necessary and sufficient stability conditions and to
develop efficient algorithms for stability tests. Specifically, the generalized joint spectral radius
and the generalized joint lower spectral radius are introduced to characterize the radii of do-
mains of strong and weak attraction. Furthermore, strong and weak generating functions and
their radii of convergence are employed to derive stability conditions; their analytic properties,
numerically effective approximations and convergence analysis are established. Extensions to
conewise homogeneous or linear inclusions are made to address state dependent switching dy-
namics. Relations between different stability notions in the strong or weak sense are studied;
Lyapunov techniques are used for stability analysis of the conewise linear inclusions.

1 Introduction

Stability analysis of hybrid and switched dynamical systems is a fundamental problem in systems
and control and has received growing interest in the last few years, driven by a number of important
applications in complex systems with hierarchical and multi-modal structure [18, 29, 35]. Switched
systems and their extensions, i.e., differential or discrete inclusions [11], are subject to possible
abrupt changes in dynamics and possess inherent nonsmoothness that complicates the study of
their stability. Numerous techniques have been proposed for the stability analysis of switched
systems, particularly switched linear systems, e.g., the Lie-algebraic approach [17], the Lyapunov
framework [8, 13, 20, 26], the geometric approach [2, 18], the joint spectral radius method [15, 23, 32],
the variational approach [19, 22], and the recent generating function approach [14, 27, 28].

Most literature on switched systems concentrates on those on the Euclidean space. However,
many applied systems have their states confined within certain regions. A prominent example is
positive systems [10] that model a wide range of engineering, biological, and economic systems. In
a positive system, the system trajectories are restricted to the nonnegative orthant of Rn. Thus,
when analyzing its stability, it is more meaningful and less conservative to concentrate on this
restricted set. Certain tools, such as the common Lyapunov function approach [6, 9, 12, 21], have
been developed for switched positive systems and their extension, i.e., switched systems over cones.

This paper performs stability analysis for discrete-time switched systems on closed cones and
their extensions (namely, conewise inclusions) from several different, albeit interconnected, per-
spectives, such as the joint spectral radius approach and the generating function approach. The
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focus is on switched homogeneous systems (SHSs) on cones. This class of switched systems includes
not only the well studied switched linear systems (SLSs) on Rn as a special case but also a wide
spectrum of switched nonlinear systems on constrained regions. A key feature of the SHSs on cones
is the scaling property. By using this property and other techniques, we show that various results
for the SLSs can be generalized to switched nonlinear systems in a unified framework, which also
leads to important new results. Particularly, we consider stability notions under two switching
policies: arbitrary switching which is the most studied switching law, and the optimal switching
which is much less explored and more difficult to characterize. We refer to these stability notions
as strong and weak stabilities, respectively. Unlike the SLSs whose local and global stabilities are
equivalent, the SHSs of homogeneous degree strictly greater than one demonstrate strong nonlin-
earity such that their strong (resp. weak) stability is only valid on a certain domain called the
domain of strong (resp. weak) attraction. One of the goals of this paper is to develop necessary
and sufficient conditions and efficient algorithms to characterize the strong and weak stabilities of
the SHSs, e.g., their domains of attraction. Specifically, the paper addresses the following critical
issues that constitute the contributions of the paper as compared to the existing results:

• For the SLS, it is well known that the joint spectral radius of subsystem matrices determines
the exponential growth rate and the exponential stability of the SLS under arbitrary switching.
This paper generalizes this notion to nonlinear SHSs on cones. Particularly, the generalized joint
spectral radius (GJSR) and the generalized joint lower spectral radius (GJLSR) are introduced
via such techniques as the extended Fekete’s Lemma. These radii are exploited to determine the
domains of strong and weak attraction of the SHS on cones, respectively.

• A generating function approach is proposed to develop a unified, numerically efficient frame-
work for the stability characterization of the SHSs on cones. Informally speaking, a generating
function is a suitably defined power series whose coefficients are determined from the systems tra-
jectories under certain switching rules [14]; its radius of convergence characterizes the exponential
growth rate of the system trajectories. A generating function is closely related to the value func-
tion of a properly defined optimal control problem and admits efficient numerical approximations.
Originally introduced for the SLS on the Euclidean space Rn in [14], the generating function notion
is extended to both the SLSs on cones and the (more general) nonlinear SHSs on cones. For the
former, we establish a connection with the generating function on an invariant subspace containing
the cone and extend algorithms for the SLS on Rn to that on a convex closed cone. For the latter,
due to the nonlinearity and switching induced nonsmoothness, we develop various new techniques,
e.g., semicontinuity and Dini’s Theorem, to establish analytic properties, stability implications,
effective numerical approximations and convergence analysis of the generating functions.

• The third part of the paper extends the stability analysis of the SHSs to that of discrete-time
conewise homogeneous or linear inclusions (CHIs or CLIs), even more general switched systems
with state-dependent switchings. The state domain of a CHI is covered by finitely many cones,
with different homogeneous dynamics defined on each cone. The state dynamics takes multiple
values on the intersections of cones, thus making the system an inclusion. The strong and weak
stability notions are investigated; their subtle connections are illustrated via examples. A Lyapunov
framework is developed for the stability of the CLIs, and its relation with the SLSs is established.

The paper is organized as follows. The SHSs on cones and their stability concepts are introduced
in Section 2; the notions of the GJSR and GJLSR are defined and used to characterize the domains
of attraction. Sections 3 and 4 focus on the strong and weak generating functions for the SLSs and
the nonlinear SHSs on cones respectively. Numerical approximations and convergence analysis are
developed for the strong and weak generating functions. In Sections 5 and 6, stabilities of the CHIs
and CLIs are studied. Conclusions are drawn in Section 7.
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2 Switched Homogeneous Systems on Cones

A discrete-time switched homogeneous system (SHS) on a closed (but not necessarily convex) cone
C ⊆ Rn is defined by

x(t + 1) = Fσ(t)(x(t)), t ∈ Z+, (1)

where σ(t) ∈M := {1, . . . ,m} for each t ∈ Z+ is the switching sequence; and for each i ∈M, Fi is
a continuous Rn-valued function on an open set containing C and is positively homogeneous on C
of degree ν ≥ 1 with ν ∈ R, i.e., Fi(0) = 0, and Fi(αx) = ανFi(x), ∀ α ≥ 0, x ∈ C. We assume that
each vector field Fi is positively invariant on C, i.e., Fi(C) ⊆ C. This assumption ensures that a
trajectory starting from C remains in C for all positive times under any switching sequence. As an
example, on the positive cone C = Rn

+, all Fi may be chosen to be vector-valued maps with entries
being homogeneous multivariate polynomials with positive coefficients. In the simplest case when
the homogeneous degree ν = 1, the SHS (1) becomes the well studied switched linear system (SLS)
on C: x(t + 1) = Aσ(t)x(t), t ∈ Z+, where Ai ∈ Rn×n, i ∈ M, are matrices satisfying AiC ⊆ C. As
an important class of SHSs on cones, the SLSs will be the focus of Section 3 later on.

Denote by x(t; z, σ) the solution of the SHS (1) under the switching sequence σ starting from
z ∈ C. It is easy to see that for any α ≥ 0, x(t; αz, σ) = ανt

x(t; z, σ), ∀ t ∈ Z+. Thus, for z 6= 0,

x(t; z, σ) = ‖z‖νt
x

(
t;

z

‖z‖ , σ

)
, ∀ t ∈ Z+. (2)

In what follows, we derive some preliminary bounds on the growth of ‖x(t; z, σ)‖. Since each Fi is
continuous and the intersection C ∩ Sn−1 is compact, the quantity defined below

µ1 := max
i∈M

max
z∈ Sn−1∩C

‖Fi(z)‖ (3)

must be finite. It follows immediately from the above definition and the ν-homogeneity of Fi that

‖Fi(z)‖ ≤ µ1‖z‖ν , ∀ z ∈ C, i ∈M. (4)

Thus ‖x(1; z, σ)‖ = ‖Fσ(0)(z)‖ ≤ µ1‖z‖ν . Further, ‖x(2; z, σ)‖ = ‖Fσ(1)(x(1; z, σ))‖ ≤ µ1‖x(1; z, σ)‖ν

≤ µ1(µ1‖z‖ν)ν ≤ (µ1)ν+1‖z‖ν2
. By induction, we have the following growth estimate under any σ:

‖x(t; z, σ)‖ ≤ (µ1)
∑t−1

j=0 νj‖z‖νt
, ∀ z ∈ C, t ∈ Z+, (5)

where (µ1)
∑t−1

j=0 νj

characterizes the super-exponential growth of system trajectories when ν > 1.
In Section 2.3, more accurate growth estimates will be established.

It is worth mentioning that the SHS (1) is a special case of the discrete-time conewise homoge-
neous inclusion (CHI) to be discussed in Section 5. Hence the SHSs share favorable properties of
the CHIs, e.g., the equivalence of strong stability notions (cf. Theorem 5.1).

2.1 Stability Notions of the SHSs on Cones

It is clear that when ν = 1 (i.e., the SLS case), the local and global stability notions are equivalent.
However, this is not the case for ν > 1, because of the super-exponential growth in (5). In the
following, we introduce local stability notions first.

Definition 2.1 (Local Strong Stability of SHS). At xe = 0, the SHS (1) on C is called

• locally strongly stable if for any ε > 0, a neighborhood N of xe in C exists such that for any
z ∈ N , ‖x(t; z, σ)‖ < ε, ∀ t ∈ Z+, under any switching sequence σ;
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• locally strongly convergent if for each z in a neighborhood N of xe in C, x(t; z, σ) → 0 as
t →∞ under any switching sequence σ;

• locally strongly asymptotically stable if it is locally strongly stable and strongly convergent;

• locally strongly exponentially stable (with the parameters κ ≥ 0 and r ∈ [0, 1)) if for any z in a
neighborhood N of xe in C, ‖x(t; z, σ)‖ ≤ κrt‖z‖, ∀ t ∈ Z+, under any switching sequence σ.

In the above definitions of strong stabilities, by replacing “any switching sequence” with “at least
one switching sequence,” we can define the corresponding local weak stabilities, namely, the local
weak stability, local weak convergence, local weak asymptotic stability, and local weak exponential
stability. In this paper, these strong stabilities are also called stabilities under arbitrary switching;
while the weak ones are often referred to as stabilities under optimal switching. In the following,
we show that for ν > 1, the SHS is always locally strongly exponentially stable on C.
Lemma 2.1. Let ν > 1. The SHS (1) is strongly exponentially stable with the parameters κ = 1
and any r ∈ (0, 1) on the set N :=

{
z

∣∣ ‖z‖ ≤ (r/µ1)
1

ν−1

}
∩ C.

Proof. It follows from (5) that for any z ∈ N and any switching sequence σ,

‖x(t; z, σ)‖ ≤ (µ1)
νt−1
ν−1 ‖z‖νt−1‖z‖ ≤ (µ1)

νt−1
ν−1

(
r

µ1

) νt−1
ν−1

‖z‖ = r
νt−1
ν−1 ‖z‖ ≤ rt‖z‖, ∀ t ∈ Z+,

where νt−1
ν−1 =

∑t−1
j=0 νj ≥ t and r ∈ (0, 1) is used in the last inequality.

A justification of the choice of N in the above lemma is that if ‖z‖ ≤ (r/µ1)1/(ν−1), then by (4),
‖Fi(z)‖ ≤ µ1‖z‖ν = µ1‖z‖ν−1‖z‖ ≤ r‖z‖, i.e., each Fi is a contraction on N .

As Lemma 2.1 suggests, the neighborhood N in Definition 2.1 where the stability holds may
not be small. To highlight the domain of stability, we introduce the following concepts.

Definition 2.2 (Non-local Strong Stability of SHS). For a given (possibly large) set S ⊆ C,
the SHS (1) on C is called

• strongly asymptotically stable on S if for any z ∈ S and any switching sequence σ, lim
t→∞x(t; z, σ) =

0. In this case, the set S is called a domain of strong attraction [3];

• strongly uniformly asymptotically stable on S if for any ε > 0, there exists Tε ∈ Z+ (indepen-
dent of z and σ) such that for any z ∈ S and any switching sequence σ, ‖x(t; z, σ)‖ < ε for
all t ≥ Tε;

• strongly exponentially stable on S if there exist κ ≥ 1 and r ∈ (0, 1) (independent of z and σ)
such that for any z ∈ S and any switching sequence σ, ‖x(t; z, σ)‖ ≤ κrt‖z‖, ∀ t ∈ Z+.

Similarly, weak asymptotic (resp. uniform asymptotic, exponential) stability on the set S can be
defined for the SHS (1) by replacing “any switching sequence” with “at least one switching sequence
(possibly dependent on z)” in the above definitions. Especially, if the SHS is weakly asymptotically
stable on S, then S is called a domain of weak attraction.

We next show that the above three strong (resp. weak) stability notions are equivalent on the
intersection of C and any closed ball; see a related result for ν = 1 in [1]. Denote by Bρ := {x ∈
Rn | ‖x‖ < ρ} the open ball of radius ρ > 0, and let Bρ := clBρ = {x ∈ Rn | ‖x‖ ≤ ρ} be its closure.

Proposition 2.1. Suppose ν > 1. If the SHS (1) is weakly asymptotically stable on Bρ ∩ C for
some ρ > 0, then it is also weakly exponentially stable on Bρ ∩ C.
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Proof. Since the SHS is weakly asymptotically stable on Bρ∩C, for each z ∈ ρSn−1∩C, a switching
sequence σz exists such that x(t; z, σz) → 0 as t → ∞. For fixed σ and t, since x(t; z, σ) is a
continuous function of z, we have ‖x(Tz; z′, σz)‖ ≤ ρ/2 for some finite time Tz ∈ Z+ and all z′ in an
open neighborhood Uz of z. As all such Uz constitute an open cover of the compact set ρ Sn−1 ∩ C,
there is a finite subcover, i.e., there exist finitely many points {z∗1 , . . . , z∗p} in ρ Sn−1 ∩ C and their
open neighborhoods {Uz∗i }

p
i=1 covering ρ Sn−1 ∩ C such that on each Uz∗i , a switching sequence σ∗i

and a finite time T ∗i can be found with ‖x(T ∗i ; z, σ∗i )‖ ≤ ρ/2 for all z ∈ Uz∗i . Define

α := max
i∈M

max
z∈clUz∗

i

max
0≤t≤T ∗i

‖x(t; z, σ∗i )‖ < ∞. (6)

For any initial state z ∈ ρSn−1 ∩ C, z ∈ Uz∗i for some i ∈ {1, . . . , p}. By the definition of σ∗i
and T ∗i , x(T1) := x(T ∗i ; z, σ∗i ) satisfies ‖x(T1)‖ ≤ ρ/2. Assume x(T1) 6= 0 without loss of generality.
Then, ρ x(T1)/‖x(T1)‖ ∈ Uz∗j for some j ∈ {1, . . . , p}. By (2), x(T2) := x(T ∗j ; x(T1), σ∗j ) satisfies

‖x(T2)‖ =
(‖x(T1)‖

ρ

)ν
T∗j ∥∥∥∥x

(
T ∗j ;

ρ x(T1)
‖x(T1)‖ , σ∗j

)∥∥∥∥ ≤
(

1
2

)ν
T∗j

ρ

2
.

Similarly, ρx(T2)/‖x(T2)‖ ∈ Uz∗k for some k ∈ {1, . . . , p}, and x(T3) := x(T ∗k ; x(T2), σ∗k) satisfies

‖x(T3)‖ =
(‖x(T2)‖

ρ

)νT∗k ∥∥∥∥x

(
T ∗k ;

ρ x(T2)
‖x(T2)‖ , σ∗k

)∥∥∥∥ ≤
(

1
2

)ν
T∗j +T∗k

ρ

2
.

Continuing this process via induction, we obtain a switching sequence σz that is the concatenation
of σ∗i , σ

∗
j , σ

∗
k, . . ., under which the trajectory x(t; z, σz) at times 0 < T1 < T2 < T3 < · · · satisfies

‖x(Ti; z, σz)‖ ≤
(

1
2

)νTi−T1
ρ

2
=

ρ

2

(
1

2ν−T1

)νTi

≤ ρ

2

(
1

2ν−T1

)Ti

, i = 1, 2, . . . ,

which is exponentially decaying. Using (2) and the definition of α in (6), we obtain ‖x(t; z, σz)‖ ≤
κrt, ∀ t ∈ Z+, for some properly defined constants κ > 0 dependent on α and r = 1/2ν−T1 ∈ (0, 1).

Finally we consider a general nonzero initial state z ∈ Bρ ∩ C. Noting that z′ := ρz/‖z‖ ∈
ρSn−1 ∩ C, by the above result, there exists a switching sequence σz′ such that

‖x(t; z, σz′)‖ =
(‖z‖

ρ

)νt ∥∥∥∥x

(
t;

ρ z

‖z‖ , σz′

)∥∥∥∥ ≤
κ

ρ
rt‖z‖, ∀ t ∈ Z+.

This proves that the SHS is weakly exponentially stable on Bρ ∩ C.
Corollary 2.1. Suppose ν > 1. The following hold for the SHS on S = Bρ ∩ C for ρ > 0:

weak asymptotic stability ⇔ weak uniform asymptotic stability ⇔ weak exponential stability

Proposition 2.2. Let ν > 1. The following hold for the SHS on S = Bρ ∩ C for ρ > 0:

strong asymptotic stability ⇔ strong uniform asymptotic stability ⇔ strong exponential stability

Proof. It suffices to prove that strong asymptotic stability implies strong uniform asymptotic sta-
bility, which further implies strong exponential stability. To show the first implication, suppose
that the SHS (1) is strongly, but not uniformly, asymptotically stable on S. Then there exist a
constant ε0 > 0, a sequence of initial states {zk} ⊆ S, a sequence of switching sequences {σk},
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and a strictly increasing time sequence {tk} with tk ↑ ∞ such that ‖x(tk; zk, σ
k)‖ ≥ ε0 for all k.

Due to the local strong exponential stability given by Lemma 2.1, there exists a constant ρ̃ > 0
such that z ∈ Bρ̃ ∩ C ⇒ ‖x(t; z, σ)‖ < ε0 for all t ∈ Z+ and any σ. This implies that for each k,
‖x(t; zk, σ

k)‖ ≥ ρ̃ for all t ∈ {0, 1, . . . , tk}. In view of the compactness of S, the closedness of C, the
continuity of Fi, and the growth rate estimate (5), it follows from a similar argument as in the proof
of [27, Proposition 1] with an extension to the homogeneous vector fields (also cf. Theorem 5.1)
that there exist z∗ ∈ S and a switching sequence σ∗ such that ‖x(t; z∗, σ∗)‖ ≥ ρ̃ for all t ∈ Z+. But
this contradicts the strong asymptotic stability of the SHS on S.

To show that strong uniform asymptotic stability implies strong exponential stability, let ρ′ =
ρ + ε for some ε > 0. By the strong uniform asymptotic stability, we can find T∗ ∈ Z+, dependent
on ρ′ only, such that for any z ∈ S and under any switching sequence σ, ‖x(T∗; z, σ)‖ ≤ ρ′/2. By
extending the argument in the proof of Proposition 2.1 (though there is no need to use the open
covering argument), we have, for any z ∈ C and under any switching sequence σ,

‖x(t; z, σ)‖ ≤ α

(‖z‖
ρ′

)νt

≤ α

ρ′

(‖z‖
ρ′

)νt−1

‖z‖ ≤ α

ρ′

(‖z‖
ρ′

)t

‖z‖, ∀ t ∈ Z+,

where α := max
z∈ρ′ Sn−1∩C

max
t∈[0,T∗], σ

‖x(t; z, σ)‖. This implies the strong exponential stability on S.

Proposition 2.3. If the SHS (1) is strongly asymptotically stable on Bρ ∩ C with ρ > 0, then it is
strongly exponentially stable on Bρ−ε ∩ C for any ε ∈ (0, ρ).

Proof. For the given ρ and ε ∈ (0, ρ), let ρ′ = ρ− ε
2 . Since the SHS is strongly asymptotically stable

on Bρ ∩ C, so is it on the compact set Bρ′ ∩ C. The rest follows directly from Proposition 2.2.

2.2 Domains of Attraction of the SHSs on Cones with ν > 1

It is well known that the SHS of homogeneous degree ν > 1 is not globally asymptotically stable in
general. A question arises naturally: what is the largest possible domain of attraction in the strong
or weak sense? Specifically, we define two radii of the domains of attraction:

(1) The radius of the domain of strong attraction:

ρ∗ := sup{ρ > 0 | the SHS is strongly asymptotically stable on Bρ ∩ C }.

(2) The radius of the domain of weak attraction:

ρ∗ := sup{ρ > 0 | the SHS is weakly asymptotically stable on Bρ ∩ C }.

By Propositions 2.1 and 2.3, the asymptotic stability in the above definitions can be equivalently
replaced by exponential stability. Clearly, 0 < ρ∗ ≤ ρ∗ ≤ ∞. The last inequality is strict if

ζ := min
i∈M

min
z∈ Sn−1∩C

‖Fi(z)‖ (7)

is strictly positive, since ‖Fi(z)‖ ≥ ζ‖z‖ν , ∀ z ∈ C, i ∈M. It then follows from a similar argument

for (5) that ‖x(t; z, σ)‖ ≥ ζ
νt−1
ν−1 ‖z‖νt

, ∀ z ∈ C, t ∈ Z+ under any switching sequence σ. We also
have, by the proof of Lemma 2.1, that if ‖z‖ ≥ (1/ζ)1/(ν−1), then ‖x(t; z, σ)‖ ≥ ‖z‖, ∀σ. This
implies that ρ∗ ≤ (1/ζ)1/(ν−1) < ∞.

The next proposition shows that the boundary ρ∗Sn−1 ∩C (resp. ρ∗Sn−1 ∩C) contains an initial
state whose trajectories are not strongly (resp. weakly) convergent. Thus ρ∗ (resp. ρ∗) is exactly
the first radius where the SHS starts to lose the strong (resp. weak) asymptotic stability. This
result will be used in Section 4 for stability analysis via generating functions.
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Proposition 2.4. Let ρ∗ and ρ∗ be finite. Then the following hold:

(1) There exist z0 ∈ ρ∗Sn−1 ∩ C and a switching sequence σz0 such that x(t; z0, σz0) does not
converge to 0 as t →∞. Thus the SHS is not strongly asymptotically stable on Bρ∗ ∩ C.

(2) There exists z0 ∈ ρ∗Sn−1 ∩ C such that x(t; z0, σ) does not converge to the origin as t → ∞
under any σ. Thus the SHS is not weakly asymptotically stable on Bρ∗ ∩ C.

Proof. (1) We prove this result via contradiction. Suppose that the SHS is strongly asymptotically
stable on Bρ∗ ∩ C. By Proposition 2.2, the SHS is strongly exponentially stable on Bρ∗ ∩ C. Hence,
there exist κ > 0 and r ∈ [0, 1) such that for any z ∈ Bρ∗ ∩ C and under any σ, ‖x(t; z, σ)‖ ≤
κrt‖z‖, ∀ t. Therefore, there exists T∗ > 0 such that for any z ∈ ρ∗Sn−1 ∩ C, ‖x(T∗; z, σ)‖ ≤ ρ∗/3
under any σ. Note that there are finitely many switching segments on the time window {0, . . . , T∗}
and that x(T∗; z, σ) is continuous in z for each fixed σ; the latter is due to the continuity of Fi on
an open set containing C. Following a similar open covering argument in Proposition 2.1, we obtain
finitely many points z∗1 , . . . , z

∗
p in ρ∗Sn−1∩C and the open balls B(z∗i , εi) (with respect to the topology

of Rn) centered at z∗i with the radius εi > 0 covering ρ∗Sn−1 ∩ C such that ‖x(T∗; z, σ)‖ ≤ ρ∗/2.5
under any σ, for all z in each open ball.

For a given χ > 0, let the set Uχ := {z ∈ C : ρ∗ ≤ ‖z‖ ≤ ρ∗ + χ}. Define χ := sup{χ :
Uχ ⊆ ∪p

i=1B(z∗i , εi)}. We claim that χ > 0. Geometrically speaking, the claim implies that the
open covering of the boundary surface ρ∗Sn−1 ∩ C can be extended to a thin layer growing above
the boundary surface. We prove the claim by contradiction. Suppose χ = 0. Then there exists a
sequence (zk) in C such that ρ∗ ≤ ‖zk‖ ≤ ρ∗ + 1/k and zk 6∈ ∪p

i=1B(z∗i , εi) for all k ∈ N. Since the
sequence (zk) is bounded, it has a convergent subsequence which can be assumed to be (zk) itself.
Thus the limit of (zk) satisfies ‖z∗‖ = ρ∗. Since C is closed, we have z∗ ∈ ρ∗Sn−1 ∩C. Therefore, z∗

must be in the interior of some open ball B(z∗i , εi). As (zk) → z∗, zk ∈ B(z∗i , εi) for all k sufficiently
large. This yields a contradiction.

Due to the above claim, there exists ρ̃ > ρ∗ such that (ρ̃Sn−1 ∩ C) ⊆ ∪p
i=1B(z∗i , εi) and that for

any z ∈ ρ̃ Sn−1∩C, ‖x(T∗; z, σ)‖ ≤ ρ̃/2 under any σ. The rest of the proof is similar to the argument
below (6) in Proposition 2.1 with “at least one switching” replaced by “arbitrary switching”. Thus
the SHS is strongly asymptotically stable on Bρ̃ ∩ C, contradicting the definition of ρ∗.

(2) The proof is is similar to the above argument and that of Proposition 2.1, and is omitted.

2.3 Generalized Joint Spectral Radii of the SHSs on Cones

The notion of the joint spectral radius (JSR) has been introduced to characterize the maximum ex-
ponential growth rate of the trajectories of SLSs on Rn with a set of matrices {Ai}i∈M; see, e.g., [15,
32, 34]. Specifically, the JSR is defined as µ∗ := limk→∞

(
sup{‖Ai1 · · ·Aik‖1/k : i1, . . . , ik ∈ M}).

It is known that the SLS is strongly exponentially stable if and only if µ∗ < 1. Other related
stability measures of the SLS under different switching policies include the joint spectral sub-radius
[15, 32] and the joint lower spectral radius [31]. In this section, we extend these notions to the SHSs
on cones, which treat the above mentioned quantities as special cases.

2.3.1 Generalized Joint Spectral Radius of the SHSs on Cones

For notational simplicity, denote hk :=
∑k−1

i=0 νi for k ∈ N. Define, for each k ∈ N,

µk := sup
{∥∥Fi1 ◦ · · · ◦ Fik(z)

∥∥1/hk : i1, . . . , ik ∈M, z ∈ Sn−1 ∩ C
}

. (8)

Note that µ1 defined in (3) becomes a special case of the above definition for k = 1. The following
result, which relies on the generalized Fekete’s Lemma [25, Section 2.6], shows that the sequence
(µk) converges to the infimum of the set {µk} as k →∞.
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Theorem 2.1. The limit of the sequence (µk) exists with lim
k→∞

µk = inf{µk}.

Proof. Without loss of generality, we assume that each µk > 0. Note that for any p, q ∈ N, i1, . . . , ip,
ip+1, . . . , ip+q ∈M and any z ∈ Sn−1 ∩ C, we have

∥∥∥ Fi1 ◦ · · · ◦ Fip︸ ︷︷ ︸
p terms

◦Fip+1 ◦ · · · ◦ Fip+q︸ ︷︷ ︸
q terms

(z)
∥∥∥ ≤ (µp)hp

∥∥∥Fip+1 ◦ · · · ◦ Fip+q(z)
∥∥∥

νp

≤ (µp)hp(µq)hqνp
.

This implies (µp+q)hp+q ≤ (µp)hp(µq)hqνp
. Hence, by defining ck := hk log µk, k ∈ N, we have

cp+q ≤ cp + νp · cq, ∀ p, q ∈ N. Fix ` ∈ N. Using the above inequality repeatedly, we obtain
c2` ≤ c` + ν`c` ≤ (1 + ν`)c`, c3` ≤ c` + ν`c2` ≤ (1 + ν` + ν2`)c`, . . .. In general, we have

cp` ≤
(
1 + ν` + · · ·+ ν(p−1)`

)
c` =

hp`

h`
c` ⇒ cp`

hp`
≤ c`

h`
, ∀ p ∈ N.

Furthermore, for any p ∈ N and q = 0, . . . , `− 1,

cp`+q

hp`+q
≤ cq + νqcp`

hp`+q
≤ cq

hp`+q
+

νq · hp`

hp`+q

c`

h`
≤ cq

hp`+q
+

c`

h`
,

where the last inequality is due to νq · hp` ≤ hp`+q.
Let p′ ∈ N be arbitrary. Then any k ∈ N with k ≥ p′` can be written as k = p` + q for some

p ≥ p′ and q ∈ {0, . . . , `− 1}. Using the above inequality, we obtain

sup
{

ck

hk
: k ≥ p′`

}
≤ sup

p∈N, p≥p′
sup

q∈{0,...,`−1}

(
cq

hp`+q
+

c`

h`

)
≤ c`

h`
+ sup

q∈{0,...,`−1}

cq

hp′`+q
.

Letting p′ →∞ and noting that hp′`+q →∞ while cq is finite for each q, we have

lim sup
k→∞

ck

hk
= lim

p′→∞
sup

{
ck

hk
: k ≥ p′`

}
≤ c`

h`
.

Since ` ∈ N is arbitrary, lim sup ck/hk ≤ inf{c`/h` | ` ∈ N}. On the other hand, it is obvious that
lim inf ck/hk ≥ inf{c`/h` | ` ∈ N}. Therefore, the following limit exists: lim

k→∞
log µk = lim

k→∞
ck

hk
=

inf
`∈N

c`

h`
= inf

k∈N
log µk. The theorem thus follows by the continuity of the logarithmic function.

We remark that in the above proof, it is possible that inf{ck/hk} = −∞. In this case, (µk)
converges to 0 as k →∞. In all other cases, (µk) converges to a finite positive number. We define
the generalized joint spectral radius (GJSR) of the set of ν-homogeneous continuous maps {Fi}i∈M,
or alternatively, the GJSR of the SHS (1) on the closed cone C, as µ∗ := lim

k→∞
µk. By Theorem 2.1,

µ∗ = inf{µk}. When C = Rn and Fi(x) = Aix, µ∗ is exactly the standard JSR of {Ai}i∈M.

2.3.2 Generalized Joint Lower Spectral Radius of the SHSs on Cones

Define, for each k ∈ N,

ak := sup
z∈ Sn−1∩C

(
inf

{∥∥Fi1 ◦ · · · ◦ Fik(z)
∥∥1/hk : i1, . . . , ik ∈M

})
. (9)

The following result shows that the sequence (ak) converges to the infimum of the set {ak}.
Theorem 2.2. The limit of the sequence (ak) exists with lim

k→∞
ak = inf{ak}.
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Proof. Let a∗ = inf{ak}. For any ε > 0, there exists a` such that a∗ ≤ a` < a∗ + ε. Hence,

sup
z∈ Sn−1∩C

(
inf

{∥∥Fi1 ◦ · · · ◦ Fi`(z)
∥∥ : i1, . . . , i` ∈M

}) ≤ (a∗ + ε)h` .

Therefore, for any z ∈ Sn−1 ∩ C, there exists a switching sequence segment σz,` of length ` such
that ‖x(`; z, σz,`)‖ ≤ (a∗ + ε)h` . By the continuity of Fi and the compactness of Sn−1 ∩ C, there
exists a constant κ ≥ 1 (independent of z and σz,`) such that for all z ∈ Sn−1 ∩ C, ‖x(t; z, σz,`)‖ ≤
κ(a∗+ε)ht , ∀ t = 0, . . . , `. For a given z ∈ Sn−1∩C, define z̃ := x(`; z, σz,`)/‖x(`; z, σz,`)‖ ∈ Sn−1∩C,
where x(`; z, σz,`) is assumed to be nonzero without loss of generality. Then, there exists another
switching sequence segment σz̃,` of length ` such that ‖x(`; z̃, σz̃,`)‖ ≤ (a∗ + ε)h` , and
∥∥x(t;x(`; z, σz,`), σz̃,`)

∥∥ =
∥∥x(t; z̃, σz̃,`)

∥∥ · ∥∥x(`; z, σz,`)
∥∥νt ≤ κ(a∗ + ε)ht · (a∗ + ε)νt·h` = κ(a∗ + ε)ht+` ,

for all t = 0, . . . , `, where ht + νth` = ht+` is used. Let σz,2` be the concatenation of σz,` and σz̃,`.
Thus, under the switching sequence segment σz,2` of length 2`, ‖x(2`; z, σz,2`)‖ ≤ (a∗ + ε)h2` and
‖x(t; z, σz,2`)‖ ≤ κ(a∗ + ε)ht , ∀ t = 0, . . . , 2`. Repeating this argument and using induction, it can
be shown that for any z ∈ Sn−1 ∩ C, there exists a switching sequence σ̃z such that ‖x(t; z, σ̃z)‖ ≤
κ(a∗ + ε)ht , ∀ t ∈ Z+. This implies

ak ≤ sup
z∈ Sn−1∩C

∥∥x(k; z, σ̃z)
∥∥1/hk ≤ κ1/hk · (a∗ + ε), ∀ k ∈ N.

Therefore, in light of κ1/hk → 1 as k → ∞, we obtain lim supk→∞(ak) ≤ (a∗ + ε). Since ε > 0 is
arbitrary, lim supk→∞(ak) ≤ a∗ = inf{ak}. This proves the desired conclusion.

We define the generalized joint lower spectral radius (GJLSR) of the set of ν-homogeneous
continuous maps {Fi}i∈M, or alternatively, the GJLSR of the SHS (1) on C, as a∗ := lim

k→∞
ak. It is

worth pointing out that µ∗ and a∗ are independent of the vector norm ‖ · ‖ used in their definitions.

2.3.3 Application of the GJSR and GJLSR to the SHSs with ν > 1 on Cones

The GJSR and GJLSR characterize the growth rates of the trajectories of the SHSs on cones.
Indeed, it follows from the definitions of µ∗ and a∗ that for any ε > 0, (i) there exists κ∗ε ≥ 1 such
that for all z ∈ C, ‖x(t; z, σ)‖ ≤ κ∗ε (µ∗ + ε)ht‖z‖νt

, ∀ t under any σ; and (ii) there exists κ∗,ε ≥ 1
such that for any z ∈ C, ‖x(t; z, σz)‖ ≤ κ∗,ε (a∗ + ε)ht‖z‖νt

, ∀ t under some σz. Noting from (i) that
‖x(t; z, σ)‖ ≤ κ∗ε

[
(µ∗ + ε)ht‖z‖νt−1

]‖z‖ and ht = νt−1
ν−1 , we deduce that if ‖z‖ < (µ∗ + ε)−

1
ν−1 , then

x(t; z, σ) converges to the origin under any σ. This hints that the radius of the domain of strong
attraction ρ∗ = (µ∗)−

1
ν−1 ; the similar observation can be made for ρ∗. The following theorems

rigorously justify these observations; a generating function approach will be discussed in Section 4.

Theorem 2.3. Let ν > 1. The radius of the domain of strong attraction of the SHS (1) on C is

ρ∗ = (µ∗)−
1

ν−1 ,

where µ∗ is the GJSR of the SHS (1). Thus, if µ∗ = 0, then the domain of strong attraction is C.
Proof. Denote ρ̂ := (µ∗)−1/(ν−1), which is infinity if µ∗ = 0. We claim that the SHS (1) is strongly
asymptotically stable on Bρ ∩ C for any ρ ∈ (0, ρ̂). Indeed, for any given ρ ∈ (0, ρ̂), we can always
find η > 0 such that (µ∗ + η)−1/(ν−1) = ρ. Since limk→∞ µk = µ∗, µk ≤ µ∗ + η/2 for all k ≥ T for
some sufficiently large T ∈ N. Thus for any z ∈ Bρ ∩ C and any σ, we have

‖x(t; z, σ)‖ ≤ µht
t ‖z‖νt ≤

(
µ∗ +

η

2

)ht

ρνt−1‖z‖ =
(
µ∗ +

η

2

)ht

(u∗ + η)−
νt−1
ν−1 ‖z‖

≤
(

µ∗ + η/2
µ∗ + η

)ht

‖z‖ ≤
(

µ∗ + η/2
µ∗ + η

)t

‖z‖, ∀ t ≥ T,
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where ht = νt−1
ν−1 is used. This yields the strong exponential (hence asymptotic) stability on Bρ ∩C.

As ρ ∈ (0, ρ̂) is arbitrary, it follows that ρ∗ ≥ ρ̂. As a result, when µ∗ = 0, we must have ρ∗ = ∞.
Next we show that ρ∗ ≤ ρ̂, or equivalently, the SHS (1) is not strongly asymptotically stable

on ρSn−1 ∩ C for any ρ > ρ̂. Without loss of generality we assume µ∗ > 0, hence ρ̂ < ∞. For any
given ρ > ρ̂, there exists η ∈ (0, µ∗) such that ρ = (µ∗ − η)−

1
ν−1 . Then for any z ∈ ρ Sn−1 ∩ C and

under any switching sequence σ,

‖x(t; z, σ)‖ = ‖z‖νt‖x(t; z/‖z‖, σ)‖ = (µ∗ − η)−
νt

(ν−1) ‖x (t; z/‖z‖, σ)‖ . (10)

Since Sn−1 ∩ C is a compact set and Fi’s are continuous maps, we deduce from (8) that for any
fixed time t ∈ N, there exist some z∗t ∈ ρ Sn−1 ∩ C and some switching sequence σt such that∥∥x(t; z∗t /‖z∗t ‖, σt)

∥∥ = (µt)ht ≥ (µ∗)ht . For this trajectory, equation (10) implies

‖x(t; z∗t , σt)‖ ≥ (µ∗ − η)−
νt

(ν−1) (µ∗)ht = (µ∗ − η)−
1

ν−1

(
µ∗

µ∗ − η

)ht

≥ ρ

(
µ∗

µ∗ − η

)t

.

This shows that the SHS is not strongly uniformly asymptotically stable on ρ Sn−1∩C, and thus not
strongly asymptotically stable in view of Proposition 2.2. Therefore, ρ∗ ≤ ρ̂, and hence ρ∗ = ρ̂.

Theorem 2.4. Let ν > 1. The radius of the domain of weak attraction of the SHS (1) on C is

ρ∗ = (a∗)−
1

ν−1 ,

where a∗ is the GJLSR of the SHS (1). Thus, if a∗ = 0, then the domain of weak attraction is C.
Proof. Let ρ̌ := (a∗)−

1
ν−1 , which is infinity if a∗ = 0. We first show that the SHS (1) is weakly

asymptotically stable on Bρ∩C for any ρ ∈ (0, ρ̌). Indeed, for any given ρ ∈ (0, ρ̌), there exists η > 0
such that ρ = (a∗ + η)−1/(ν−1). Since limk→∞ ak = a∗, ak ≤ a∗ + η

2 , ∀ k ≥ T for a sufficiently large
T ∈ N. By similar arguments as in the proof of Theorem 2.2, there exists a constant κ ≥ 1 such
that for any z ∈ Bρ ∩ C, we can find a switching sequence σ̃z (concatenated by sequence segments,
each of which is of length T ) such that ‖x(t; z/‖z‖, σ̃z)‖ ≤ κ(a∗ + η/2)ht , ∀ t ∈ Z+. Hence,

‖x(t; z, σ̃z)‖ ≤ ‖x(t;
z

‖z‖ , σ̃z)‖ · ‖z‖νt ≤ κ
(
a∗ +

η

2

)ht

ρνt−1‖z‖ = κ
(
a∗ +

η

2

)ht

(a∗ + η)−
νt−1
ν−1 ‖z‖

≤ κ

(
a∗ + η/2
a∗ + η

)ht

‖z‖ ≤ κ

(
a∗ + η/2
a∗ + η

)t

‖z‖, ∀ t ∈ Z+.

This yields the weak exponential (hence asymptotic) stability on Bρ ∩ C. In the special case when
a∗ = 0, ρ̌ = ∞ and therefore ρ∗ = ∞. That is, the domain of weak attraction is the entire C.

We next show that ρ∗ ≤ ρ̌, or equivalently, the SHS (1) is not weakly asymptotically stable on
ρSn−1 ∩ C for any ρ > ρ̌. Without loss of generality we assume a∗ > 0 such that ρ̌ < ∞. For any
given ρ > ρ̌, ρ = (a∗ − η)−

1
ν−1 for some η ∈ (0, a∗). Then for any z ∈ ρSn−1 ∩ C and under any σ,

‖x(t; z, σ)‖ = ‖z‖νt‖x(t; z/‖z‖, σ)‖ = (a∗ − η)−
νt

(ν−1) ‖x (t; z/‖z‖, σ)‖ .

Since Sn−1 ∩C is a compact set and Fi’s are continuous maps, we deduce from (9) that at any fixed
time t ∈ N, there exist some z∗t ∈ ρSn−1∩C and indices j1, . . . , jt ∈M such that inf

i1,...,it∈M
‖Fi1 ◦· · ·◦

Fit(z
∗
t /‖z∗t ‖)‖1/ht = ‖Fj1 ◦ · · · ◦ Fjt(z

∗
t /‖z∗t ‖)‖1/ht = at. As a result, under any switching sequence

σ,
∥∥x(t; z∗t /‖z∗t ‖, σ)

∥∥ ≥ (at)ht ≥ (a∗)ht . Hence, under an arbitrary σ,

‖x(t; z∗t , σ)‖ ≥ (a∗ − η)−
νt

(ν−1) (a∗)ht = (a∗ − η)−
1

ν−1

(
a∗

a∗ − η

)ht

≥ ρ

(
a∗

a∗ − η

)t

.

This shows that the SHS is not weakly (uniformly) asymptotically stable on ρ Sn−1 ∩ C, in light of
Proposition 2.2. We thus conclude that ρ∗ ≤ ρ̌, and hence ρ∗ = ρ̌.
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3 Stability of SLSs on Cones: A Generating Function Approach

The next two sections perform stability analysis and related numerical studies of the SHSs on cones
via the generating function approach. We start our analysis from the simplest case where ν = 1.
In this case, the homogeneous dynamics are given by Fi(x) = Aix for some matrix Ai ∈ Rn×n for
each i ∈M and the SHS (1) becomes the SLS on the closed cone C:

x(t + 1) = Aσ(t)x(t), t ∈ Z+. (11)

Here, all the Ai’s are positively invariant with respect to C. A particular example of SLSs on cones
is switched positive linear systems, where C = Rn

+ is the nonnegative orthant of Rn, and all Ai

are positive matrices [6, 9, 10]. The linear structure of the SLSs simplifies stability analysis and
enables us to develop global results. For example, different from SHSs with ν > 1, the growth of
system trajectories of the SLSs is exponential rather than super-exponential (cf. (5)) and local and
global stabilities are equivalent in each sense defined in Section 2. Using similar arguments as in
Propositions 2.1 and 2.3, we have the following result.

Proposition 3.1. The following hold for the SLS (11) on the closed cone C:

strong convergence ⇔ strong asymptotic stability ⇔ strong exponential stability

weak convergence ⇔ weak asymptotic stability ⇔ weak exponential stability

It is worth pointing out that the SLS (11) on C can be thought of as embedded in a SLS on
Rn, with the latter having the same dynamics (11) but in the larger state space Rn. The various
stability notions for the SLS on Rn can be defined similarly as in Definition 2.1 by setting ν = 1
and C = Rn. Conversely, given a SLS on Rn and a closed cone C ⊂ Rn invariant under Ai’s, the
restriction of the SLS on Rn to C yields a SLS on the cone C. Stability of the former SLS in any
sense implies that of the latter, but not the other way around. Thus, the stability study for SLSs
on cones poses new challenges beyond that for SLSs on Rn.

We briefly review some basic notions of cones used later; see [5] for details. A cone C is pointed if
the condition that x1 + · · ·+xk = 0 with xi ∈ C, i = 1, . . . , k, implies that xi = 0 for all i. A convex
cone C is pointed if and only if C ∩ (−C) = {0}, or equivalently, C does not contain a nontrivial
subspace. For example, Rn

+ is pointed. A convex cone C can be decomposed as C = K + V, where
K is a pointed cone and V = C ∩ (−C) is a subspace (i.e., the linearity space of C) orthogonal to K:
K ⊥ V. A cone C is solid if it has nonempty interior. For example, Rn

+ is solid and hence proper
(i.e., closed, convex, solid, and pointed.)

3.1 Strong Generating Functions of the SLSs on Cones

In the recent paper [14], the notion of strong generating functions is proposed to study the strong
exponential stability of the SLSs on Rn. The strong generating function of the SLS (11) on Rn is
the map G : R+ × Rn → R+ ∪ {∞} defined as follows: for each z ∈ Rn and λ ≥ 0,

Gλ(z) := G(λ, z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, (12)

where the supremum is taken over all switching sequences, q is a positive integer, and ‖ · ‖ is an
arbitrary norm on Rn. Note that Gλ(z) is non-decreasing in λ ≥ 0. The radius of strong convergence
of the strong generating function on Rn is defined as λ∗Rn := sup{λ ≥ 0 |Gλ(z) < ∞, ∀ z ∈ Rn}.
The following result, proved in [14, Theorem 2], shows that the radius of strong convergence λ∗Rn

completely characterizes the strong exponential stability of the SLS on Rn.
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Theorem 3.1. The SLS (11) on Rn is strongly exponentially stable if and only if λ∗Rn > 1.

We now extend the above strong generating function to the SLS (11) on a closed cone C. Define
W to be the smallest subspace of Rn that contains the cone C and is invariant to {Ai}i∈M, or
equivalently, the set of all states generated from elements of C through multiplications by matrices
in {Ai}i∈M and linear combinations: W := span

{ C, ∪i∈MAiC, ∪i,j∈MAiAjC, . . .
}
. In particular,

if C is solid, then W = Rn. If C is polyhedral, i.e., it is finitely (and positively) generated: C =
{∑`

k=1 αk vk |αi ≥ 0} for some vectors vk ∈ Rn, k = 1, · · · , `, then

W = span
{
{vk}`

k=1, ∪i∈MAi{vk}`
k=1, ∪i,j∈MAiAj{vk}`

k=1, . . .
}

.

Note that C ⊆ W ⊆ Rn form a cascade of sets invariant to {Ai}i∈M. Hence, the SLS (11) restricted
to each set is well defined and Gλ(z) in (12) defined on Rn can be extended to that on C and W as
well. Specifically, the strong generating function of the SLS (11) on C is defined as

Gλ(z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, ∀z ∈ C, λ ≥ 0. (13)

Here, the same notation Gλ(·) is used since Gλ(·) in (13) is exactly the restriction of Gλ(·) in (12)
on the cone C. For this reason, we simply refer to (13) as the strong generating function on C.
Similarly, we can define Gλ(·) on W as the restriction of (12) on W.

Define the radii of strong convergence on C and W respectively as

λ∗C := sup{λ ≥ 0 |Gλ(z) < ∞, ∀z ∈ C}, λ∗W := sup{λ ≥ 0 |Gλ(z) < ∞, ∀z ∈ W}.

For each λ ≥ 0, define the three subsets: Gλ(C) := {z ∈ C |Gλ(z) < ∞} ⊆ C, Gλ(W) := {z ∈
W |Gλ(z) < ∞} ⊆ W, and Gλ(Rn) := {z ∈ Rn |Gλ(z) < ∞} ⊆ Rn, which satisfy Gλ(C) ⊆ Gλ(W) ⊆
Gλ(Rn), and Gλ(C) = Gλ(Rn) ∩ C, Gλ(W) = Gλ(Rn) ∩W.

Obtained through the above restriction, the strong generating functions on C and W inherit
many of the properties of their counterpart on Rn established in [14], as listed below.

Proposition 3.2. For any q ∈ N and any vector norm ‖ · ‖, the strong generating function Gλ(z)
of the SLS (11) on C (or on W) has the following properties.

1. (Bellman Equation): For all λ ≥ 0 and z ∈ C (or W), Gλ(z) = ‖z‖q + λ ·maxi∈MGλ(Aiz).

2. (Sub-additivity): If C is convex (in addition to being closed), then for each λ ≥ 0,

(
Gλ(z1 + z2)

)1/q ≤ (
Gλ(z1)

)1/q +
(
Gλ(z2)

)1/q
, ∀ z1, z2 ∈ C (or W).

3. (Convexity): If C is convex, then for each λ ≥ 0,
(
Gλ(·))1/q is convex on C (or W).

4. (Invariant Cone): Let λ ≥ 0 be arbitrary. If C is convex, then the set Gλ(C) is a closed convex
cone in C invariant to {Ai}i∈M. Further, if C is polyhedral, so is Gλ(C).

5. (Invariant Subspace): For any λ ≥ 0, the set Gλ(W) is a subspace of W invariant to {Ai}i∈M.

6. Gλ(·) is finite everywhere on C for 0 ≤ λ < (maxi∈M ‖Ai‖q)−1, where the matrix norm is
induced from the vector norm ‖ · ‖.
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Proof. 1. This follows directly from the dynamic programming principle.
2. By the convexity of C, for any z1, z2 ∈ C, z1 + z2 ∈ C. Further, due to the linearity property

of the SLS, x(t; z1 + z2, σ) = x(t; z1, σ) + x(t; z2, σ) under any σ. Then, by the definition of Gλ,

Gλ(z1 + z2) = sup
σ

∞∑

t=0

λt‖x(t; z1, σ) + x(t; z2, σ)‖q ≤ sup
σ

∞∑

t=0

λt
(
‖x(t; z1, σ)‖+ ‖x(t; z2, σ)‖

)q

≤ sup
σ

[( ∞∑

t=0

λt‖x(t; z1, σ)‖q

)1/q

+
( ∞∑

t=0

λt‖x(t; z2, σ)‖q

)1/q ]q

≤
[(

Gλ(z1)
)1/q +

(
Gλ(z2)

)1/q
]q

,

where the second inequality is due to the Minkowski inequality. The case for W is entirely similar.
3. This is due to the sub-additivity and the positive homogeneity of

(
Gλ(·))1/q.

4. The conic property and the convexity of Gλ(C) follow from the positive homogeneity and the
convexity of

(
Gλ(·))1/q, respectively. The invariance to {Ai}i∈M is a consequence of the Bellman

equation. To show that Gλ(C) is a closed cone, note that Gλ(C) = Gλ(Rn) ∩ C, where Gλ(Rn) is a
subspace due to the sub-additivity property on Rn. Thus, Gλ(C) as the intersection of the closed
cone C and a subspace must be closed itself. Further, it is polyhedral whenever C is so.

5. Gλ(W) = Gλ(Rn)∩W is clearly a subspace, and the invariance is due to the definition of W.
6. This follows from (13) and ‖x(t; z, σ)‖q ≤ (maxi∈M ‖Ai‖q)t‖z‖q for all t ∈ Z+.

In addition to the above inherited properties, the strong generating functions on C and on W
also have some other shared properties. Obviously, the former is the restriction of the latter on the
cone C. Less obviously, we have the following.

Proposition 3.3. The strong generating functions Gλ(z) of the SLS (11) on C and on W satisfy:

Gλ(z) < ∞, ∀ z ∈ C ⇐⇒ Gλ(z) < ∞, ∀ z ∈ W.

Proof. As C ⊂ W, it suffices to show the “⇒” direction. Suppose Gλ(·) is finite on C, i.e., Gλ(C) = C.
Since Gλ(Rn) is a subspace of Rn invariant to {Ai}i∈M and contains Gλ(C) hence C, it must also
contain W, as W is the smallest subspace containing C invariant to {Ai}i∈M. In other words,
W ⊆ Gλ(Rn), which implies that Gλ(z) is finite for all z ∈ W.

As a result of Proposition 3.3, the radii of strong convergence on C, W, and Rn satisfy:

Corollary 3.1. λ∗C = λ∗W ≥ λ∗Rn . In particular, if C is solid, then λ∗C = λ∗W = λ∗Rn .

We next prove some additional properties of Gλ on its growth and continuity.

Proposition 3.4. The following hold for the strong generating functions Gλ(z) on C and W:

1. If λ ∈ [0, λ∗C) (hence Gλ(z) < ∞ for all z ∈ C), then a constant c ∈ [1,∞) exists such that
‖z‖ ≤ (

Gλ(z)
)1/q ≤ c‖z‖, ∀ z ∈ W.

2. Let λ ∈ [0, λ∗C). Then
(
Gλ(·))1/q is relatively Lipschitz on W, i.e., there exists L > 0 such

that for any x, y ∈ W,
∣∣(Gλ(x)

)1/q − (
Gλ(y)

)1/q∣∣ ≤ L‖x− y‖.
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Proof. 1. The first inequality is obvious as Gλ(z) ≥ ‖z‖q. To show the second, by homogeneity, it
suffices to show that

(
Gλ(z)

)1/q ≤ c, ∀z ∈ W∩Sn−1, for some constant c ≥ 1. Let {ui}`
i=1 be a basis

of W. Since W∩Sn−1 is bounded, we can find a finite γ > 0 such that each z ∈ W ∩Sn−1 admits a
unique representation as z =

∑`
j=1 αju

j for some real tuple (α1, . . . , α`) satisfying
∑`

j=1 |αj | < γ.

Therefore, by virtue of the sub-additivity on W and positive homogeneity of (Gλ)1/q,
(
Gλ(z)

)1/q ≤
c := γ

∑`
i=1

(
Gλ(ui)

)1/q for all z ∈ W ∩ Sn−1. This proves the second inequality.

2. It follows from the sub-additivity of (Gλ)1/q on W that for any x, y ∈ W,
(
Gλ(x)

)1/q −(
Gλ(y)

)1/q ≤ (
Gλ(x − y)

)1/q. This inequality, together with the one obtained by switching x and

y, implies that
∣∣(Gλ(x)

)1/q − (
Gλ(y)

)1/q∣∣ ≤ (
Gλ(x− y)

)1/q ≤ c‖x− y‖, where the last step is due
to (x− y) ∈ W and the first statement of this proposition.

Remark 3.1. The above results imply that if C is a closed convex cone, then Gλ(C) is a closed convex
sub-cone of C. Suppose that C admits the decomposition C = K+V, where K is a pointed cone and
V is a subspace, then Gλ(C) = Kλ + Vλ with Kλ ⊂ K a pointed cone and Vλ ⊂ V a subspace. As λ

increases, Gλ will increase, hence the invariant subsets Gλ(C), Gλ(W), and Gλ(Rn) will shrink. In
particular, if C is not pointed (i.e., V 6= {0}), then as λ increases, Gλ(C) will change from non-pointed
to pointed, or equivalently, Vλ will shrink to {0}, at exactly λ∗V := inf{λ ≥ 0 |Gλ(z) = ∞, ∀z ∈ V}.

The radius of strong convergence on either C or W completely characterizes the strong expo-
nential stability of the SLS on C as stated below.

Theorem 3.2. The following are equivalent:

1. The SLS (11) is strongly exponentially stable on the closed cone C (or on the subspace W);

2. λ∗C = λ∗W > 1;

3. G1(z) is finite for all z ∈ C (or W).

Proof. By Propositions 3.1 and 3.4, the proof is essentially as same as that of [14, Theorem 1].

Remark 3.2. Define the joint spectral radius of the matrix set {Ai}i∈M on the closed cone C
by µ∗C := limk→∞

(
sup{‖Ai1 · · ·Aikz‖1/k : i1, . . . , ik ∈ M, z ∈ Sn−1 ∩ C}); see Section 2.3.1.

Similarly the JSR on W, denoted by µ∗W , can be defined. Theorem 3.2 implies µ∗C = µ∗W . Moreover,
µ∗C = (λ∗C)

−1/q = (λ∗W)−1/q.

3.2 Weak Generating Functions of the SLSs on Cones

Similar to the strong generating functions, weak generating functions can be defined to address weak
stability of SLSs on cones. Specifically, for the SLS (11) on the closed cone C, its weak generating
function H : R+ × C → R+ ∪ {∞} is defined as

H(λ, z) := Hλ(z) := inf
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, ∀λ ≥ 0, z ∈ C, (14)

where q ∈ N and the infimum is over all switching sequences σ. If in the above definition, z takes
values in Rn rather than C, then the resulting Hλ(z) becomes the weak generating function on Rn

introduced in [14] for the study of weak stability of SLS on Rn.

Proposition 3.5. For any q ∈ N and any vector norm ‖ · ‖, the weak generating function Hλ(z) of
the SLS (11) on C has the following properties.
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1. (Bellman Equation): For any λ ≥ 0 and z ∈ C, Hλ(z) = ‖z‖q + λ ·mini∈MHλ(Aiz).

2. (Invariant Cone): For any λ ≥ 0, the set Hλ(C) := {z ∈ C |Hλ(z) = ∞} is a sub-cone in C
not containing 0, and invariant to {Ai}i∈M, i.e., AiHλ(C) ⊆ Hλ(C), ∀i ∈M.

3. Hλ(z) is finite everywhere on C for 0 ≤ λ < (mini∈M ‖Ai‖q)−1, where the matrix norm is
induced from the vector norm ‖ · ‖.

Proof. The proofs for these properties are similar to those in Proposition 3.2 or in [14, Proposition
7] for the related properties of the weak generating function on Rn; hence they are omitted.

The radius of weak convergence is defined as λC∗ := sup{λ ≥ 0 |Hλ(z) < ∞, ∀ z ∈ C}. The
following proposition shows two results: (i) as λ increases, λC∗ is the exact value at which Hλ(·)
starts to have the infinite value on C; and (ii) if Hλ(·) is finite everywhere on C for some λ ≥ 0,
then it is bounded above by the homogeneous function c‖ · ‖q on C.
Proposition 3.6. For each λ ≥ 0, the following are equivalent:

(a) Hλ(z) ≤ c‖z‖q, ∀ z ∈ C, for some constant c > 0 (generally dependent on λ);

(b) Hλ(z) < ∞ for all z ∈ C;
(c) λ ∈ [0, λC∗).

Proof. It follows from the similar argument in [14, Proposition 8] with Rn replaced by C.

The next result, whose proof is left out due to its similarity with that of [14, Theorem 4], shows
that the radius of weak convergence λC∗ characterizes the weak exponential stability of the SLS on C.

Theorem 3.3. The SLS (11) on C is weakly exponentially stable if and only if λC∗ > 1.

In what follows, we establish a connection between the radius of weak convergence and the
GJLSR. Recall that in Section 2.3.2, the GJLSR of the matrix set {Ai}i∈M on the closed cone C is
defined as ρ̆C := inf{ak}, where

ak := sup
z∈ Sn−1∩C

(
inf{∥∥Ai1 · · ·Aikz

∥∥1/k : i1, . . . , ik ∈M}
)

.

The connection between this quantity and the radius of weak convergence λC∗ is shown below.

Theorem 3.4. The following holds: ρ̆C = (λC∗)−1/q.

Proof. Without loss of generality, we assume ρ̆C > 0. We first show that ρ̆C · (λC∗)1/q ≤ 1. Suppose
otherwise. Then there exist λ ∈ (0, λC∗) and ρ̀ ∈ (0, ρ̆C) such that ρ̀ · λ1/q > 1. Since ρ̀ < ρ̆C and
ρ̆C = infk{ak}, we have ak ≥ ρ̀ for all k. By the compactness of Sn−1 ∩ C and the continuity of the
linear mappings Ai1 · · ·Aik (for fixed indices ij), we can find zk ∈ Sn−1∩ C and i∗1, . . . , i

∗
k ∈M such

that ak = ‖Ai∗1 · · ·Ai∗kzk‖1/k for each fixed k. For each zk, let σ̃zk
be a switching sequence such

that Hλ(zk) =
∑∞

t=0 λt‖x(t; zk, σ̃zk
)‖q. Note that

∥∥x(k; zk, σ̃zk
)
∥∥ =

∥∥Aσ̃zk
(k−1) · · ·Aσ̃zk

(0)zk

∥∥ ≥ ∥∥Ai∗1 · · ·Ai∗kzk

∥∥ = (ak)k ≥ (ρ̀)k.

This shows that Hλ(zk) ≥ λk‖x(k; zk, σ̃zk
)‖q ≥ (

ρ̀ · λ1/q
)q k

. Since ρ̀ · λ1/q > 1, by choosing k large
enough, Hλ(zk) can be arbitrarily large. This contradicts λ ∈ (0, λC∗), in view of Proposition 3.6.
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We next show that ρ̆C · (λC∗)1/q ≥ 1. Toward this end, we firstly prove that

λ > λC∗ =⇒ ρ̆C · λ1/q ≥ 1. (15)

Fix λ > λC∗ . By Proposition 3.6 and [14, Proposition 8], the scaled SLS with subsystem matrices
{Ãi}i∈M, where Ãi := λ1/qAi, is not weakly exponentially stable, hence not weakly convergent
either, on C. Denote by x̃(t; z, σ) the trajectories of the scaled SLS. It follows from an extension of
[30, Theorem 1] to the SLS on a cone that there exists z∗ ∈ Sn−1∩ C such that under any switching
sequence σ, ‖x̃(t; z∗, σ)‖ ≥ ‖z∗‖ = 1,∀ t ∈ Z+. Let i∗1, . . . , i

∗
k ∈ M be such that ‖Ãi∗1 · · · Ãi∗kz∗‖ =

inf{ ‖Ãi1 · · · Ãikz∗‖ : i1, . . . , ik ∈M}. Then,

ãk := sup
z∈ Sn−1∩C

inf
{∥∥Ãi1 · · · Ãikz

∥∥1/k : i1, . . . , ik ∈M
}
≥ ∥∥Ãi∗1 · · · Ãi∗kz∗

∥∥1/k ≥ 1.

Therefore, inf{ãk} ≥ 1. Noting that inf{ãk} = λ1/q · ρ̆C , we deduce that the implication (15) holds.
Letting λ ↓ λ∗, we obtain ρ̆C · (λC∗)1/q ≥ 1 from (15), and in turn, (λC∗)−1/q = ρ̆C .

Remark 3.3. Another relevant quantity, the joint spectral subradius (JSSR) of the matrix set
{Ai}i∈M on C, is defined as [15]

ρ̌C := lim
k→∞

inf
{(

sup
z∈ Sn−1∩C

∥∥Ai1 · · ·Aikz
∥∥1/k

)
: i1, . . . , ik ∈M

}
.

It is shown in [15, Theorem 1.1] that the standard JSSR (with C = Rn) satisfies

ρ̌ = lim inf
k→∞

{
[ρ(Ai1 · · ·Aik)]1/k : i1, . . . , ik ∈M

}
= lim inf

k→∞

{∥∥Ai1 · · ·Aik

∥∥1/k : i1, . . . , ik ∈M
}

,

where ρ(·) denotes the spectral radius of a matrix. The JSSR characterizes the convergence rate of
the SLS trajectories x(t; z, σ∗) under the best fixed switching sequence σ∗ that is chosen indepen-
dently of z. In fact, the SLS is convergent uniformly in z if and only if ρ̌ < 1 [7, 31]. As pointed
out in [14], ρ̌C ≥ ρ̆C and a gap between the two spectral radii exists in general.

3.3 Computation of Generating Functions and Radii of Convergence

One of the key advantages of the generating function approach for the SLS on Rn is that it yields
efficient numerical schemes for computing the maximum exponential growth rates of the SLS under
different switching rules; see [14, Sections III.F and IV.E]. These algorithms can be extended to the
SLS on a closed convex cone C with minor modifications. We briefly discuss it as follows.

Consider the strong generating function Gλ first. Define the finite-horizon approximation of
Gλ on C as: Gk

λ(z) := maxσ
∑k

t=0 λt‖x(t; z, σ)‖q, ∀ z ∈ C. It is easy to see that Gk
λ satisfies the

Bellman equation: Gk
λ(z) = ‖z‖q + λmaxi∈M Gk−1

λ (Aiz), ∀ z ∈ C, with G0
λ(z) = ‖z‖q. Thus one

can apply this equation to compute Gk
λ on C ∩Sn−1 recursively. In view of Propositions 3.2 and 3.4

and along with similar arguments in [14, Proposition 6], it can be shown that the sequence
(
Gk

λ

)
converges uniformly and exponentially fast to Gλ on C ∩ Sn−1. Further, an over-approximation
can be obtained using the convex and conic structure of C for an effective implementation; see
Algorithm 1 in [14] for details. This procedure thus can be used to compute λ∗C .

The similar extension can be made for numerical approximation of the weak generating function
Hλ on a closed convex cone C and λC∗ using the corresponding Bellman equation; see [14, Algorithm
2] for computing Hλ. The details are omitted.
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4 Stability of SHSs with ν > 1 on Cones: A Generating Function

Approach

In this section, we focus on more nonlinear SHSs on cones, i.e., the SHSs of homogeneous degree
ν > 1. A generating function based approach is invoked to characterize domains of attraction.
This approach not only serves as a complement to the joint spectral radius approach discussed in
Section 2.3 but also offers a numerically efficient way to compute the radii of domains of attraction.
Due to the nonlinearity of the vector fields Fi, the generating functions of the SHSs with ν > 1 on
cones do not inherit many favorable properties of those for the SLSs, such as sub-additivity and
convexity. This leads to new techniques for numerical approximation and convergence analysis of
the generating functions as shown in the following sections.

4.1 Strong Generating Functions of the SHSs on Cones

We introduce the strong generating function G(·, ·) : R+ × C → R+ ∪ {∞} of the SHS (1) on C:

G(λ, z) := sup
σ

∞∑

t=0

λht‖x(t; z, σ)‖q, ∀ λ ≥ 0, z ∈ C, (16)

where the supremum is taken over all switching sequences σ, ‖ ·‖ is a norm on Rn, q ∈ N, and recall
ht :=

∑t−1
i=0 νi, t ∈ N with h0 := 0. We may write G(λ, z) as Gλ(z) for a fixed λ ≥ 0. Note that if

ν = 1, then ht = t and the above generating function reduces to the one for the SLS on C defined
in Section 3. The following proposition collects some basic properties of Gλ on C; more properties,
such as continuity, will be shown via approximation of Gλ in Proposition 4.3.

Proposition 4.1. The strong generating function G(λ, z) has the following properties.

1. (Scaling property): For any α ∈ R+, λ ∈ R+ and z ∈ C, Gλ(αz) = αqGλ·αq(ν−1)(z).

2. (Bellman Equation): For all λ ≥ 0 and z ∈ C,

Gλ(z) = ‖z‖q + max
i∈M

Gλ(λ
1
q Fi(z)). (17)

3. (Monotonicity): For any fixed z ∈ C, Gλ1(z) ≤ Gλ2(z) whenever 0 ≤ λ1 ≤ λ2.

4. For 0 ≤ λ < (µ1)−q, where µ1 is defined in (3), sup
z∈ Sn−1∩C

Gλ(z) is finite.

5. (Exponential Stability): If the SHS (1) is strongly exponentially stable on Bρ∩C, then G1(z) ≤
c, ∀ z ∈ Bρ ∩C for some c > 0. Conversely, if the latter holds, then for any r ∈ (0, ρ), the SHS
(1) is strongly exponentially stable on Br ∩ C.

Proof. Property 1 follows since ‖x(t;αz, σ)‖q = αqνt‖x(t; z, σ)‖q and νt = ht(ν − 1) + 1.
Property 2. It is noted that for any given λ ≥ 0, z ∈ C and σ = (σ(0), σ∗), where σ∗ =

(σ(1), σ(2), . . .),

∞∑

t=1

λht
∥∥x(t; z, σ)

∥∥q =
∞∑

s=0

λhs+1
∥∥x(s; Fσ(0)(z), σ∗)

∥∥q =
∞∑

s=0

λhsλνs∥∥x(s; Fσ(0)(z), σ∗)
∥∥q

=
∞∑

s=0

λhs
∥∥x(s; λ

1
q Fσ(0)(z), σ∗)

∥∥q
. (18)
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Therefore, for any fixed λ ≥ 0 and z ∈ C,

Gλ(z) = ‖z‖q + sup
σ

∞∑

t=1

λht‖x(t; z, σ)‖q = ‖z‖q + sup
σ(0)

sup
σ∗

∞∑

t=0

λht
∥∥x(t; λ

1
q Fσ(0)(z), σ∗)

∥∥q

= ‖z‖q + max
i∈M

Gλ(λ
1
q Fi(z)).

Property 3 is trivial, and Property 4 follows from (5) directly. The first implication in Property
5 is easy to establish; to show the converse, note that G1(z) ≤ c, ∀ z ∈ Bρ ∩ C, implies that for any
z ∈ Bρ ∩ C and any σ, ‖x(t; z, σ)‖ ≤ c1/q, ∀ t ∈ Z+, and x(t; z, σ) → 0 as t →∞. Hence, the SHS is
strongly asymptotically stable on Bρ ∩ C, yielding the exponential stability by Proposition 2.3.

The radius of strong convergence of the generating function (16) is defined as:

λ∗ := sup
{

λ ≥ 0
∣∣∣∣ sup

z∈ Sn−1∩C
Gλ(z) < ∞

}
. (19)

In light of Property 4 in Proposition 4.1, we have λ∗ ≥ (µ1)−q. It is shown below that the radius
of the domain of strong attraction can be determined by λ∗.

Theorem 4.1. The following holds: ρ∗ = (λ∗)
1

q(ν−1) .

Proof. We first show ρ∗ ≤ (λ∗)
1

q(ν−1) . Let ρ ∈ (0, ρ∗) be arbitrary. By Proposition 2.3, the SHS
is strongly exponentially stable on Bρ̃ ∩ C for some ρ̃ with ρ < ρ̃ < ρ∗, i.e., there exist κ > 0
and r ∈ [0, 1) such that for any z ∈ Bρ̃ ∩ C and any σ, ‖x(t; z, σ)‖ ≤ κrt‖z‖, ∀ t ∈ Z+. Thus, if

0 < λ
1

q(ν−1) < ρ, then for any z ∈ Sn−1 ∩ C,

Gλ(z) = sup
σ

∞∑

t=0

λht

(
ρ−νt‖x(t; ρz, σ)‖

)q
≤

∞∑

t=0

(
λ

1
q(ν−1)

ρ

)q·νt

λ−
1

ν−1

(
κrt‖ρz‖

)q

≤ λ−
1

ν−1 (κρ)q
∞∑

t=0

(
r · λ 1

q(ν−1)

ρ

)q· t

.

This implies supz∈ Sn−1∩C Gλ(z) < ∞. Since ρ ∈ (0, ρ∗) is arbitrary, supz∈ Sn−1∩C Gλ(z) is finite

whenever λ
1

q(ν−1) < ρ∗. By the definition of λ∗, we conclude ρ∗ ≤ (λ∗)
1

q(ν−1) .
We next show ρ∗ ≥ (λ∗)

1
q(ν−1) via contradiction. Suppose ρ∗ < (λ∗)

1
q(ν−1) . Then there exist ρ

and λ such that ρ∗ < ρ < λ
1

q(ν−1) < (λ∗)
1

q(ν−1) . It is observed from the second part of the proof of
Theorem 2.3 that for any ρ > ρ∗, there is no uniform bound on all the trajectories starting from
Bρ ∩ C. Indeed, for any N ∈ N, there exist zN ∈ C with ‖zN‖ = ρ, a switching sequence σN , and a
time tN such that ‖x(tN ; zN , σN )‖ ≥ N . Hence,

Gλ(zN/ρ) ≥
(

λhtN
/q

ρνtN

)q ∥∥x(tN ; zN , σN )
∥∥q ≥

(
λ

1
q(ν−1)

ρ

)q·νtN

· λ− 1
ν−1 ·N q ≥ λ−

1
ν−1 ·N q, ∀N.

Therefore, supz∈ Sn−1∩C Gλ(z) = ∞. Since λ < λ∗, we have a contradiction. As a result, ρ∗ ≥
(λ∗)

1
q(ν−1) , and thus ρ∗ = (λ∗)

1
q(ν−1) .

In view of the above result and Theorem 2.3, we see that λ∗ and the GJSR µ∗ satisfy µ∗ =
(λ∗)−1/q, an analogue to the same relation for the two quantities of the SLS on C in Remark 3.2.
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Remark 4.1. Define a companion of strong generating function G̃(·, ·) : R+ × C → R+ ∪ {∞} as:

G̃(λ, z) := G̃λ(z) = sup
σ

∞∑

t=0

‖x(t; λ
1

q(ν−1) z, σ)‖q, ∀ λ ≥ 0, z ∈ C. (20)

Notice that G̃λ is defined via vector scaling (by λ
1

q(ν−1) ), i.e., G̃λ(z) = G̃1(λ
1

q(ν−1) z), a key feature
of the SHS with ν > 1. Despite their different definitions, Gλ and G̃λ are closely related. Indeed,
for each λ ≥ 0, we have

λ
1

ν−1

∞∑

t=0

λht‖x(t; z, σ)‖q = λ
1

ν−1

∞∑

t=0

λ
νt−1
ν−1 ‖x(t; z, σ)‖q =

∞∑

t=0

(
λ

1
ν−1

)νt

‖x(t; z, σ)‖q

=
∞∑

t=0

∥∥∥x
(
t; λ

1
q(ν−1) z, σ

)∥∥∥
q
, ∀ z ∈ C, ∀σ. (21)

As a result, G̃λ(z) = λ
1

ν−1 Gλ(z), ∀z ∈ C, for any λ ≥ 0. In view of this, we see that G̃λ satisfies the
Bellman equation G̃λ(z) = λ

1
ν−1 ‖z‖q + maxi∈M G̃λ(λ

1
q Fi(z)) and Properties 3-5 in Proposition 4.1.

We introduce the upper bound of Gλ on Sn−1∩C that is important to analysis and computation
of Gλ and λ∗: for λ ≥ 0,

gλ := sup
z∈ Sn−1∩C

Gλ(z).

We also treat gλ : R+ → R+ ∪ {+∞} as a function of λ. The next proposition reveals fundamental
properties of gλ. Particularly, it shows that λ∗ is exactly the first value of λ where Gλ(·) = +∞ at
some z ∈ Sn−1 ∩ C.
Proposition 4.2. Let ρ∗ be finite. The function gλ is increasing, convex, and semismooth (thus
continuous) on [0, λ∗) with g0 = 1 and the one-sided derivative of gλ at λ = 0 being g′λ(0+) = (µ1)q.
Furthermore, there exists z̃ ∈ Sn−1 ∩ C such that Gλ∗(z̃) = ∞ (thus gλ∗ = ∞), and gλ → ∞ as
λ ↑ λ∗.

Proof. The monotonicity, convexity and semismoothness of gλ follows from similar arguments in
the proof of [14, Proposition 4]. To show the rest of the statement, we see from Proposition 2.4
that there exists z′ ∈ ρ∗Sn−1 ∩ C such that x(t; z′, σz′) does not converge to the origin under some
switching sequence σz′ . Recalling ρ∗ = (λ∗)

1
q(ν−1) and using the companion generating function G̃

defined in (20), we have G̃λ∗(z′/ρ∗) ≥ ∑∞
t=0 ‖x(t; z′, σz′)‖q = ∞, where the last equality is due to

the fact that x(t; z′, σz′) does not converge to the origin. In light of G̃λ(z) = λ
1

ν−1 Gλ(z), we have
gλ∗ ≥ Gλ∗(z′/ρ∗) = ∞. Further, it follows from a straightforward computation and the definition
of µ1 in (3) that the one-sided derivative (gλ)′(0+) = maxi∈Mmaxz∈Sn−1∩C ‖Fi(z)‖q = (µ1)q.

To show limλ↑λ∗ gλ = ∞, note that for any L > 0, there exists z̃ ∈ Sn−1∩C such that Gλ∗(z̃) ≥ L.
Let σz̃ be a switching sequence such that Gλ∗(z̃) =

∑∞
t=0(λ

∗)ht‖x(t; z̃, σz̃)‖q ≥ L. Hence, there exists
K ∈ N such that G̃K

λ∗(z̃) :=
∑K

t=0(λ
∗)ht‖x(t; z̃, σz̃)‖q ≥ L/2. Since G̃K

λ (z̃) is continuous in λ for the
fixed K and z̃, we deduce the existence of η > 0 such that for all λ ∈ (λ∗ − η, λ∗], G̃K

λ (z̃) ≥ L/4.
This shows gλ ≥ Gλ(z̃) ≥ G̃K

λ (z̃) ≥ L/4 for all λ ∈ (λ∗ − η, λ∗], and leads to the desired result.

The above proposition can easily be extended to characterize 1/gλ stated below without proof.

Corollary 4.1. The function 1/gλ : R+ → [0, 1] is decreasing and semismooth (thus continuous)
on [0, λ∗) and (1/gλ)′(0+) = −(µ1)q. Further, 1/gλ = 0 on [λ∗,∞), and 1/gλ is continuous on R+.

It can be further shown using (5) and a similar argument as in the proof of [14, Lamma 2] that
1/gλ ≥ 1− (µ1)q ·λ,∀λ ∈ [0, λ∗). Since 1− (µ1)q ·λ represents the tangent line of 1/gλ at the point
(0, 1), the graph of 1/gλ is always above its tangent line at (0, 1); see Figure 1 for an example.
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4.1.1 Computation of Strong Generating Functions and Radius of Convergence

We addresses numerical approximation of the strong generating function and its convergence analy-
sis. The underlying principle is similar to that shown in Section 3.3: the strong generating function
Gλ is approximated by a sequence of similar functions defined on finite but increasingly larger
horizons. Particularly, for a given λ ≥ 0, let Gk

λ(z) := maxσ
∑k

t=0 λht‖x(t; z, σ)‖q for all z ∈ C,
where k ∈ Z+. The proposition below shows that for any λ ∈ [0, λ∗), the sequence

(
Gk

λ

)
converges

to Gλ on Sn−1 ∩ C uniformly and (sup-)exponentially fast when k is sufficiently large.

Proposition 4.3. Let λ ∈ [0, λ∗). The following hold:

(1) each Gk
λ is continuous on C and G0

λ(z) ≤ G1
λ(z) ≤ · · · ≤ Gλ(z), ∀z ∈ C.

(2) there exist θλ ∈ (0, 1) and Nλ ∈ N (both dependent on λ only) such that for all k ≥ Nλ,
|Gk

λ(z)−Gλ(z)| ≤ (θλ)hk+1/(1− (θλ)νk+1
) for all z ∈ Sn−1 ∩ C.

(3) Gλ(·) is continuous on Sn−1 ∩ C.

Proof. The first statement is trivial. To prove the second, it is noted from µ∗ = (λ∗)−1/q that
µ∗ < λ−1/q for any given λ ∈ (0, λ∗). Hence, there exists ε > 0 such that µ∗ + ε < λ−1/q, or
equivalently θλ := λ · (µ∗ + ε)q ∈ (0, 1). It follows from the definition of µ∗ that there exists
Nλ ∈ N such that µk ≤ µ∗ + ε for all k ≥ Nλ. Hence, by (8) and Theorem 2.1, we have, for any
z ∈ Sn−1 ∩ C and under any σ, ‖x(t; z, σ)‖ ≤ (µ∗ + ε)ht ,∀ t ≥ Nλ. For a given z ∈ Sn−1 ∩ C,
let x̂(t, z) denote the trajectory that achieves the supremum in (16) for the given z and λ, i.e.,
Gλ(z) =

∑∞
t=0 λht‖x̂(t, z)‖q. Then, we have, for all k ≥ Nλ,

∞∑

t=k+1

λht‖x̂(t, z)‖q ≤
∞∑

t=k+1

λht

(
(µ∗ + ε)ht

)q
=

∞∑

t=k+1

(θλ)ht ≤ (θλ)hk+1

1− (θλ)νk+1 .

As a result, Gλ(z) ≥ Gk
λ(z) ≥ ∑k

t=0 λht‖x̂(t, z)‖q = Gλ(z) − ∑∞
t=k+1 λht‖x̂(t, z)‖q ≥ Gλ(z) −

(θλ)hk+1/(1− (θλ)νk+1
) for all k ≥ Nλ and all z ∈ Sn−1 ∩ C. This yields (2). Finally, Statement (3)

follows from the continuity of Gk
λ and the uniform convergence of

(
Gk

λ

)
to Gλ on Sn−1 ∩ C.

Define gλ,k := max
z∈ Sn−1∩C

Gk
λ(z) as an approximation of gλ. Clearly, (gλ,k) is increasing at any λ.

Proposition 4.4. The following hold:

(1) for each λ ∈ [0, λ∗), gλ = limk→∞ gλ,k. Further, there exists a convergent sequence (zk) in
Sn−1 ∩ C with G`k

λ (zk) = gλ,`k
and (`k) ↑ ∞ such that z∗ := limk→∞ zk satisfies Gλ(z∗) = gλ.

(2) for λ ≥ λ∗, (gλ,k) ↑ ∞. Further, there exists a convergent sequence (zk) in Sn−1 ∩ C with
G`k

λ (zk) = gλ,`k
and (`k) ↑ ∞ such that the limit z∗ of (zk) satisfies lim supz→z∗ Gλ(z) = ∞.

Proof. (1) Note that gλ is finite and {Gk
λ(z) : k ∈ Z+, z ∈ Sn−1 ∩ C} is bounded above by

gλ. Hence, by the principle of the iterated suprema, supk

(
gλ,k

)
= supk

(
supz∈ Sn−1∩C Gk

λ(z)
)

=
supz∈ Sn−1∩C

(
supk Gk

λ(z)
)

= supz∈ Sn−1∩C Gλ(z) = gλ. Since (gλ,k) is an increasing sequence, it
converges to its supremum gλ. Furthermore, since each Gk

λ is continuous on the compact set
Sn−1 ∩ C, it has a maximizer zk ∈ Sn−1 ∩ C. Without loss of generality, we assume that (zk)
converges to z∗ ∈ Sn−1 ∩ C with gλ,`k

= G`k
λ (zk) and (`k) ↑ ∞. Hence, for any fixed z ∈ Sn−1 ∩ C,

we have Gλ(z) = limk→∞G`k
λ (z) ≤ limk→∞G`k

λ (zk) = Gλ(z∗), where the last identity is due to the
continuity of Gλ and the uniform convergence of

(
Gk

λ

)
. This shows Gλ(z∗) = gλ.
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(2) Given λ ≥ λ∗, there exists z′ ∈ λ
1

q(ν−1) Sn−1 ∩ C such that x(t; z′, σ) does not converge to 0
under some σ, by observing the argument in Proposition 2.4. Therefore Gλ(z′) = ∞ and

(
Gk

λ(z′)
)

is an increasing sequence that tends to the infinity. In view of Gk
λ(z′) ≤ gλ,k, we have (gλ,k) ↑ ∞.

Further, let (zk) be a convergent sequence in Sn−1 ∩C with G`k
λ (zk) = gλ,`k

. Noting that G`k
λ (zk) ≤

Gλ(zk) for all k, we have (Gλ(zk)) →∞ as (zk) → z∗. This shows lim supz→z∗ Gλ(z) = ∞.

A numerical scheme is developed as follows to compute Gk
λ on Sn−1∩C and λ∗, thus the radius of

the domain of strong attraction. The continuous function Gk
λ can be approximated within arbitrary

precision by its values on a set of fine grid points on C. The following recursive procedure is used
to compute Gk

λ for a given λ ≥ 0 based on the Bellman equation for Gk
λ:

G0
λ(z) = ‖z‖q, G`

λ(z) = ‖z‖q + max
i∈M

G`−1
λ (λ

1
q Fi(z)), ` = 1, 2, . . . . (22)

This further leads to gλ,k, an approximation of gλ. By Corollary 4.1, we see that λ∗ is the first
λ where 1/gλ = 0. Due to the continuity of 1/gλ on [0, λ∗), the graph of 1/gλ on [0, λ∗) can be
approximated by finitely many points, the rightmost of which will be an approximation of λ∗.

While we are mostly interested in G`
λ on Sn−1 ∩ C and gλ,`, the scaling property (i.e., Property

1) in Proposition 4.1 shows that gridding Sn−1 ∩ C is not enough to represent G`
λ. Hence, a larger

set U is needed for gridding, particularly when λ ≥ (µ1)−q (cf. Property 4 in Proposition 4.1). For
such λ and a given k, the size of U can be estimated as follows. To find Gk

λ at z ∈ Sn−1∩C, it follows
from (22), as well as (4) and (7), that we need to know Gk−1

λ at λ1/qFi(z), where ψ := λ1/qζ ≤
‖λ1/qFi(z)‖ ≤ θ := λ1/qµ1, ∀ z ∈ Sn−1 ∩ C, ∀ i ∈ M. Let A(ψ, θ) := {z : ψ ≤ ‖z‖ ≤ θ} denote
the annulus whose radii are between ψ and θ. Thus the required region for Gk−1

λ is A(ψ, θ) ∩ C.
Further, to find Gk−1

λ on Bθ ∩C, we need to know Gk−2
λ at λ1/qFi(z) with z ∈ Bθ ∩C, where ψ1+ν =

λ1/qζψν ≤ ‖λ1/qFi(z)‖ ≤ λ1/qµ1θ
ν = θ1+ν in view of (4) and (7). Inductively, for ` = 0, . . . , k − 1,

the required region for G`
λ is A(ψhk−` , θhk−`)∩C when using (22). Hence, the set U , or equivalently

the required region for G0
λ, can be taken as A(ψhk , θhk)∩C. A set of gridding points can be obtained

from the required region in each iteration. Moreover, we approximate the points outside the grid
set by suitable interpolation of known data from the preceding step. This numerical procedure is
outlined in Algorithm 1.

For a given k, the proposed algorithm has linear complexity with respect to the number of
subsystems and thus is suitable for a SHS with a relatively large number of subsystems but a
smaller state dimension. However, its overall complexity is exponential since the size of U is rapidly
enlarged as k increases. Further, as λ is closer to λ∗, a much larger k (thus a larger set U) and
much finer grids are needed for a desired accuracy. This agrees with the fact that computing λ∗,
or equivalently the GJSR µ∗, is an NP-hard problem, even for the SLS on Rn [4, 33].
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Figure 1: Left: Plots of 1/gλ (solid) and the tangent line 1− (µ1)
2 ·λ (dash). Right: Plots of log

(
Gk

λ([cos φ sin φ])
)

with k = 8 (dash), k = 9 (solid), k = 10 (dot), and k = 11 (dash-dot) when λ = 0.325.
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Algorithm 1 Computing Gk
λ on grid points of Sn−1 ∩ C and gλ,k with θ := λ

1
q µ1 and ψ := λ

1
q ζ

Let V = {zj}N
j=1 be a set of grid points of A(ψhk , θhk) ∩ C;

Initialize ` := 0, and Ĝ0
λ(zj) = ‖zj‖q for all zj ∈ V;

repeat
` ← ` + 1;
for each zj ∈ V ∩ A(ψhk−` , θhk−`) do

for each i ∈M do
Use interpolation to find gij := Ĝ`−1

λ (λ
1
q Fi(zj)) based on the values of Ĝ`−1

λ on V
end for
Set Ĝ`

λ(zj) = ‖zj‖q + maxi∈M gij ;
V ← V ∩A(ψhk−` , θhk−`)

end for
until ` = k

ĝλ,k = maxzj ∈ Sn−1∩C Ĝk
λ(zj)

return Ĝk
λ(zj) for all zj ∈ Sn−1 ∩ C and ĝλ,k

Example 4.1. Consider the planar SHS of homogeneous degree ν = 2 on the nonnegative orthant
C = R2

+, where

F1(x1, x2) =
[

x2
1 + x1x2 + x2

2

x2
1 − 0.1x1x2 + x2

2

]
, F2(x1, x2) =

[
x2

1 + 0.5x1x2

0.3x1x2 + x2
2

]
.

We use the Euclidean norm ‖·‖2 and q = 2. It can be shown that µ1 = 1.776 such that λ∗ ≥ 0.3172.
We apply Algorithm 1 to compute gλ,k and 1/gλ at various λ = 0.1, 0.2, 0.25, 0.3, 0.315, 0.318, 0.32,
0.3225, and 0.325. The plot of 1/gλ versus λ is displayed in Figure 1. Numerical results of (gλ,k)
demonstrate a diverging behavior at λ = 0.325 which hints λ∗ ≤ 0.325. Therefore, denser λ’s
are chosen on between 0.3 and 0.325. When λ = 0.325, the plots of log(Gk

λ) for different k on
the unit circle in R2

+ parameterized by the angle φ on [0, π
2 ] are also given. It is seen that for

each k, the maximizer zk defined in Proposition 4.4 corresponds to the same φ = π
4 . This hints

that Gλ=0.325(z∗) = ∞ at the point z∗ = ( 1√
2
, 1√

2
). Indeed, a simulation shows that the trajectory

x(t;
√

λ ·z∗, σ) diverges under σ = (1, 1, . . .) for λ ≥ 0.3237. We thus deduce from Corollary 4.1 that
λ∗ ∈ (0.3225, 0.3237) and the radius of the domain of strong attraction ρ∗ =

√
λ∗ ∈ (0.5679, 0.5689).

This result can be easily extended to the same SHS on the non-convex cone R2
+ ∪ (−R2

+) using the
observation that any trajectory will enter R2

+ in at most one step and remain in R2
+ thereafter.

4.2 Weak Generating Functions of the SHSs on Cones

In this section, we determine the domain of weak attraction of the SHS (1) on C via its weak
generating function H(·, ·) : R+ × C → R+ ∪ {∞} defined as:

H(λ, z) := Hλ(z) = inf
σ

∞∑

t=0

λht‖x(t; z, σ)‖q, ∀ λ ≥ 0, z ∈ C, (23)

where the infimum is taken over all switching sequences σ. Similarly, we define the companion of
Hλ as H̃λ(z) := infσ

∑∞
t=0 ‖x(t; λ

1
q(ν−1) z, σ)‖q. It follows from (21) that H̃λ(z) = λ

1
ν−1 Hλ(z) for all

z ∈ C and all λ ≥ 0. A few basic properties of Hλ, and thus H̃λ, are given as follows.
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Proposition 4.5. The weak generating function Hλ(z) has the following properties.

1. (Bellman Equation): For all λ ≥ 0 and z ∈ C, Hλ(z) = ‖z‖q + mini∈MHλ(λ
1
q Fi(z)).

2. (Monotonicity): For any fixed z ∈ C, Hλ1(z) ≤ Hλ2(z) whenever 0 ≤ λ1 ≤ λ2.

3. For 0 ≤ λ < (a1)−q, where a1 is defined in (9), sup
z∈ Sn−1∩C

Hλ(z) is finite.

4. (Exponential Stability): If the SHS (1) is weakly exponentially stable on Bρ∩C, then H1(z) ≤
c, ∀ z ∈ Bρ ∩ C, for some finite c > 0. Conversely, if the latter holds, then for any ε ∈ (0, ρ),
the SHS (1) is weakly exponentially stable on Bρ−ε ∩ C.

Proof. Properties 1, 2, and 4 can be shown in a similar way as those in Proposition 4.1; particularly,
Property 1 follows from (18) and the dynamic programming principle. Consider Property 3 now.
Recall that a1 = sup

z∈ Sn−1∩C

(
min
i∈M

‖Fi(z)‖). Therefore, for any z ∈ C, there exists iz ∈ M such that

‖Fiz(z)‖ ≤ a1‖z‖ν . By induction, we can find a switching sequence σz (dependent on z) such that
‖x(t; z, σ)‖ ≤ (a1)ht‖z‖νt

,∀ t ∈ Z+. Thus, Hλ(z) ≤ ∑∞
t=0 λht‖x(t; z, σz)‖q ≤ ∑∞

t=0(λ · aq
1)

ht < ∞,
which proves Property 3.

The radius of weak convergence of the generating function Hλ is defined as:

λ∗ := sup
{

λ ≥ 0
∣∣∣∣ sup

z∈ Sn−1∩C
Hλ(z) < ∞

}
. (24)

It is clear from Property 3 in Proposition 4.5 that λ∗ ≥ (a1)−q. The radius of weak convergence
characterizes the domain of weak attraction as shown below.

Theorem 4.2. The following holds: ρ∗ = (λ∗)
1

q(ν−1) . Further, a∗ = (λ∗)−1/q.

Proof. The argument is similar to that of Theorem 4.1 except that the strong stability (resp. µk, µ∗)
is replaced by the weak stability (resp. ak, a∗). We briefly present its key steps as follows.

To show ρ∗ ≤ (λ∗)
1

q(ν−1) , choose ρ ∈ (0, ρ∗). By the weak exponential stability on Bρ̃ ∩ C with
ρ̃ ∈ (ρ, ρ∗), the constants κ > 0 and r ∈ [0, 1) exist such that for any z ∈ Bρ̃∩C, ‖x(t; z, σz)‖ ≤ κrt‖z‖
under some switching sequence σz. Hence, for λ

1
q(ν−1) < ρ and each z ∈ Sn−1 ∩ C, we have

Hλ(z) ≤ ∑∞
t=0 λht‖x(t; z, σz)‖q ≤ λ−

1
ν−1 (κρ)q

∑∞
t=0

(
r·λ

1
q(ν−1)

ρ

)q· t
< ∞. This yields ρ∗ ≤ (λ∗)

1
q(ν−1) .

Suppose ρ∗ < (λ∗)
1

q(ν−1) . Then ρ and λ exist such that ρ∗ < ρ < λ
1

q(ν−1) < (λ∗)
1

q(ν−1) . It follows
from the second part of the proof of Theorem 2.4 that for any N ∈ N, there exists zN ∈ ρSn−1 ∩ C
such that for any σ, ‖x(N ; zN , σ)‖ ≥ ρ( a∗

a∗−η )N for some η > 0. Thus Hλ(zN/ρ) ≥ λ−
1

ν−1 ( a∗
a∗−η )N ·q

for all N , implying supz∈ Sn−1∩C Hλ(z) = ∞, a contradiction. This shows ρ∗ = (λ∗)
1

q(ν−1) .

The next proposition asserts the continuity of Hλ(·) on Sn−1∩C for λ ∈ [0, λ∗). Similar to that of
Gλ (cf. Proposition 4.3), its proof relies on uniform convergence of the finite-horizon approximation
of Hλ defined as Hk

λ(z) := minσ
∑k

t=0 λht‖x(t; z, σ)‖q for all z ∈ C, where k ∈ Z+. However, weak
stability complicates the convergence analysis. For example, unlike Gk

λ(z) shown in Proposition 4.3,
Hk

λ(z) cannot be bounded below by the k-tail of Hλ(z). Further, the linear technique used for Hk
λ(z)

of the SLS in [14] fails because of the nonlinear Fi’s. To overcome these difficulties, we use different
arguments via new techniques, e.g., the semicontinuity and Dini’s Theorem. This result will be
exploited later for numerical approximation of Hλ and λ∗ and its convergence analysis.

Proposition 4.6. Given λ ∈ [0, λ∗). The following hold:

23



(1) each Hk
λ is continuous on C and H0

λ(z) ≤ H1
λ(z) ≤ · · · ≤ Hλ(z), lim

k→∞
Hk

λ(z) = Hλ(z),

∀z ∈ Sn−1 ∩ C.
(2)

(
Hk

λ

)
converges uniformly to Hλ on Sn−1 ∩ C.

(3) Hλ(·) is continuous on Sn−1 ∩ C.
Proof. We introduce some notation first. For a given λ ∈ [0, λ∗) and z ∈ C, let x̂k

λ(t, z) denote the
trajectory that achieves the minimum in Hk

λ(z), i.e., Hk
λ(z) =

∑k
t=0 λht‖x̂k

λ(t, z)‖q. Similarly, let
x̂λ(t, z) denote the trajectory that achieves the infimum in Hλ(z).

(1) The continuity of each Hk
λ is obvious. For a given z ∈ Sn−1∩C, the monotonicity of

(
Hk

λ(z)
)

is due to the observation that Hk+1
λ (z) =

∑k+1
t=0 λht‖x̂k

λ(t, z)‖q ≥ ∑k
t=0 λht‖x̂k

λ(t, z)‖q ≥ Hk
λ(z).

Similarly, we have Hk
λ(z) ≤ Hλ(z) for all k. To show the pointwise convergence of

(
Hk

λ

)
on Sn−1∩C,

it suffices to prove Hλ(z) = supk{Hk
λ(z)} for any fixed z ∈ Sn−1 ∩ C, namely, at each z ∈ Sn−1 ∩ C

and for any ε > 0, there exists k ∈ N such that Hk
λ(z) > Hλ(z)−ε. Suppose not. Then for some z ∈

Sn−1∩C and ε > 0, Hk
λ(z) ≤ Hλ(z)−ε for all k. Let σ̂k denote the corresponding switching sequence

for x̂k
λ(t, z), i.e., x̂k

λ(t, z) = x(t; z, σ̂k). Since M is finite, {σ̂k(0)} has a subsequence of a constant
index denoted by σ∗(0) ∈ M, i.e., {σ̂k′(0)} = {σ∗(0)}. Similarly, the corresponding subsequence
{σ̂k′(1)} has another subsequence of a constant index denoted by σ∗(1) ∈ M. Repeating this
argument via induction, we construct a switching sequence σ∗ := {σ∗(0), σ∗(1), . . .}. It is easy to
see from this construction that for any k ∈ N,

∑k
t=0 λht‖x(t; z, σ∗)‖q ≤ Hs

λ(z) for some s ≥ k.
This implies that

∑∞
t=0 λht‖x(t; z, σ∗)‖q ≤ Hλ(z)−ε, contradicting Hλ(z) ≤ ∑∞

t=0 λht‖x(t; z, σ∗)‖q.
Consequently, the pointwise convergence holds.

(2) For each Hk
λ , define its companion function H̃k

λ(z) := minσ
∑k

t=0 ‖x(t;λ
1

q(ν−1) z, σ)‖q. In

light of (21), H̃k
λ(z) = λ

1
(ν−1) Hk

λ(z). Hence,
(
H̃k

λ

)
is monotone and pointwise convergent to H̃λ

on Sn−1 ∩ C, and we only need to show the uniform convergence property for
(
H̃k

λ

)
. For a given

λ ∈ (0, λ∗) (the trivial case λ = 0 is omitted), let ρλ := λ
1

q(ν−1) . We break the proof into two steps.
(2.1) We first show a weaker continuity property for H̃λ stated as follows:

Claim 1: H̃λ is upper semicontinuous on Sn−1 ∩ C.
To prove this property, it suffices to show that at each z∗ ∈ Sn−1 ∩ C, for any ε > 0, there
exists an open set U of z∗ such that H̃λ(z) ≤ H̃λ(z∗) + ε for all z ∈ U ∩ (Sn−1 ∩ C). It follows
from Theorem 4.2 that ρλ ∈ (0, ρ∗) such that the SHS is weakly exponentially stable on Bρλ

∩ C.
Therefore, there exist κ ≥ 1 and r ∈ [0, 1) such that for any z0 ∈ Bρλ

∩ C, ‖x(t; z0, σz0)‖ ≤
κrt‖z0‖ under some switching sequence σz0 . For the given z∗, let σ∗ be a switching sequence
that achieves H̃λ(z∗), i.e., H̃λ(z∗) =

∑∞
t=0 ‖x(t; ρλz∗, σ∗)‖q. Since the series

∑∞
t=0 ‖x(t; ρλz∗, σ∗)‖q

converges, ‖x(t; ρλz∗, σ∗)‖ → 0 as t → ∞. Thus there exists a sufficiently large T ∈ N such that∑T
t=0 ‖x(t; ρλz∗, σ∗)‖q ≤ H̃λ(z∗), ‖x(T ; ρλz∗, σ∗)‖ < ρλ, and ‖x(T ; ρλz∗, σ∗)‖q · κq/(1 − rq) ≤ ε/3.

Since x(t; ρλz, σ∗) is continuous in z for any fixed t ∈ [0, T ], there exists an open set U of z∗ such that∑T
t=0 ‖x(t; ρλz, σ∗)‖q ≤ H̃λ(z∗)+ ε/2, ‖x(T ; ρλz, σ∗)‖ < ρλ, and ‖x(T ; ρλz, σ∗)‖q ·κq/(1− rq) ≤ ε/2

for all z ∈ U ∩ (Sn−1 ∩ C). For any z ∈ U ∩ (Sn−1 ∩ C), let σ̃z be a switching sequence such
that ‖x(s; x(T ; ρλz, σ∗), σ̃z)‖ ≤ κrs‖x(T ; ρλz, σ∗)‖, ∀ s ∈ Z+. Consequently, under the switching
sequence σz := (σ∗(0), . . . , σ∗(T ), σ̃z), we have

H̃λ(z) ≤
∞∑

t=0

‖x(t; ρλz, σz)‖q =
T−1∑

t=0

‖x(t; ρλz, σ∗)‖q +
∞∑

t=T

‖x(t− T ; x(T ; ρλz, σ∗), σ̃z)‖q

≤
(
H̃λ(z∗) +

ε

2

)
+ ‖x(T ; ρλz, σ∗)‖q κq

1− rq
≤ H̃λ(z∗) + ε.
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This shows H̃λ(z) ≤ H̃λ(z∗)+ ε for all z ∈ U ∩ (Sn−1 ∩C), and thus the upper semicontinuity of H̃λ

on Sn−1 ∩ C.
(2.2) We then show, via Dini’s Theorem, that

Claim 2: (H̃k
λ) uniformly converges to H̃λ on Sn−1 ∩ C.

To this end, define Ek
λ(z) := H̃λ(z) − H̃k

λ(z). Since each H̃k
λ is continuous on Sn−1 ∩ C, so is −H̃k

λ

which is also upper semicontinuous. Hence, in view of Claim 1, each Ek
λ is upper semicontinous on

Sn−1 ∩ C. Further, by Statement (1) shown above,
(
Ek

λ

)
is pointwise monotonically decreasing to

zero on the compact set Sn−1 ∩C. In light of Dini’s Theorem [24, Chapter 9, Proposition 11],
(
Ek

λ

)

converges uniformly to zero on Sn−1 ∩ C. This yields the uniform convergence of
(
H̃k

λ

)
to H̃λ.

(3) This directly follows from the continuity of Hk
λ and Statement (2).

Equipped with the above proposition, we study the upper bound of Hλ on Sn−1 ∩ C defined as

hλ := sup
z∈ Sn−1∩C

Hλ(z).

Its approximation is given by hλ,k := maxz∈ Sn−1∩C Hk
λ(z). As before, hλ and hλ,k are treated

as functions of λ. Similar to gλ treated in Section 4.1, the function hλ plays a critical role in
computation of λ∗. Fundamental properties of hλ via approximation of

(
hλ,k) are shown below.

Proposition 4.7. The following hold:

(1) each function hλ,k is continuous in λ on R+.

(2) at each λ ∈ [0, λ∗),
(
hλ,k

)
is an increasing sequence that converges to hλ. Furthermore, there

exists a convergent sequence (zk) in Sn−1 ∩ C with H`k
λ (zk) = hλ,`k

and (`k) ↑ ∞ such that
the limit z∗ of (zk) satisfies Hλ(z∗) = hλ.

(3) for any λ̃ ∈ (0, λ∗),
(
hλ,k

)
is an increasing sequence that uniformly converges to hλ on [0, λ̃].

(4) the function hλ is increasing and continuous on [0, λ∗) with h0 = 1 and the one-sided derivative
of hλ at λ = 0 being h′λ(0+) = (a1)q. Furthermore, there exists z̃ ∈ Sn−1 ∩ C such that
Hλ∗(z̃) = ∞ (thus hλ∗ = ∞), and hλ →∞ as λ ↑ λ∗.

Proof. (1) Fix k ∈ N. Clearly, Hk
λ(z) is continuous in (λ, z). Noting that hλ,k is pointwise supreme

of Hk
λ(z), i.e., hλ,k = supz∈ Sn−1∩C Hk

λ(z), we conclude that hλ,k is lower semicontinuous in λ.
Next, we show that hk

λ is upper semicontinuous, and thus continuous, in λ. To see this, choose
λ0 ≥ 0 and for each z ∈ Sn−1 ∩ C, let σ∗z,λ0

be a switching sequence that achieves Hk
λ0

(z). Notice
that there exists c > 0 such that ‖x(t; z, σ)‖ ≤ c for all t ∈ [0, k] and all z in the compact set
Sn−1 ∩ C under any switching sequence σ. Hence, for any given ε > 0, there exists η > 0 such that

|λ− λ0| ≤ η ⇒
∣∣∣

k∑

t=0

λht‖x(t; z, σ)‖q −
k∑

t=0

(λ0)ht‖x(t; z, σ)‖q
∣∣∣ ≤ ε, ∀σ, ∀ z ∈ Sn−1 ∩ C. (25)

As a result, for any λ ≥ 0 with |λ− λ0| ≤ η, we have, for each z ∈ Sn−1 ∩ C,

Hk
λ(z) ≤

k∑

t=0

λht‖x(t; z, σ∗z,λ0
)‖q ≤ Hk

λ0
(z)+

∣∣∣
k∑

t=0

λht‖x(t; z, σ∗z,λ0
)‖q−

k∑

t=0

(λ0)ht‖x(t; z, σ∗z,λ0
)‖q

∣∣∣ ≤ Hk
λ0

(z)+ε.

Therefore, hλ,k ≤ hλ0,k + ε in a neighborhood of λ0, implying the upper semicontinuity of hλ,k.
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(2) Fix λ ∈ [0, λ∗). The monotonicity is clear; it suffices to show the convergence. Since each
Hk

λ(·) is continuous on the compact set Sn−1 ∩ C, there exists a maximizer zk ∈ Sn−1 ∩ C such that
hλ,k = Hk

λ(zk). Without loss of generality, we assume that (zk) converges to z∗ ∈ Sn−1 ∩ C with
H`k

λ (zk) = hλ,`k
and (`k) ↑ ∞. By the uniform convergence of

(
Hk

λ

)
to the continuous function

Hλ proven in Proposition 4.6, we see that
(
H`k

λ (zk)
)

converges to Hλ(z∗). Moreover, for any
z ∈ Sn−1 ∩ C, Hλ(z) = limk→∞H`k

λ (z) ≤ limk→∞H`k
λ (zk) = Hλ(z∗). Hence, hλ = Hλ(z∗) and(

hλ,`k

) ↑ hλ. Since (hλ,`k
) is a subsequence of the increasing sequence (hλ,k), we have (hλ,k) ↑ hλ.

The above argument also constructs a desired sequence (zk) for the second part of Statement (2).
(3) The main idea of this proof is similar to that for Proposition 4.6. Specifically, the upper

semicontinuity of hλ on [0, λ∗) is established first. Based on this and Statements (1)-(2) shown
above, the uniform convergence follows from Dini’s Theorem.

In what follows, we prove the upper semicontinuity of hλ at each λ0 ∈ [0, λ∗). When λ0 = 0,
the continuity of hλ follows from the Bellman equation in Proposition 4.5. Now consider λ0 ∈
(0, λ∗). Choose λ̂ ∈ (λ0, λ∗) and let ρ

λ̂
:= λ̂

1
q(ν−1) . The SHS is weakly exponentially stable on

Bρ
λ̂
∩ C with the constants κ̂ ≥ 1 and r̂ ∈ [0, 1) (dependent on λ̂ only). For any given ε > 0,

thanks to the uniform convergence of
(
H̃k

λ0

)
to H̃λ0 on Sn−1 ∩ C, we obtain K ∈ N such that

for all k ≥ K, H̃λ0(z) − H̃k
λ0

(z) ≤ min
(
[ε/3 · (1 − r̂q)/κ̂q], (ρ

λ̂
/3)q

)
for all z ∈ Sn−1 ∩ C. For

a given z ∈ Sn−1 ∩ C, recall that σ∗z,λ0
is a switching sequence that achieves H̃λ0(z). Hence,

‖x(K+1; ρλ0z, σ∗z,λ0
)‖ ≤ (

H̃λ0(z)−∑K
t=0 ‖x(t; ρλ0z, σ∗z,λ0

‖q
)1/q ≤ (

H̃λ0(z)−H̃k
λ0

(z)
)1/q ≤ min

(
(ε/3·

(1 − r̂q)/κ̂q)1/q, ρ
λ̂
/3

)
, for all z ∈ Sn−1 ∩ C. It follows from (25) that there exists η1 ∈ (0, λ0/2)

such that for any λ with |λ − λ0| < η1, ‖x(K + 1; ρλz, σ∗z,λ0
)‖ ≤ min

(
[ε/2 · (1 − r̂q)/κ̂q]1/q, ρ

λ̂
/2

)

and
∣∣ ∑K

t=0 ‖x(t; ρλz, σ∗z,λ0
)‖q −∑K

t=0 ‖x(t; ρλ0z, σ∗z,λ0
)‖q

∣∣ ≤ ε/2, for all z ∈ Sn−1 ∩C. Consequently,
for any λ ∈ (λ0 − η1, λ0 + η1) and each z ∈ Sn−1 ∩ C, letting σ̃z be a switching sequence such that
‖x(s; x(K + 1; ρλz, σ∗z,λ0

), σ̃z)‖ ≤ κ̂r̂s‖x(K + 1; ρλz, σ∗z,λ0
)‖,∀ s ∈ Z+, we obtain

H̃λ(z)− H̃λ0(z) ≤
K∑

t=0

∥∥x(t; ρλz, σ∗z,λ0
)
∥∥q +

∞∑

s=0

∥∥x(s;x(K + 1; ρλz, σ∗z,λ0
), σ̃z)

∥∥q −
K∑

t=0

∥∥x(t; ρλ0z, σ∗z,λ0
)
∥∥q

≤
∣∣∣

K∑

t=0

∥∥x(t; ρλz, σ∗z,λ)
∥∥q −

K∑

t=0

∥∥x(t; ρλ0z, σ∗z,λ0
)
∥∥q

∣∣∣ +
∞∑

s=0

∥∥x(t; x(K + 1; ρλz, σ∗z,λ0
), σ̃z)

∥∥q

≤ ε

2
+

∥∥x(K + 1; ρλz, σ∗z,λ0
)
∥∥q κ̂q

1− r̂q
≤ ε.

Moreover, there exists η2 > 0 such that |λ − λ0| ≤ η2 ⇒ |λ− 1
ν−1 − λ

− 1
ν−1

0 | ≤ β · |λ − λ0| for

some constant β > 0 that depends on λ0 only. Let η := min
(
η1, η2, ε/(β · λ−

1
ν−1

0 · hλ0)
)
. For any

λ ∈ (λ0 − η, λ0 + η) and any z ∈ Sn−1 ∩ C,

Hλ(z)−Hλ0(z) = λ−
1

ν−1 H̃λ(z)− λ
− 1

ν−1

0 H̃λ0(z) ≤ λ−
1

ν−1

[
H̃λ(z)− H̃λ0(z)

]
+ |λ− 1

ν−1 − λ
− 1

ν−1

0 | · H̃λ0(z)

≤ (λ0/2)−
1

ν−1

[
H̃λ(z)− H̃λ0(z)

]
+ β · |λ− λ0| · λ

− 1
ν−1

0 · hλ0

≤
[
(λ0/2)−

1
ν−1 + 1

]

︸ ︷︷ ︸
c̃

ε.

Hence, hλ ≤ hλ0 + c̃ · ε, ∀λ ∈ (λ0 − η, λ + η). This yields the upper semicontinuity of hλ at λ0.
Finally, since hλ,k is continuous in λ and

(
hλ,k

)
monotonically converges to hλ pointwise on

[0, λ∗), it follows from Dini’s Theorem that
(
hλ,k

)
uniformly converges to hλ on the compact set

[0, λ̃] for any λ̃ ∈ (0, λ∗).
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(4) The increasing property of hλ is trivial, and it follows from the continuity of hλ,k on [0, λ∗)
and the uniform convergence that for any λ̃ ∈ (0, λ∗), hλ is continuous on [0, λ̃], leading to the
continuity of hλ at each λ ∈ [0, λ∗). We further deduce via the Bellman equation for Hλ(·) and the
definition of a1 in (9) that the directional derivative (hλ)′(0+) = supz∈Sn−1∩C

(
mini∈M ‖Fi(z)‖q

)
=

(a1)q. Moreover, by Proposition 2.4, we deduce that there exists z′ ∈ ρ∗Sn−1∩C such that x(t; z′, σ)
does not converge to the origin under any σ. Hence, Hλ∗(z

′/ρ∗) = (λ∗)
1

ν−1 · H̃λ∗(z
′/ρ∗) = (λ∗)

1
ν−1 ·∑∞

t=0 ‖x(t; z′, σ∗)‖q ≥ ∞, where ρ∗ = (λ∗)
1

q(ν−1) is used and σ∗ is the switching sequence that
achieves the infimum in H̃λ∗(z

′/ρ∗). Letting z̃ := z′/ρ∗, we have Hλ∗(z̃) = ∞. It also follows from
the similar argument in Proposition 4.2 that hλ →∞ as λ ↑ λ∗.

As a counterpart to Corollary 4.1, we obtain the next result on 1/hλ without proof.

Corollary 4.2. The function 1/hλ : R+ → [0, 1] is decreasing and continuous on [0, λ∗) and
(1/hλ)′(0+) = −(a1)q. Moreover, 1/hλ = 0 on [λ∗,∞), and 1/hλ is continuous on R+.

Using the argument for Property 3 of Proposition 4.5 and a similar one in the proof of [14,
Lamma 2], it can be shown that 1/hλ ≥ 1 − (a1)q · λ,∀λ ∈ [0, λ∗). This observation implies that
the graph of 1/hλ is always above its tangent line at the point (0, 1).

4.2.1 Computation of Weak Generating Functions and Radius of Weak Convergence

We discuss numerical approximation of Hλ and λ∗. Recall that Hk
λ(z) := minσ

∑k
t=0 λht‖x(t; z, σ)‖q

uniformly converges to Hλ(z) on Sn−1 ∩ C; see Proposition 4.6. The following recursive procedure
is used to compute Hk

λ for a given λ ≥ 0 based on the Bellman equation for Hk
λ :

H0
λ(z) = ‖z‖q, H`

λ(z) = ‖z‖q + min
i∈M

H`−1
λ

(
λ

1
q Fi(z)

)
, ` = 1, 2, . . . . (26)

This also yields hλ,k that approximates hλ. Corollary 4.2 shows that λ∗ is the first λ where 1/hλ = 0.
By the continuity of 1/hλ on [0, λ∗), the graph of 1/hλ on [0, λ∗) can be approximated by finitely
many points, the rightmost of which will be an approximation of λ∗.

It follows from the discussions below (22) that in order to compute Hk
λ , the gridding set needs

to be taken as A(ψhk , θhk) ∩ C. Based on this observation, a numerical procedure is developed to
compute Hk

λ and hλ,k given in Algorithm 2. For a given k, this algorithm has linear complexity
in the number of subsystems but has overall exponential complexity. Note that unlike the sup-
exponential convergence of

(
Gk

λ

)
displayed in Proposition 4.3, Proposition 4.6 does not specify a

convergence rate of
(
Hk

λ

)
. In particular, as λ is getting closer to λ∗, the convergence behavior

may deteriorate rapidly, i.e., a very large k is needed to attain suitable convergence which may be
slow. In turn, the large k requests a much bigger gridding set and finer grids to maintain a desired
accuracy. Computational experience also demonstrates numerical sensitivity when λ is close to λ∗,
e.g., a small variation of z may lead to a large change of the obtained Hk

λ . This is due to the
instability of some z on Sn−1∩C under almost all σ when λ is sufficiently close to λ∗; see Statement
(4) of Proposition 4.7. On the other hand, this numerical challenge can be understood from the fact
that even for the SLS on Rn, computing the joint spectral sub-radius, a numerically less difficult
quantity, is known to be an NP-hard problem [4, 33].

Example 4.2. Consider the same planar SHS in Example 4.1 with the Euclidean norm ‖ · ‖2

and q = 2. In this case, a1 = 1.0679 such that λ∗ ≥ 0.8769. We apply Algorithm 2 to compute
hλ,k and 1/hλ at various λ displayed in Figure 2. Numerical results of (hλ,k) demonstrate an
unstable behavior around λ = 0.88, hinting that λ∗ is close to 0.88 where denser λ’s are chosen.
While a more accurate approximation hλ,k at λ ≥ 0.88 can be obtained by choosing a large k,
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Algorithm 2 Computing Hk
λ on grid points of Sn−1 ∩ C and hλ,k with θ := λ

1
q µ1 and ψ := λ

1
q ζ

Let V = {zj}N
j=1 be a set of grid points of A(ψhk , θhk) ∩ C;

Initialize ` := 0, and Ĥ0
λ(zj) = ‖zj‖q for all zj ∈ V;

repeat
` ← ` + 1;
for each zj ∈ V ∩ A(ψhk−` , θhk−`) do

for each i ∈M do
Use interpolation to find hij := Ĥ`−1

λ (λ
1
q Fi(zj)) based on the values of Ĥ`−1

λ on V
end for
Set Ĥ`

λ(zj) = ‖zj‖q + mini∈M hij ;
V ← V ∩A(ψhk−` , θhk−`)

end for
until ` = k

ĥλ,k = maxzj ∈ Sn−1∩C Ĥk
λ(zj)

return Ĥk
λ(zj) for all zj ∈ Sn−1 ∩ C and ĥλ,k
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Figure 2: Plot of 1/hλ

practical computational complexity makes it highly difficult because gridding sets are very large
and fine gridding is needed for numerical accuracy and stability. This significantly increases the
computational complexity. Therefore, we conclude that a (sharp) lower bound or an under-estimate
of λ∗ is 0.88, and the radius of the domain of weak attraction ρ∗ =

√
λ∗ ≈ 0.9381.

5 Discrete-Time Conewise Homogenous Inclusions

In the rest of the paper, we extend stability analysis of the switched homogeneous (resp. linear)
systems on cones to that of conewise homogeneous (resp. linear) inclusions (CHIs). The CHIs
form a class of discrete-time, switched dynamical systems subject to state-dependent switchings.
Such a system partitions a close cone into finitely many sub-cones, and the system dynamics is
homogeneous (and continuous) on each cone. Switching occurs as a state trajectory exits from
one cone and enters another. Note that the state dynamics may attain multiple values on the
intersection of two cones, thus making the system a class of homogeneous inclusions.

In specific, let C ⊂ Rn be a closed cone containing the origin. Assume that Ξ := {Xi}m
i=1

is a finite family of nonempty closed sub-cones of C satisfying ∪m
i=1Xi = C, with the index set

M := {1, . . . , m} for some m ∈ N. Each cone Xi need not be polyhedral or even convex, and Xi

and Xj may overlap for i 6= j. Associated with each cone Xi is a continuous and homogeneous
mapping x 7→ Fi(x), ∀x ∈ Xi, where each Fi : C → Rn is assumed to be positively invariant on C,
i.e., Fi(C) ⊆ C. The (discrete-time) conewise homogeneous inclusion (CHI) on C is then defined as

x(t + 1) ∈ f(x(t)), t ∈ Z+. (27)
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Here, f : C ⇒ C is the set-valued map defined by f(x) := {Fi(x) | for all i such that x ∈ Xi}. Thus,
at any time t, each cone Xi where the current state x(t) = x resides provides a possible destination
Fi(x) ∈ C that the state may evolve to at the next step. An important class of the CHIs is the
conewise linear inclusions (CLIs), where each Fi(x) = Aix for some matrix Ai. The SHSs can also
be treated as a special class of the CHIs by setting Xi = C, ∀ i ∈M.

For a given initial state z ∈ C and a time window of length T ∈ Z+, let W(z, T ) ⊆M× · · · ×M︸ ︷︷ ︸
(T+1)−copies

denote the set of all admissible switching segments of length T corresponding to z. In particular,
W(z, 0) = {i ∈M| z ∈ Xi}. Further, W(z,∞) denotes the set of all admissible switching sequences
corresponding to z. Note that for the SHSs, the equality W(z, T ) = M× · · · ×M holds for each
T ∈ Z+. For each σT ∈ W(z, T ), let x(t; z, σT ) denote a trajectory starting from z under the
admissible switching segment σT over the time horizon t = 0, 1, . . . , T + 1. In a similar manner,
for σ ∈ W(z,∞), x(t; z, σ) denotes a trajectory starting from z under σ over the infinite time
horizon. It is easy to show that given a CHI of homogeneous degree ν, for any z ∈ C and any scalar
α ≥ 0, W(z, T ) = W(αz, T ) for all T and x(t; αz, σT ) = ανt

x(t; z, σT ),∀ t = 0, . . . , T + 1 for any
σT ∈ W(z, T ). The (local) stability notions of the CHI (27) at xe = 0 are defined as follows.

Definition 5.1 (Local Strong Stability of CHI). At xe = 0, the CHI (27) on C is called

• locally strongly stable if, for each ε > 0, there is a δε > 0 such that ‖x(t; z, σ)‖ < ε, ∀ t ∈ Z+

under any σ ∈ W(z,∞) starting from z ∈ C with ‖z‖ ≤ δε;

• locally strongly convergent if there exists a neighborhood N of xe = 0 in C such that for any
z ∈ N and any σ ∈ W(z,∞), x(t; z, σ) → 0 as t →∞;

• locally strongly asymptotically stable if it is locally strongly stable and strongly convergent;

• locally strongly exponentially stable if there exist a neighborhood N of xe = 0 in C and
constants κ ≥ 1 and r ∈ [0, 1) such that ‖x(t; z, σ)‖ ≤ κrt‖z‖, ∀t ∈ Z+, for any σ ∈ W(z,∞)
starting from an arbitrary z ∈ N .

Definition 5.2 (Local Weak Stability of CHI). The CHI (27) on C is called locally weakly
stable (respectively, locally weakly convergent, locally weakly asymptotically stable and locally weakly
exponentially stable) at xe = 0 if the corresponding condition in Definition 5.1 holds under at least
one (instead of any) switching sequence σ ∈ W(z,∞).

The non-local version of the strong and weak stability can be defined for the CHIs in a similar
way as in Definition 2.2. Further, the domains of strong and weak attraction can also be defined.
The following result shows the equivalence of the strong stability notions.

Theorem 5.1. Let the compact set S := {z ∈ C | ‖z‖ ≤ ρ} for some ρ > 0. The following hold for
the CHI (27) on S:

strong convergence ⇔ strong asymptotic stability ⇔ strong exponential stability

Proof. It suffices to show that strong convergence implies strong exponential stability on S. We
first prove the following claim that characterizes the uniform convergence of the CHI.

Claim: If there exists a finite time T∗ ∈ Z+ (independent of z) such that for any z ∈ S with
‖z‖ = ρ (the radius of S) and any σ ∈ W(z,∞), ‖x(t∗; z, σ)‖ < 0.5ρ at some time t∗ ≤ T∗, then
the CHI (27) on S is strongly exponentially stable.

The proof of the claim follows from a similar argument as in Propositions 2.1. In fact, in light of
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W(z, T ) = W(αz, T ) for all T , α ≥ 0, and x(t; αz, σ) = ανt
x(t; z, σ), ∀ t ∈ Z+ for any σ ∈ W(z,∞),

as well as the compactness of S and the continuity of Fi, we deduce the existence of κ > 0 and
γ ∈ [0, 1) such that for any z ∈ S, ‖x(t; z, σ)‖ ≤ κγνt−1‖z‖, ∀ t ∈ Z+ under any σ ∈ W(z,∞). This
yields the strong exponential stability.

We then prove by contradiction that strong convergence implies strong exponential stability.
Suppose the CHI is strongly convergent but not strongly exponentially stable on S. Then it follows
from the contrapositive of the above claim that there exist a sequence of initial states {x0

k} ⊆ S
with ‖x0

k‖ = ρ, a sequence of corresponding trajectories {x(t; x0
k, σ

k)}, and a strictly increasing
sequence of times {tk} ⊂ Z+ with tk ↑ ∞, such that ‖x(t; x0

k, σ
k)‖ ≥ 0.5ρ, t = 0, 1, . . . , tk, for all

k = 1, 2, . . .. Since the sequence {x0
k} is contained in a compact set, a subsequence of it (which we

may assume without loss of generality to be itself) converges to some x0∗ ∈ S with ‖x0∗‖ = ρ. Define
the index set I(x0∗) := {i |x0∗ ∈ Xi}. Since each cone Xi is closed and there are a finite number of
them, a neighborhood N of x0∗ in S can be found such that N = S \ ∪i6∈I(x0∗)Xi ⊆ ∪i∈I(x0∗)Xi.

We next look at the sequence {x(1;x0
k, σ

k)}. Our assumption on the times {tk} implies that
0.5ρ ≤ ‖x(1;x0

k, σ
k)‖ ≤ µ1 for all k large enough, where µ1 := maxi∈M,x∈S,‖x‖=ρ ‖Fi(x)‖. Thus,

a subsequence of {x(1;x0
k, σ

k)} (which we again assume to be itself) converges to some x1∗ ∈ S
satisfying 0.5ρ ≤ ‖x1∗‖ ≤ µ1. As x0

k → x0∗, for k sufficiently large, x0
k will be inside the neighborhood

N defined above. Thus, due to the continuity of Fi, x(1;x0
k, σ

k) = Fjk
(x0

k) for some index jk ∈ I(x0∗).
By letting k → ∞ and noting that I(x0∗) is a finite set, we conclude that x1∗ = Fj(x0∗) for some
j ∈ I(x0∗), i.e., x1∗ ∈ f(x0∗).

Repeating the above argument and using induction, we obtain a sequence {xt∗}t∈Z+ ⊆ S such
that (i) 0.5ρ ≤ ‖xt∗‖ ≤ (µ1)νt

for all t ∈ Z+; and (ii) xt+1∗ ∈ f(xt∗) for each t ∈ Z+. This shows that
there exists at least one valid trajectory x(t; x0∗, σ) := xt∗, t ∈ Z+ of the CHI (27) that does not
converge to the origin. This contradicts the strong convergence of the CHI (27) on S.

The above result can be strengthened for the CLI (i.e., ν = 1). In fact, due to the linearity of
the CLI, the local stabilities are equivalent to their respective global ones. Hence, we obtain:

Corollary 5.1. The following hold true for the CLI on the closed cone C:
strong convergence ⇔ strong asymptotic stability ⇔ strong exponential stability

It should be emphasized that the closedness of the cones Xi’s is critical in establishing the
equivalence. The example below shows that without the closedness, Theorem 5.1 may be invalid.

Example 5.1. Consider the CLI on C = R2 with Ξ = {Xi}4
i=1, where X1 = {(x1, x2)T ∈ R2 |x1 >

0, x2 > 0}, X2 = {(0, x2)T ∈ R2 |x2 > 0}, X3 = {(x1, x2)T ∈ R2 |x1 < 0, x2 > 0}, X4 = {(x1, x2)T ∈
R2 |x2 ≤ 0}. Note that X1, X2, and X3 are not closed. Let the corresponding dynamics matrices

be A1 =
[−1 0

0 1

]
, A3 =

[−1 0
1 1

]
, A2 = A4 = 0. Since the cones in Ξ are disjoint, the set-

valued mapping f(·) in (27) becomes a function on R2 (albeit a discontinuous one). Hence, the
CLI has a unique trajectory for each initial state. It is easy to verify that for any initial state
x0 = (x0

1, x
0
2)

T ∈ X1, the trajectory sequence is (x0
1, x

0
2)

T → (−x0
1, x

0
2)

T → (x0
1, x

0
2 − x0

1)
T → · · · →

(x0
1, x

0
2−2x0

1)
T → · · · until the second coordinate becomes negative; after that, the trajectory jumps

to the origin and remains there. In particular, we observe that ‖x(t; x0, σ)‖ is non-increasing in t

and converges to zero as t → ∞. This observation can also be verified for any trajectory starting
from X2, X3, or X4. This shows that the CLI is strongly asymptotically stable. On the other hand,
let x0 = (ε, 1)T ∈ X1 for some small ε > 0. From the above argument, we see that the times it
takes for x(t; x0, σ) to reach the origin is about 1/(2ε) time steps, which tends to infinity as ε ↓ 0.
Thus the CLI is not strongly exponentially stable.
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Theorem 5.1 does apply when we consider the CLI defined on the closure cones {clsXi}4
i=1

where cls denotes set closure, with the same subsystem matrices {Ai}4
i=1. The same argument as

above shows that this CLI is not strongly exponentially stable. By Theorem 5.1, the new CLI must
not be strongly asymptotically stable. Indeed, starting from x0 = (0, 1)T ∈ clsX1, x(t;x0, σ) ≡ x0

is a non-convergent trajectory.

The next example shows that the conclusion of Theorem 5.1 is not true if the strong stability
notions are replaced by their weak counterparts. Recall that Corollary 2.1 and Proposition 3.1 show
that weak asymptotic stability of the SHS and SLS is equivalent to weak exponential stability. The
underlying reason for this difference is that solutions to the SHSs on C under a fixed switching
sequence depend continuously on initial states, while it is not the case for the CHIs on C.
Example 5.2. Consider the CLI on C = R2 with Ξ = {Xi}3

i=1, where X1 = {(x1, x2)T ∈
R2 |x1 ≥ 0, x2 ≥ 0}, X2 = {(x1, x2)T ∈ R2 |x1 ≤ 0, x2 ≥ 0}, X3 = {(x1, x2)T ∈ R2 |x2 ≤ 0}.
Let the subsystem matrices be A1 =

[
0 −1
1 0

]
, A2 =

[
0 1
−1 −1

]
, A3 = 0. This CLI is neither

strongly asymptotically nor exponentially stable since the trajectory of periodicity two: (0, 1)T →
(−1, 0)T → (0, 1)T → · · · fails to converge to the origin. Nevertheless, it is weakly asymptotically
stable. For example, starting from x0 = (x0

1, x
0
2)

T in the interior of X1, the trajectory sequence is
(x0

1, x
0
2)

T → (−x0
2, x

0
1)

T → (x0
1, x

0
2 − x0

1)
T → · · · → (x0

1, x
0
2 − 2x0

1)
T → · · · which eventually reaches

X3; then the sequence can arrive at 0 at the next time step. Similarly, we can verify the existence
of at least one convergent trajectory starting from any other initial states. Now consider the initial
state x0 = (ε, 1)T ∈ X1 for a small ε > 0. For any trajectory x(t; x0, σ) starting from x0, the number
of time steps it takes for ‖x(t;x0, σ)‖ to decreases to half of its initial value is at least about 1/ε,
which grows unboundedly as ε → 0. Thus the CLI is not weakly exponentially stable.

6 Stability of the CLIs

We briefly mention some general results for stability of the CHI, including the CLI as a special
case. Consider the CHI of homogeneous degree ν ≥ 1. Define, for each k ∈ N,

µk := sup
{‖x(k; z, σk)‖1/hk : σk ∈ W(z, k), z ∈ Sn−1 ∩ C}.

By the concatenation property of the switching segments, it is easy to show that (µp+q)hp+q ≤
(µp)hp(µq)hqνq

for all p, q ∈ N. Hence, a similar argument as in Theorem 2.1 shows that the
sequence (µk) converges to inf{µk}. This limit, denoted by µ∗, is the generalized joint spectral
radius of the CHI. Further, it follows from a similar development in Section 2.3.1 that (i) when
ν = 1, the CLI is strongly exponentially stable if and only if µ∗ < 1; and (ii) when ν > 1, the radius
of the domain of strong attraction of the CHI is (µ∗)−

1
ν−1 .

Define the strong generating function for the CLI: Gλ(z) := supσ∈W(z,∞)

∑∞
t=0 λt‖x(t; z, σ)‖q,

∀ z ∈ C, λ ≥ 0, and the radius of strong convergence: λ∗C := sup{λ ≥ 0 |Gλ(z) < ∞, ∀ z ∈ C}. In
view of Corollary 5.1 and [14, Theorem 2], we have the following implications for the CLI on C:

strong exponential stability ⇔ λ∗C > 1 ⇔ G1 is pointwise bounded on C

Similar results can be obtained for the weak generating function of the CHI and weak exponential
stability of the CHI and CLI. It is worth pointing out that computation of the radii of strong and
weak convergence of the CHI or CLI is more difficult than that of the corresponding quantities of
the SHS or SLS. This is attributed to the sensitivity of admissible switching segments/sequences
with respect to initial states z. Further discussions of this issue are beyond the scope of the present
paper. Next we characterize the stability of CLIs from a Lyapunov perspective.
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6.1 Stability of the CLIs: A Lyapunov Perspective

A function V : C → R is called (infinitely) piecewise quadratic on C if it is positively homogeneous
of degree two along each ray: V (λx) = λ2V (x) for all λ ≥ 0 and x ∈ C. In particular, V is called
finitely piecewise quadratic on C if it is piecewise quadratic and for each x ∈ C, V (x) = xT Px for
some matrix P ∈ Rn×n taking values in a finite set of positive semidefinite matrices. The following
result asserts the equivalence of strong exponential stability of CLI and the existence of a finitely
piecewise quadratic Lyapunov function.

Proposition 6.1. The CLI (27) on C is strongly exponentially stable if and only if there exists a
finitely piecewise quadratic Lyapunov function V : C → R+ satisfying

(a) there exist c1 > 0 and c2 > 0 such that c1‖z‖2 ≤ V (z) ≤ c2‖z‖2 for all z ∈ C;
(b) there exists c3 > 0 such that V (z′)− V (z) ≤ −c3‖z‖2, ∀ z′ ∈ f(z) for all z ∈ C.

Proof. The sufficiency follows from the standard argument (even without the finitely piecewise
quadratic property for V ) and is omitted. We prove the necessity as follows. Suppose the CLI is
strongly exponentially stable on C. Then there exist κ ≥ 1 and r ∈ [0, 1) such that ‖x(t; z, σ)‖ ≤
κ rt‖z‖, ∀ t ∈ Z+, for all z ∈ C and any σ ∈ W(z,∞). Find a time T∗ large enough such that
κ2 r2(T∗+1) ≤ 1

2 . Define the function

V (z) := max
σT∗∈W(z,T∗)

T∗∑

t=0

‖x(t; z, σT∗)‖2, ∀z ∈ C. (28)

Then V (z) can be written as V (z) = max
P∈P

zT Pz, where P is the set of all positive definite matrices

of the form I + AT
i0

Ai0 +
(
Ai1Ai0

)T (
Ai1Ai0

)
+ · · · + (

∏0
t=T∗−1 Ait)T (

∏0
t=T∗−1 Ait) for it ∈ M,

t = 0, . . . , T∗ − 1. Since P is a finite set, V is finitely piecewise quadratic.
We shall prove that V is the desired Lyapunov function. It is clear that for each z ∈ C,

‖z‖2 ≤ V (z) ≤ ∑T∗
t=0 κ2 r2t ‖z‖2 ≤ c2‖z‖2 where c2 := κ2/(1 − r2). Therefore (a) holds true. To

prove (b), we note that for any z′ ∈ f(z) and any σT∗ ∈ W(z′, T∗), the concatenation of the cone
index corresponding to the transition from z to z′ and σT∗ is an admissible switching segment
σT∗+1 ∈ W(z, T∗ + 1). Therefore,

‖z‖2 +
T∗∑

t=0

‖x(t; z′, σT∗)‖2 ≤ max
σT∗+1∈W(z,T∗+1)

T∗+1∑

t=0

‖x(t; z, σT∗+1)‖2 =
T∗+1∑

t=0

‖x(t; z, σ̃T∗+1)‖2,

where σ̃T∗+1 ∈ W(z, T∗ + 1) is the switching segment that achieves the above maximum. Since
‖x(T∗ + 1; z, σ̃T∗+1)‖2 ≤ 1

2‖z‖2 by the choice of T∗, we have

T∗+1∑

t=0

‖x(t; z, σ̃T∗+1)‖2 =
T∗∑

t=0

‖x(t; z, σ̃T∗+1)‖2 + ‖x(T∗ + 1; z, σ̃T∗+1)‖2 ≤ V (z) +
1
2
‖z‖2.

Combining the above two inequalities, we obtain
∑T∗

t=0 ‖x(t; z′, σT∗)‖2 ≤ V (z) − 1
2‖z‖2, for any

σT∗ ∈ W(z′, T∗). Therefore, V (z′) ≤ V (z)− 1
2‖z‖2, and V (z) indeed satisfies (b).

Proposition 6.1 can be extended to weak exponential stability with the finiteness of a piecewise
quadratic Lyapunov function dropped.

Proposition 6.2. The CLI (27) is weakly exponentially stable on C if and only if there exists a
(in general infinitely) piecewise quadratic Lyapunov function V : C → R+ satisfying
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(a) there exist c1 > 0 and c2 > 0 such that c1‖z‖2 ≤ V (z) ≤ c2‖z‖2 for all z ∈ C;

(b) c3 > 0 exists such that for each z ∈ C, there exists z′ ∈ f(z) such that V (z′)−V (z) ≤ −c3‖z‖2.

Proof. For sufficiency, suppose there exists a Lyapunov function V satisfying (a) and (b). For
any initial state x0 ∈ C, it follows from (b) that there exists x1 ∈ V (x0) such that V (x1) ≤
V (x0) − c3‖x0‖2 ≤ ηV (x0), where η := 1 − c3/c2 via (a). To avoid triviality, we may assume
η ∈ (0, 1). Letting x(1;x0) := x1 and repeating the above argument, we obtain a trajectory x(t; x0)
whose V -value is exponentially decaying (with the decay rate determined by η). Hence the CLI is
weakly exponentially stable on C.

For necessity, assume the CLI (27) is weakly exponentially stable on C. Then starting from any
z ∈ C, there exists at least one switching sequence σ ∈ W(z,∞) satisfying ‖x(t; z, σ)‖ ≤ κ rt‖z‖,
∀ t ∈ Z+, for some constants κ > 0 and r ∈ [0, 1). Thus, the function V (z) defined by V (z) :=
infσ∈W(z,∞)

∑∞
t=0 ‖x(t; z, σ)‖2, where the infimum is taken over all admissible switching sequences

corresponding to z, is finite for each z. Furthermore, it satisfies ‖z‖2 ≤ V (z) ≤ c ‖z‖2 for some
constant c ≥ 1, where the existence of c is due to the weak exponential stability. Moreover, being the
value function of an infinite-horizon optimal control problem, V (z) satisfies the Bellman equation:
V (z) = minz′∈f(z)

{‖z‖2 + V (z′)
}

= ‖z‖2 + minz′∈f(z) V (z′). The minimum in the above equation
is achieved by some z′∗ ∈ f(z). Then we have V (z) = ‖z‖2 + V (z′∗), i.e., V (z′∗) − V (z) = −‖z‖2.
Thus, V (z) satisfies both (a) and (b).

6.2 CLIs Obtained from SLSs on Cones

In the previous sections, we have studied the strong and weak stabilities of CLIs and SLSs on
cones. We next present results that connect the stability of these two systems. On a closed
convex cone C, a function E : C → R+ is called an energy function on C if it is (i) homogeneous
of degree two: E(λz) = λ2E(z), ∀λ ∈ R, ∀ z ∈ C; and (ii) bounded on the unit sphere Sn−1:
c1‖z‖2 ≤ E(z) ≤ c2‖z‖2 for constants 0 < c1 ≤ c2 < ∞. For the SLS (11) on C, two CLIs are
introduced below based on a conic partition of C defined by an energy function E.

Definition 6.1. Given the SLS (11) on the closed cone C and an energy function E, let Ξ = {Xi}i∈M
be a set of closed sub-cones of C defined as Xi := {x ∈ C |E(Aix) = minj∈ME(Ajx)} , i ∈M. Then
a CLI on C is defined with the subsystem matrix Ai on the cone Xi, and is called the descending
realization of the SLS (11) on C with respect to the energy function E. If in the above definition
of Xi, minimum is replaced by maximum, while the matrices Ai are defined in the same way, then
the resulting CLI on C is called the ascending realization of the SLS on C with respect to E.

It is seen from the above definition that the trajectories x(t;x0) of the descending (resp. as-
cending) realization CLI are exactly the trajectories x(t; x0, σ) of the SLS (11) under the switching
policy σ that tries to decrease (resp. increase) the value of the energy function E as much as possi-
ble at the next time step. If for a given x ∈ C, maxi∈ME(Aix) is achieved by multiple i ∈M, then
the ascending realization CLI has multiple trajectories starting from x: f(x) = {Aix |E(Aix) =
maxj∈ME(Ajx)}. A similar observation holds for the descending realization.

The following two theorems state that the characterization of exponential stability for SLSs on
C can be reduced to that of weak exponential stability for the ascending/descending CLIs on C with
respect to properly chosen energy functions.

Theorem 6.1. A necessary and sufficient condition for the SLS (11) on C to be strongly exponen-
tially stable is that its ascending realization CLI on C with respect to any energy function E on C
is weakly exponentially stable with the uniform parameters κ ≥ 0 and r ∈ [0, 1).
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Proof. The necessity part is trivial once we notice that any trajectory of the ascending realization
CLI is also a trajectory of the SLS under some switching sequence σ.

To show sufficiency, suppose that the ascending realization CLI of the SLS (11) on C with respect
to any energy function E is weakly exponentially stable. Consider the strong generating function
Gλ(z) defined in (13) with q = 2 and ‖ · ‖ the Euclidean norm. Let λ∗C be its radius of convergence.
Then for any λ ∈ [0, λ∗C), E(z) = Gλ(z) is an energy function. Thus by assumption, the ascending
realization CLI, denoted by CLI(λ), of the SLS (11) with respect to the energy function Gλ(z) is
weakly exponentially stable, i.e., starting from any z ∈ C, there exists σ∗ ∈ W(z,∞) such that the
trajectory x(t; z, σ∗) of CLI(λ) satisfies ‖x(t; z, σ∗)‖ ≤ κrt‖z‖, ∀ t ∈ Z+. Due to the construction of
the ascending realization CLI(λ), x(t; z, σ∗) is also a trajectory of the SLS (11) that achieves the
supremum in (13). Hence, Gλ(z) =

∑∞
t=0 λt‖x(t; z, σ∗)‖2 ≤ ∑∞

t=0 λtκ2r2t‖z‖2, ∀z ∈ C, λ ∈ [0, λ∗C).
We must have λ∗C ≥ r−2, for otherwise the right most term in the above inequality, hence Gλ(z),
would be finite at all z ∈ C for some λ > λ∗C , contradicting the definition of λ∗C . Since r ∈ [0, 1), we
have λ∗C ≥ r−2 > 1. By Theorem 3.2, the SLS (11) on C is strongly exponentially stable.

Similarly, the weak exponential stability of the SLS (11) on C can be related to that of its
descending realization CLIs, as stated in the following theorem.

Theorem 6.2. The SLS (11) on C is weakly exponentially stable if and only if its descending
realization CLI with respect to at least one energy function E is weakly exponentially stable.

Proof. The sufficient part is trivial, as an exponentially convergent trajectory of the descending
realization CLI with respect to an arbitrary energy function E is automatically an exponentially
convergent trajectory of the SLS under some suitable switching sequence.

To show necessity, assume that the SLS (11) on C is weakly exponentially stable. By Theo-
rem 3.3, we have λC∗ > 1. Hence, the weak generating function Hλ(z) at λ = 1, i.e., H1(z) =
infσ

∑∞
t=0 ‖x(t; z, σ)‖2, is finite everywhere on C. Here we assume q = 2. By Propositions 3.5

and 3.6, H1(z) is an energy function and satisfies the Bellman equation H1(z) = ‖z‖2+mini∈MH1(Aiz),
∀ z ∈ C. Consider the descending realization CLI of the SLS (11) with respect to the energy func-
tion H1(z). By its definition and the Bellman equation, H1(z′)−H1(z) = −‖z‖2 for all z ∈ C and
z′ ∈ f(z) under the CLI dynamics. Thus, H1(z) is a Lyapunov function of the CLI satisfying the
hypotheses of Proposition 6.1. This shows that the CLI is weakly exponentially stable.

We remark that Theorem 6.2 remains valid even if weak exponential stability is replaced by
strong exponential stability for the CLI. We also note that the energy functions E in this section
are required to be bounded away from both zero and infinity on the unit sphere. To justify this
requirement, assume for example E is identically zero (or identically infinity) on Rn. Then the
ascending (or descending) CLI will have the same set of trajectories as the SLS (11), thus making
the conclusions of Theorem 6.1 and Theorem 6.2 trivial.

7 Conclusion

The stability of discrete-time switched homogeneous systems on cones are investigated from sev-
eral interconnected perspectives, including the joint spectral radius approach and the generating
function approach. The former approach generalizes the similar notions for the SLSs on the Eu-
clidean space and characterizes the domains of strong and weak attraction. The generating function
approach provides a unified and numerically effective framework to determine the stability of the
SHS on cones; various analytic and numerical properties of the generating functions and their radii
of convergence are derived. Extensions to the CHIs and the CLIs are obtained. Future research
includes computation of the generating functions via such techniques as sum-of-squares [23].
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