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Abstract

Belonging to the broad framework of hybrid systems, conewise linear systems (CLSs) form

a class of Lipschitz piecewise linear systems subject to state-triggered mode switchings. Moti-

vated by state estimation of nonsmooth switched systems in applications, we exploit directional

derivative and positive invariance techniques to characterize finite-time and long-time local ob-

servability of a general CLS. For the former observability notion, directional derivative results

are developed via the simple switching property, and these results yield new or improved ob-

servability conditions. For the latter notion, we focus on the case where a nominal trajectory

has finitely many switchings. In order to characterize long-time behaviors of the CLS, neces-

sary and sufficient conditions are obtained for the interior of a positively invariant cone. By

employing these conditions, we establish connections between finite-time and long-time local

observability; underlying positive invariance properties are unveiled.

1 Introduction

Introduced in [7] for modeling Lipschitz piecewise linear systems, the conewise linear system (CLS)

constitutes an important class of linear hybrid systems. Such a system consists of a finite collection

of linear dynamical systems which are active on polyhedral cones that partition the entire state

space. Each of these linear systems, together with its associated polyhedral cone, is called a mode

of the system; transitions occur between these modes along a state trajectory. The CLS represents

a large number of piecewise linear systems, e.g., Lipschitz linear complementarity systems [14], and

has found broad applications in nonsmooth mechanics, switched electrical networks and control

systems, and dynamical optimization in operations research and economics. See the recent papers

[6, 7, 24, 27, 28] as well as the references therein for various results. An important feature of the

CLS is that it is subject to state-dependent mode switchings with implicit transition times and

implicit mode selection at switching times. The state-dependent switchings render many dynamical

and control issues rather complicated, albeit critical in applications.

The notion of observability is fundamental and profound in systems and control theory and

has been treated in great depth for smooth systems [16], which has led to important applications

such as observer design [18] and asymptotic stability analysis [15, 20]. Observability of hybrid
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and switched systems, particularly linear hybrid systems and piecewise affine systems (PASs), has

received growing interest in the past few years. State and mode observability of discrete-time

switched linear systems is addressed in [2]; extension to continuous-time dynamics is made in [3].

Observability test and observer design of PASs are discussed in [9]. Bemporad et al. study discrete-

time PASs with control inputs and logic-based mode switchings in [5]; computational issues are

addressed. The paper [31] establishes necessary and sufficient conditions for observability of jump

linear systems, under the assumption that mode switchings are arbitrary. Other related literature

includes observability and detectability of jump Markov linear systems [10] and observability of

discrete-event states of hybrid systems [12]. However, most of these papers assume state-irrelevant

arbitrary mode switchings, and much less attention has been paid to state-dependent switchings.

An exception is the recent paper [7] which initiates an extensive study of observability of the CLS

with a linear output. Also see [21] for observability of nonlinear complementarity systems.

Inspired by state estimation of switched and hybrid systems in emerging applications such as

genetic regulatory networks and biochemical systems [11, 29], the present paper carries out further

observability analysis, especially for finite-time and long-time local observability (cf. Section 4).

For the former observability notion, we develop directional derivative results and exploit them

to obtain new or improved observability conditions. For the latter, we focus on the case where

a nominal trajectory eventually remains in a polyhedral cone of the CLS, and we address the

question of whether the two observability notions are equivalent, particularly whether long-time

observability implies T -time observability for some large T > 0, since long-time observability is

usually more difficult to check. We show that the answer is negative in general unless certain

positive invariance conditions are imposed. The main contributions of the paper are threefold:

(1) new directional derivative results are established based on the simple switching property (cf.

Section 2); (2) necessary and sufficient conditions for the interior of positively invariant cones of

the CLS are obtained; (3) finite-time and long-time observability conditions are developed for a

general CLS, with the aid of directional derivative and positive invariance results developed above.

It should be pointed out that partial results are obtained for finite-time and long-time observability

in [7], especially for the bimodal CLS (cf. Example 1). However, further investigation for a general

CLS is stalled in [7] due to the lack of the simple switching property and tools to handle long-time

dynamics. Recently established in [26], the simple switching property turns out to a cornerstone

for rigorous study of switchings of a general CLS. It leads to new directional derivative conditions

for finite-time observability analysis. In addition, positive invariance analysis provides a major

technique to deal with long-time dynamics of the CLS. By extending the lately developed positive

invariance results in [25, 26], the current paper not only generalizes certain observability results

reported in [7] and reveals the underlying positive invariance properties previously ignored, but it

also attains new observability results, either related to or described by positive invariance.

The remaining of the paper is organized as follows. In Section 2, we introduce the CLS

and establish new mode switching and directional derivative results that are crucial for latter

observability analysis. Section 3 treats the positively invariant cone associated with each mode;

necessary and sufficient conditions are developed to characterize the interior of the positively

invariant cone. We then address finite-time and long-time local observability of the CLS in Section 4

via the directional derivative and positive invariance results. The paper concludes with final

remarks and discussions for future research in Section 5.
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2 Conewise Linear Systems: Mode Switching and Directional

Derivative

A function f : R
n → R

n is called piecewise linear if there exists a finite family of linear functions

{fi}`i=1 such that f(x) ∈ {fi(x)}`i=1 for each x ∈ R
n [13, 23]. A continuous and piecewise linear

function possesses an appealing geometric structure for its domain, which provides an alternative

representation of the function. To be more specific, recall that a family of polyhedral cones {Xi}mi=1

with Xi ≡ {x ∈ R
n | Ci x ≥ 0} forms a conic subdivision of R

n [13] if

(a) the union of all the polyhedral cones is equal to R
n, i.e.,

⋃m
i=1 Xi = R

n,

(b) each cone is solid, i.e., it has a nonempty interior (thus is of dimension n), and

(c) the intersection of any two cones is a common proper face of both cones, i.e., there exist

nonempty index sets α and β such that Xi∩Xj = Xi∩{x | (Ci x)α = 0} = Xj ∩{x | (Cj x)β =

0}, where (Cix)α ≡ {(Cix)` | ` ∈ α} and (Cjx)β ≡ {(Cjx)` | ` ∈ β}.
For a continuous and piecewise linear function f , one can always find a conic subdivision and finitely

many linear functions gi(x) ≡ Aix such that f coincides with one of gi’s on each polyhedral cone

[13, Proposition 4.2.1]. Hence a time-invariant ODE system with a continuous and piecewise linear

right-hand side can be put in the following equivalent form

ẋ = Ai x, ∀ x ∈ Xi ≡ {x | Ci x ≥ 0}, i = 1, · · · ,m, (1)

where Ai ∈ R
n×n, Ci ∈ R

mi×n, and the continuity condition holds:

x ∈ Xi ∩ Xj =⇒ Ai x = Aj x. (2)

We call the system (1) a conewise linear system (CLS) on R
n [7, 26], and each of the linear systems

along with its associated polyhedral cone a mode of the CLS. The right-hand side of (1) is globally

Lipschitz, albeit non-differentiable, in x and hence the CLS has a unique C1 state trajectory,

denoted by x(t, x0), for an initial state x0 and all t. Note that x(t, x0) is generally only once time

differentiable and not differentiable in x0. We assume, without losing generality, that each Ci has

no zero rows. The interior of each polyhedral cone Xi is thus given by intXi = {x |Cix > 0}.
Associated with the “forward-time” system (1) is a backward-time (or reverse-time) system

that allows us to obtain reverse-time results easily from forward-time analysis. Specifically, for any

terminal time T > 0, define xr(t) ≡ x(T − t). Hence xr(0) = x(T ) and ẋr = Ãi x
r, if xr ∈ Xi,

where Ãi ≡ −Ai. The latter system remains a CLS. In particular, the reverse-time CLS has a

unique state trajectory for any initial condition.

It should be pointed out that a CLS may admit multiple conic subdivisions. Moreover, the

converse implication of (2) may fail for a general conic subdivision; see Example 2 below. If the

converse implication holds for a conic subdivision, or equivalently x ∈ Xi ∩Xj ⇔ Ai x = Aj x, we

call this conic subdivision simple. If a CLS is described by a simple conic subdivision, then the

CLS is called simple. We illustrate these notions in the following examples.

Example 1. A bimodal CLS is referred to as the CLS with two modes only. Each polyhedral

cone of the bimodal CLS is a half-space of R
n [7, Example 2.1] such that the CLS takes the form

ẋ =

{
A1x if x ∈ X1 ≡ {x | cTx ≥ 0}
A2x if x ∈ X2 ≡ {x | cTx ≤ 0} (3)
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Figure 1: The conic subdivision of R
2 in Example 2.

where c ∈ R
n, and A1 and A2 satisfy A1−A2 = bcT for b ∈ R

n. Letting A2 ≡ A, then A1 = A+bcT

and the bimodal CLS can be put in the compact form: ẋ = Ax+bmax(0, cTx). To avoid triviality,

we assume that the vectors b and c are nonzero. In this case, we see that A1x = A2x if and only

if cTx = 0; the latter is equivalent to x ∈ X1 ∩ X2. This gives rise to a simple CLS.

Example 2. Consider the CLS on R
2 with four modes, where the defining matrices of the linear

dynamics are:

A1 =

[
1 1

0 0

]
, A2 = A3 =

[
0 1

−1 0

]
, A4 =

[
1 2

0 1

]
,

and the corresponding matrices for the polyhedral cones are:

C1 =

[
1 0

0 1

]
, C2 =

[
−1 0

−1 1

]
, C3 =

[
1 −1
−1 −1

]
, C4 =

[
1 1

0 −1

]

See Figure 1 for the associated conic subdivision of R
2. It is easy to verify that the continuity

condition (2) holds. As A2 = A3, the CLS possesses multiple conic subdivisions of R
2 with

different partitions of the union X2∪X3. However, since the cone X2∪X3 is non-convex, any conic

subdivision must have at least two solid (convex) polyhedral cones, on which the linear functions

coincide with A2x, to cover X2 ∪ X3. Obviously, the converse implication (2) fails for any of such

conic subdivisions. As a result, this CLS is not simple.

The significance of a simple CLS is demonstrated in the following lemma, which yields simplified

conditions for the CLS; see, for instance, Proposition 19 and Corollary 20 in Section 4 for details.

Lemma 3. Consider a simple CLS on R
n and x0 ∈ R

n. Then x(t, x0) ∈ Xi on [0, T ] with T > 0

if and only if x(t, x0) = eAitx0, ∀ t ∈ [0, T ].

Proof. The “only if” part is trivial. To show the “if” part, note that ẋ(t, x0) = Aix(t, x
0), ∀ t ∈

[0, T ). Moreover, it follows from [7, Lemma 3.3 and Theorem 3.5] that for any t∗ ∈ [0, T ), there

exist εt∗ > 0 and an index j (possibly different from i) such that t∗ + εt∗ ≤ T and that x(t, x0) =

eAj(t−t∗)x(t∗, x
0), ∀ t ∈ [t∗, t∗ + εt∗ ]; the latter shows that ẋ(t, x0) = Aje

Aj(t−t∗)x(t∗, x
0), ∀ t ∈

[t∗, t∗ + εt∗). By uniqueness of the CLS trajectories and their time derivatives, we have x(t, x0) =

eAj(t−t∗)x(t∗, x
0) = eAi(t−t∗)x(t∗, x

0) so that Aix(t, x
0) = Ajx(t, x

0), ∀ t ∈ [t∗, t∗ + εt∗). Since

the conic subdivision is simple, we must have x(t, x0) ∈ Xi ∩ Xj , ∀ t ∈ [t∗, t∗ + εt∗). Hence,

x(t, x0) ∈ Xi, ∀ t ∈ [0, T ). Finally, it follows from the continuity of x(t, x0) and the closedness of

Xi that x(T, x0) ∈ Xi. This completes the proof.
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If a CLS is not simple, then the “if” part of the above lemma may fail. Consider Example 2

with x0 = (0,−1)T . It is easy to show that x(t, x0) = eA3tx0 = (− sin t,− cos t)T , ∀ t ∈ [0, π].

Hence the trajectory x(t, x0) is in the cone X3 for all t ∈ [0, π/4] but leaves X3 afterwards.

2.1 Mode Switching Properties of the CLS

In this section, we develop mode switching properties of the CLS. Particularly, we show the finite

occurrence of critical times on a compact time interval (cf. Proposition 7). This result is important

to finite-time observability analysis performed in Section 4.

We introduce more notation and relevant results for the following development. An ordered real

`-tuple a =
(
a1, · · · , a`

)
is called lexicographically nonnegative if either a = 0 or its first nonzero

element (from the left) is positive and we write a < 0. If a is not only lexicographically nonnegative

but also nonzero, then a is called lexicographically positive and we write a Â 0. Given two `-tuples

a and b, we write a < (Â)b if a − b < (Â)0. An n-dimensional vector tuple
(
x1, · · · , x`) is called

lexicographically nonnegative (resp. positive) if each real tuple
(
x1
i , · · · , x`

i) is lexicographically

nonnegative (resp. positive) for all i = 1, · · · , n, and we write
(
x1, · · · , x`) < (Â)0. For each

i = 1, . . . ,m, let Yi ≡
{
x ∈ R

n
∣∣ (Cix,CiAix, . . . , CiA

n−1
i x

)
< 0

}
be the semiobservable cone

associated with the pair (Ci, Ai). Given any x0, x(t, x0) ∈ Xi for all t ≥ 0 sufficiently small if

and only if x0 ∈ Yi [7]. For a pair (Ci, Ai), let O(Ci, Ai) be its unobservable subspace. Given

ξ ∈ R
n, define two index sets I(ξ) ≡ {i | ξ ∈ Xi} and J (ξ) ≡ {i | ξ ∈ Yi}. It is obvious that

J (ξ) ⊆ I(ξ), ∀ ξ ∈ R
n. Similarly, we can define J r(ξ) for the associated reverse-time system.

Definition 4. We say that a time instant t∗ ≥ 0 is not a switching time along a state trajectory

x(t, x0) if there exist i ∈ {1, · · · ,m} and ε > 0 such that x(t, x0) ∈ Xi, ∀ t ∈ [t∗−ε, t∗+ε]; otherwise,

we say that t∗ is a switching time along x(t, x0), and that the CLS has a mode transition or mode

switching along x(t, x0) at t∗.

Switching and non-switching times along x(t, x0) can be characterized by the index sets J
and J r. In fact, a time t∗ > 0 is a switching time along x(t, x0) if and only if J (x(t∗, x

0)) ∩
J r(x(t∗, x

0)) = ∅ [7, Proposition 3.11]. Furthermore, it is recently shown in [26, Proposition 2]

that a time t∗ > 0 is a non-switching time along x(t, x0) if and only if J (x(t∗, x
0)) = J r(x(t∗, x

0)).

This result is the so-called simple switching property. Roughly speaking, this property implies that

at a non-switching time t∗, if the forward-time trajectory starting from x(t∗, x
0) stays in some cone

Xi for a while, then the reverse-time trajectory starting from the same state must also remain in Xi

for some time. While seemingly intuitive and straightforward, the simple switching property leads

to various important consequences. For example, in light of this property, we have the following

lemma for a non-switching trajectory.

Lemma 5. If there is no switching along x(t, x0) for all t ∈ [0, T ] with 0 < T ≤ ∞, then

J (x(t, x0)) = J (x0), ∀ t ∈ [0, T ].

Proof. Define t∗ ≡ sup{ t̄ ≥ 0 | J (x(t, x0)) = J (x0), ∀ t ∈ [0, t̄ ] }. It follows from Statement

(a) of [7, Proposition 3.9] that t∗ > 0. Now suppose t∗ < T (if T = ∞, this implies that t∗ is

finite). Then we have J (x(t, x0)) = J (x0), ∀ t ∈ [0, t∗) and J (x(t∗, x
0)) 6= J (x0). On the other

hand, we deduce from Statement (b) of [7, Proposition 3.9] that there exists ε > 0 such that

J r(x(t∗, x
0)) = J (x(t, x0)) for all t ∈ [t∗ − ε, t∗). Since J (x(t∗ − ε, x0)) = J (x0), we obtain
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J r(x(t∗, x
0)) = J (x0). Therefore, J (x(t∗, x

0)) 6= J r(x(t∗, x
0)). In view of the simple switching

property, we conclude that t∗ is a switching time. This yields a contradiction as t∗ ∈ (0, T ).

If J (x(t′, x0)) 6= I(x(t′, x0)) at some t′, then we call t′ a critical time along x(t, x0) (and its

corresponding state x(t′, x0) is a critical state). It can be shown that a switching time t∗ must be a

critical time. In fact, suppose this is not the case, i.e., J (x∗) = I(x∗) where x∗ ≡ x(t∗, x
0). Since

t∗ is a switching time, J r(x∗) ∩ J (x∗) = ∅. Hence, J r(x∗) ∩ I(x∗) = ∅. However, there exists

ε > 0 such that x(t, x0) ∈ ∪i∈I(x∗)Xi for all t ∈ [t∗ − ε, t∗ + ε]. Thus we have J r(x∗) ⊆ I(x∗) so

that J r(x∗) ∩ I(x∗) = J r(x∗). This leads to a contradiction as J r(x∗) 6= ∅.
For a non-switching trajectory x(t, x0) on [0, T ] with T > 0, notice that J (x(t, x0)) may not

equal to I(x(t, x0)) at each t ∈ [0, T ]. The following lemma asserts that there are only finitely

many critical times along x(t, x0).

Lemma 6. Consider a non-switching trajectory x(t, x0) on [0, T ] for some T > 0. Then there exist

finitely many times ti satisfying: 0 = t0 < t1 < · · · < tN−1 < tN = T that form a partition of

[0, T ] such that I(x(t, x0)) = J (x(t, x0)), ∀ t ∈ (ti, ti+1), i = 0, · · · , N − 1.

Proof. For each t′ ∈ [0, T ], let x̂ ≡ x(t′, x0) and consider either of the following two cases:

(i) J (x̂) = I(x̂). In this case, there exists a neighborhood N of x̂ such that N ⊆ ∪j∈I(x̂)Xj

[7, Lemma 2.5]. Hence by the continuity of x(·, x0), we have x(t, x0) ∈ N , ∀ t ∈ [t′ − ε, t′ + ε]

for some ε > 0. Therefore, I(x(t, x0)) ⊆ I(x̂), ∀ t ∈ [t′ − ε, t′ + ε]. Moreover, it follows from [7,

Proposition 3.9] that J (x(t, x0)) = J (x̂), ∀ t ∈ [t′ − ε, t′ + ε] by appropriately restricting ε > 0.

Since J (x̂) = I(x̂) and J (x(t, x0)) ⊆ I(x(t, x0)), I(x(t, x0)) = J (x(t, x0)) for all t ∈ [t′− ε, t′+ ε].

(ii) J (x̂) 6= I(x̂). Let j ∈ I(x̂)\J (x̂). Thus for an i ∈ J (x̂),
(
Cj x̂, CjAix̂, . . . , CjA

n−1
i x̂

)
6< 0.

This shows that some row of Cj , say the `th row denoted by (Cj)` •, satisfies (Cj)` • x(t, x
0) =

(Cj)` • e
Ai(t−t′)x̂ < 0, ∀ t ∈ (t′, t′ + ε] for some ε > 0. Hence x(t, x0) 6∈ Xj , or equivalently

j 6∈ I(x(t, x0)), for all t ∈ (t′, t′ + ε]. This shows that I(x(t, x0)) ⊆ J (x̂), ∀ t ∈ (t′, t′ + ε]. Since

J (x(t, x0)) = J (x̂) for all t > t∗ sufficiently close to t∗, we have, by appropriately refining ε > 0,

I(x(t, x0)) = J (x(t, x0)) = J (x̂), ∀ t ∈ (t′, t′ + ε]. Similarly, using the reverse-time argument

and [7, Proposition 3.9], we deduce that I(x(t, x0)) = J (x(t, x0)) = J r(x̂), ∀ t ∈ [t′ − ε, t′) for

some ε > 0. Hence, via the simple switching property, we obtain ε > 0 such that I(x(t, x0)) =

J (x(t, x0)), ∀ t ∈ [t′ − ε, t′) ∪ (t′, t′ + ε].

Consequently, for each t ∈ [0, T ], there exists εt > 0 such that I(x(τ, x0)) = J (x(τ, x0)), ∀ τ ∈
[t − εt, t) ∪ (t, t + εt]. Since the family {(t − εt, t + εt) : t ∈ [0, T ]} constitutes an open cover of

the compact interval [0, T ], it thus follows from Heine-Borel Theorem that there is a finite sub-

cover of [0, T ]. Hence there exist finitely many time instants {t′0, t′1, · · · , t′`} ⊂ [0, T ] such that

[0, T ] ⊂ ⋃`
j=0

[
t′j , t

′
j+εt′j

]
. By appropriately refining the partition on the right, we obtain finitely

many times 0 = t0 < t1 < · · · < tN−1 < tN = T such that I(x(t, x0)) = J (x(t, x0)), ∀ t ∈ (ti, ti+1)

for each i = 0, · · · , N − 1.

Combining the above results and non-Zenoness of the CLS [7], the following proposition estab-

lishes the finite occurrence of critical times on a compact interval along any trajectory.

Proposition 7. Consider a trajectory x(t, x0) on [0, T ] with T > 0. Then there are finitely many

critical times on [0, T ]. Specifically, there exists a partition 0 = t0 < t1 < · · · < tM−1 < tM = T

such that I(x(t, x0)) = J (x(t, x0)) = J (x(t′, x0)) for all t ∈ (ti, ti+1) and any t′ ∈ (ti, ti+1) for

each i = 0, · · · ,M − 1.
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Proof. Since the CLS is non-Zeno, there are finitely many switching times along x(t, x0) [7,

Theorem 3.7]. Specifically, there exists a partition 0 = t̃0 < t̃1 < · · · < t̃N−1 < t̃N = T of [0, T ]

such that there is no switching on a subinterval (t̃i, t̃i+1) for every i = 0, · · · , N−1. It follows from

Lemma 6 that there are finitely many critical times on each subinterval. Hence, there are a finite

number of critical times on [0, T ]. Finally, since there is no switching on a subinterval (ti, ti+1)

where ti and ti+1 are two neighboring critical times on [0, T ], we conclude via Lemmas 5 and 6

that I(x(t, x0)) = J (x(t, x0)) = J (x(t′, x0)) for all t ∈ (ti, ti+1) and any t′ ∈ (ti, ti+1).

Proposition 7 is instrumental to finite-time sensitivity and observability analysis. In fact, given

a nominal trajectory and a finite time interval [0, T ], one can divide [0, T ] into finitely many subin-

tervals defined by consecutive critical times of the nominal trajectory on [0, T ]. This enables one

to focus on each subinterval, which is relatively easier to handle in sensitivity and observability

analysis; see Theorem 9 and Proposition 19. Then one can combine obtained sensitivity or ob-

servability conditions for these subintervals, together with those at finitely many critical times, to

establish desired conditions for the entire interval [0, T ]; see Corollary 20 in Section 4.

2.2 Directional Derivative of the CLS

Sensitivity analysis of the CLS with respect to its initial conditions is essential to study various

dynamic and numerical properties of the CLS, e.g., stability, robustness, observability and numer-

ical resolution of the systems [7, 8, 17, 21, 22]. Particularly, the first-order variation of a system

trajectory with respect to its initial condition is perhaps the most important and the best studied.

However, unlike an ODE with a C1 right-hand side, a trajectory of the CLS is not differentiable in

its initial condition. On the other hand, it is shown in [22] that x(t, x0) is B(ouligand)-differentiable

in x0 at each t, namely, x(t, ·) is locally Lipschitz continuous and directional differentiable at each

t [13]. For a given t, the directional derivative of x(t, x0) along a direction vector v ∈ R
n is defined

by

x ′(t, x0; v) ≡ lim
τ↓0

x(t, x0 + τ v)− x(t, x0)

τ

Obviously x(t, x0; ·) is positively homogenous. Let f : R
n → R

n denote the right-hand side of

the CLS (1). It is known that f(x) is globally Lipschitz and directionally differentiable (thus it is

B-differentiable). Indeed, it can be shown via [7, Lemma 3.4] that for any x and v,

f ′(x; v) = Ai v (4)

for some i ∈ I(x) (such an i depends on v). Hence, it follows from [22, Theorem 7] that for any

given initial condition x0 and direction vector v, the directional derivative x ′(t, x0; v) is the unique

solution of the following time-varying differential system:

ż = f ′(x(t, x0); z), z(0) = v, (5)

where f ′(x(t, x0); z) denotes the directional derivative of f at x(t, x0) along the direction z at each

t. Using (4), we can further write the right-hand side of (5) as f ′(x(t, x0); z) = B(x(t, x0), z) z,

where B : R
n×R

n → {Ai | i = 1, · · · ,m}. Hence, the system (5) becomes a time-varying piecewise

linear system whose right-hand side f ′(x(t, x0); z(t)) is generally discontinuous in t. However, it

shall be shown as follows that on a compact time interval, f ′(x(t, x0); z) is discontinuous only
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at finitely many time instants. To establish this result, we need a technical lemma that asserts

persistence of the duration of trajectories in a mode under small perturbations on initial conditions.

Lemma 8. Given x∗ ∈ R
n and u ∈ R

n such that x∗ ∈ Yi and (x∗+u) ∈ Yi for some i ∈ {1, · · · ,m}.
Then there exist ε0 > 0 and τ0 > 0 such that x(t, x∗ + τu) = eAit(x∗ + τu) ∈ Xi for all (t, τ) ∈
[0, ε0]× [0, τ0].

Proof. Let Ci ∈ R
mi×n. For each ` ∈ {1, · · · ,mi}, if

(
(Cix

∗)` , (CiAix
∗)` , · · · , (CiA

n−1
i x∗)`

)
Â 0,

then let µ` be the first nonnegative integer k such that (CiA
k
i x
∗)` > 0; otherwise, let µ` ≡ n. In the

first case, 0 ≤ µ` < n, and in the latter, we must have x∗ ∈ O((Ci)` • , Ai), where (Ci)` • denotes

the `th row of Ci. It is easy to see that for each `,
(
(Ciu)` , (CiAiu)` , · · · , (CiA

µ`−1
i u)`

)
< 0.

Moreover, for every `,

(
Cie

Ait[x∗ + τu]
)
`
=





τ

µ`−1∑

s=0

(CiA
s
iu)`

s!
ts +

∞∑

j=µ`

(CiA
j
i [x

∗ + τu])`
j!

tj , if µ` < n

τ
n−1∑

s=0

(CiA
s
iu)`

s!
ts, if µ` = n

In the case where µ` < n, there exists ε′` > 0, depending on Ci, Ai and u only, such that the

first summation on the right is nonnegative for all (t, τ) ∈ [0, ε′` ] × [0,∞). Since (CiA
µ`
i x∗)` > 0,

there exist positive numbers ε′′` and τ ′′` , depending on Ci, Ai, x
∗ and u only, such that the second

summation

∞∑

j=µ`

(CiA
j
i [x

∗ + τu])`
j !

tj = tµ`
{

(CiA
µ`
i x∗)`
j!

+O(t) + τ

[
(CiA

µ`
i u)`
j!

+O(t)

]}
≥ 0

for all (t, τ) ∈ [0, ε′′` ]× [0, τ ′′` ]. Letting ε` = min(ε′` , ε
′′
` ) and τ` = min(τ ′` , τ

′′
` ), we have

(
Cie

Ait[x∗+

τu]
)
`
≥ 0 for all (t, τ) ∈ [0, ε` ] × [0, τ` ]. The case where µ` = n also holds true by the similar

argument. Finally, letting ε0 = min
`

ε` and τ0 = min
`

τ`, we obtain the desired result.

Theorem 9. Let ti and ti+1 be two consecutive critical times along x(t, x0) and v ∈ R
n be a

direction vector. Then the following hold:

(a) For any interval [T1, T2] ⊂ (ti, ti+1), there exists a partition T1 = t̂1 < t̂2 < · · · < t̂p−1 < t̂p =

T2 < t̂p+1 of [T1, T2] such that the directional derivative x ′(t, x0; v) satisfies the linear system

ż(t) = Ak z(t) for some k ∈ J (x(T1, x
0)) on (t̂i, t̂i+1 ) for each i = 1, · · · , p ;

(b) For any interval [T1, T2] ⊂ (ti, ti+1), let ξ ≡ x(T1, x
0) and η ≡ x ′(T1, x

0; v). Then for all τ > 0

sufficiently small and all t ∈ [T1, T2],

x(t− T1, ξ + τη) = x(t, x0) + τx ′(t, x0; v); (6)

(c) f ′(x(t, x0);x ′(t, x0; v)) is continuous (with respect to t) on (ti, ti+1).

Proof. (a). Consider an arbitrary t∗ ∈ (ti, ti+1). For notational convenience, we let x∗ ≡ x(t∗, x
0)

and η ≡ x ′(t∗, x
0; v). Since x ′(t, x0; v) is the solution of the differential system (5), it follows from
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the semi-group property that x ′(t, x0; v) = x ′(t − t∗, x
∗; η) for all t ≥ t∗ (this can also be shown

via the B-differentiability of x(t, x0)), namely,

x ′(t, x0; v) = lim
τ↓0

x(t− t∗, x
∗ + τ η)− x(t− t∗, x

∗)

τ
, ∀ t ≥ t∗ (7)

Since there exists a neighborhood N of x∗ such that N ⊆ ∪i∈I(x∗)Xi, we obtain a positive number τ̃

such that (x∗+τ̃ η) ∈ N . This further implies that I(x∗+τ̃ η) ⊆ I(x∗). Since t∗ is not a critical time,

I(x∗) = J (x∗). We thus have J (x∗+ τ̃ η) ⊆ I(x∗+ τ̃ η) ⊆ J (x∗) = J (x(T1, x
0)) by Proposition 7.

Since J (x∗+ τ̃ η) is nonempty [7, Lemma 3.3], there exists an index k ∈ J (x∗+ τ̃ η) ⊆ J (x(T1, x
0))

such that (x∗ + τ̃ η) ∈ Yk and x∗ ∈ Yk. It hence follows from Lemma 8 that ε0 > 0 and τ0 > 0

exist such that

x(t− t∗, x
∗ + τη) = eAk(t−t∗)[x∗ + τη] (8)

for each pair (t− t∗, τ) ∈ [0, ε0]× [0, τ0]. Therefore, we deduce via (7) that for all t ∈ [t∗, t∗ + ε0],

x ′(t, x0; v) = eAk(t−t∗)η, which is the unique solution of the linear system ż = Akz. Hence,

x ′(t, x0; v) satisfies ż = Akz for all t ∈ (t∗, t∗+ ε0). This further implies that for each t ∈ (ti, ti+1),

there exist εt > 0 and Akt with kt ∈ J (x(T1, x
0)) such that x ′(t, x0; v) satisfies the linear ODE

ż = Aktz on the open interval (t, t+εt). Since the collection {(t, t+εt) : t ∈ (ti, ti+1)} forms an open

cover of the compact interval [T1, T2], there exist finitely many times {t′0, t′1, · · · , t′`} ⊂ (ti, ti+1)

with t′0 < T1 such that [T1, T2] ⊂
⋃`

j=0

[
t′j , t

′
j+εt′j

]
. By refining these intervals, we obtain finitely

many times T1 = t̂1 < t̂2 < · · · < t̂p−1 < t̂p = T2 < t̂p+1 such that x ′(t, x0; v) satisfies a linear

system on each (t̂i, t̂i+1). Hence, the desired partition holds.

(b). Recall that ξ ≡ x(T1, x
0) and η ≡ x ′(T1, x

0; v). Since there is no critical time on [T1, T2],

I(x(t, ξ)) = J (x(t, ξ)) = J (ξ) = I(ξ) for all t ∈ [T1, T2]. Hence, it follows from the Lipschitz

property that there exists τ0 > 0 such that I(x(t, ξ + τη)) ⊆ I(ξ) for all t ∈ [T1, T2] and all τ ∈
(0, τ0], which yields J (x(t, ξ+τη)) ⊆ J (ξ), ∀ (t, τ) ∈ [T1, T2]×(0, τ0]. Using the partition obtained

in (a) and letting x̂i ≡ x(t̂i, x
0) and η̂i = x ′(t̂i, x

0; v), we deduce, in light of (8), that for each

subinterval [t̂i, t̂i+1], there exists τi > 0 such that x(t− t̂i, x̂
i + τ η̂i) = eAk(t−t̂i)x̂i + τx ′(t, x0; v) for

some Ak with k ∈ J (ξ) for all t ∈ [t̂i, t̂i+1] and all τ ∈ [0, τi], i = 1, · · · , p−1. Let τ̂ ≡ min
i∈{0,··· , p−1}

τi.

In what follows, we prove (6) by induction. Consider the first subinterval [t̂1, t̂2]. Since t̂1 = T1,

x̂1 = ξ and η̂1 = η, we have x(t − T1, ξ + τη) = eAk(t−T1)ξ + τx ′(t, x0; v) for all t ∈ [t̂1, t̂2] and

all τ ∈ (0, τ̂ ]. Hence, (6) holds on [t̂1, t̂2] because eAk(t−T1)ξ = x(t, x0) on [T1, T2]. Now assume

that (6) holds on the subintervals [t̂i, t̂i+1] for all i = 1, · · · , `, where 1 ≤ ` ≤ p− 2. Consider the

subinterval [t̂`+1, t̂`+2]. Thus x(t− t̂`+1, x̂
`+1 + τ η̂`+1) = eAk(t−t̂`+1)x̂`+1 + τx ′(t, x0; v) for some Ak

with k ∈ J (ξ) for all t ∈ [t̂`+1, t̂`+2] and all τ ∈ (0, τ̂ ]. Note that x̂`+1 + τ η̂`+1 = x(t̂`+1 − T1, ξ) +

τx ′(t̂`+1, x
0; v). It follows from the induction hypothesis that the latter equals x(t̂`+1−T1, ξ+ τη).

Therefore x(t − t̂`+1, x̂
`+1 + τ η̂`+1) = x

(
t − t̂`+1, x(t̂`+1 − T1, ξ + τη)

)
= x(t − T1, ξ + τη) for

all t ∈ [t̂`+1, t̂`+2]. Consequently, (6) holds on [t̂`+1, t̂`+2] since eAk(t−t̂`+1)x̂`+1 = x(t, x0) on the

subinterval in consideration. By the induction principle, we see that (6) holds on [T1, T2].

(c). Given any t′ ∈ (ti, ti+1), it belongs to the interior of some compact interval [T1, T2]

contained in (ti, ti+1). Hence (6) holds true on a small open interval I ⊆ [T1, T2] containing t′.

Therefore

x ′(t, x0; v) =
x(t− T1, ξ + τη)− x(t, x0)

τ
, ∀ t ∈ I
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for a fixed small τ > 0. Since both x(t− T1, ξ + τη) and x(t, x0) have continuous time derivatives

on I, so does x ′(t, x0; v). This shows that f ′(x(t, x0);x ′(t, x0; v)) is continuous at t′. Since t′ is

arbitrary in (ti, ti+1), we obtain (c).

The results in this section will be employed to characterize finite-time observability of the CLS

in Section 4.

3 Positive Invariance of Conewise Linear Systems

The concept of positive invariance plays a crucial role in asymptotic analysis of dynamical systems

and Lyapunov stability theory [19]. Roughly speaking, a set is positively invariant if each trajectory

starting from the given set remains in that set for all positive times. In the realm of switched and

hybrid systems, positive invariance also sheds light on reachability analysis and control of hybrid

systems with applications in engineering [4, 30] and systems biology [1, 29]. Pertaining to the CLS,

it is shown lately in [26] that global and long-time dynamics are closely related to the positively

invariant cone of each mode. These cones are used to investigate global switching behaviors and

stability properties of the CLS. In this section, we establish necessary and sufficient conditions for

the interior of a positively invariant cone. These results will be exploited to characterize long-time

observability in Section 4.

3.1 Preliminary Discussions

The positively invariant cone associated with the ith mode of the CLS (1) is defined by:

Ai ≡ {x ∈ R
n | Ci e

Aitx ≥ 0, ∀ t ≥ 0 } (9)

It is clear that Ai is closed and convex and is the largest positively invariant set contained in Xi.

While the formulation (9) is simple and neat, an explicit characterization of A in term of x only

is highly challenging due to the difficulty of removing the quantifier t. This is a major obstacle

in understanding various analytical properties of such a cone. In the following, we focus on each

of these cones and drop the subscripts in Ai, Ci and Ai for notational simplicity. For the given

matrix C, we also let X ≡ {x ∈ R
n |Cx ≥ 0 }.

Since X is polyhedral, it is natural to ask whether its positively invariant cone A is also

polyhedral, in that a polyhedral cone is both analytically and numerically more tractable than a

non-polyhedral one. However, the following example shows that the answer is negative in general;

this demonstrates another difficulty in analyzing a positively invariant cone.

Example 10. Let A ∈ R
n×n be nilpotent and C be an n-row, i.e., C = cT ∈ R

1×n. In this case,

X = {x | cTx ≥ 0} becomes a half-space of R
n. Without loss of generality, we assume that A is

in the Jordan canonical form, i.e., A = diag(J1, · · · , J`), where Ji is a Jordan block associated

with the zero eigenvalue, and we partition c accordingly as cT =
(
cT1 , · · · , cT`

)
. Moreover, we may

assume, without losing generality, that each pair (ci, Ji) is of the observable canonical form, i.e.,

cTi =
(
0, c̃T

i

)
, Ji =

[
Jiu Ji2

0 J̃i

]
,

such that (c̃T
i , J̃i) is an observable pair. Note that each J̃i remains a Jordan block. Let v be an

eigenvector of A. Thus sgn(cT v) v is always in the half-space X . As a result, A contains nonzero

10



vectors. We claim that A is polyhedral if and only if each Jordan block J̃i is at most of order 2. To

show this, we partition x ∈ R
n as xT =

(
(x1)T , · · · , (x`)T

)
, where each xi corresponds to the block

Ji. Therefore cT eAtx =
∑`

i=1 c
T
i e

Jitxi =
∑`

i=1 c̃
T
i e

J̃itx̃i, where x̃i is a sub-vector of xi corresponding

to the observable pair (c̃ T
i , J̃i) for each i. Since the sub-vector xi\x̃i plays no role in determining the

polyhedrality of A, we thus assume that each pair (cTi , Ji) is observable. We first show sufficiency.

If each Ji is at most of order 2, then cT eAtx = a0(x) + a1(x)t, where a0 and a1 are real-valued

linear functions of x. Hence, A = {x | a0(x) ≥ 0, a1(x) ≥ 0} is polyhedral. We prove necessity by

contradiction. SupposeA is polyhedral but one of the Jordan blocks, say J1, is of order greater than

2. Let xj denote the j-th entry of x and define the polyhedral cone P1 ≡ {x ∈ R
n | xj = 0, j ≥ 4}.

Furthermore, let P2 ≡ A ∩ P1 = {x ∈ R
n | cT eAtx ≥ 0, ∀ t ≥ 0, xj = 0, j ≥ 4} which is

polyhedral. Therefore cT eAtx = a0(x) + a1(x)t + a2(x) t
2/2 for x ∈ P1, where ak(x) = cT1 (J1)

kx

with k = 0, 1, 2. Since the pair (cT1 , J1) is observable, {c1, J1c1, (J1)
2c1} is linearly independent.

This leads to a linear transformation z = Tx with an invertible T ∈ R
n×n such that P̃2 = TP2 =

{z ∈ R
n | z1+z2t+z3t

2 ≥ 0, ∀ t ≥ 0, zj = 0, j ≥ 4}. Clearly, P̃2 is also polyhedral. Let γ < 0 be a

given scalar. Therefore P̃3 ≡ P̃2∩{z | z2 = γ} is a polyhedron (provided that it is nonempty). Since

a quadratic polynomial a0+a1t+a2t
2 ≥ 0, ∀ t ≥ 0 if and only if a0, a2 > 0 and a1+2

√
a0a2 ≥ 0, we

deduce that P̃3 = {z ∈ R
n | z1 ≥ 0, z3 ≥ 0, z1z3 ≥ γ2/4, z2 = γ, zj = 0, j ≥ 4}, which is clearly

nonempty. This further implies that the convex set {(z1, z3)
T ∈ R

2 | z1 ≥ 0, z3 ≥ 0, z1z3 ≥ γ2/4}
is polyhedral, a contradiction. Consequently, the claim holds.

3.2 Interior of Positively Invariant Cone

For a given x∗ to be in the interior of A, it is easy to expect that CeAtx∗ > 0, ∀ t ≥ 0. However,

the following example shows that this condition alone is not enough; some additional condition

related to the “largest mode” defined by the pair (C,A) is needed.

Example 11. Let C = (1, 1), A = diag(1, 2) ∈ R
2×2, and x∗ = (1, 0)T . Hence, CeAtx∗ = et >

0, ∀ t ≥ 0 and x∗ ∈ A. Consider x̂ = (1, −ε)T , where ε > 0. Clearly, x̂ → x∗ as ε ↓ 0. However,

for any ε > 0, CeAtx̂ = et − εe2t < 0 for all t ≥ 0 sufficiently large. Therefore, x∗ 6∈ intA.

To characterize the interior of a positively invariant cone, we need certain technical results. The

next two lemmas provide major tools to treat oscillatory modes corresponding to complex eigen-

values of the defining matrix in positive invariance analysis of linear dynamics. The first lemma

states that a nontrivial linear combination of sinusoidal functions has persistent sign alternating

and its positive/negative variations are not diminishing as time goes.

Lemma 12. [26, Corollary 15] Let f : R → R be f(t) ≡
m∑

i=1

[
αi cos(ωit) + βi sin(ωit)

]
, where

ωi > 0, ωi 6= ωj for i 6= j, and |αi| + |βi| 6= 0 for all i. Then there exist two scalars γ1 > 0 and

γ2 < 0 such that for any t∗, t1, t2 ∈ [t∗,∞) exist satisfying f(t1) ≥ γ1 and f(t2) ≤ γ2.

More properties for the above f(t) are presented as follows. For notational simplicity, let

di(t) ≡ αi cos(ωit) + βi sin(ωit). By considering the rationality of ratios of the frequencies, we

obtain the collection of (distinct and disjoint) equivalent classes Eωj = {di(t) | ωi/ωj is rational }
[26, Lemma 14]. Note that each equivalent class Eωj attains a basis frequency ω̃s > 0, namely,
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ωi/ω̃s is a positive integer for any frequency ωi associated with di(t) ∈ Eωj . Let Eω̃s denote the

equivalent class, and let q ω̃s(t) :=
∑

di ∈Eω̃s

di(t). Then the following statements hold:

(1) q ω̃s(·) is a real-valued smooth and periodic function with the frequency ω̃s;

(2) if q ω̃s(·) is not identically zero, then it attains the maximal and minimal values σ ω̃s > 0 and

ν ω̃s < 0 on (−∞,∞) respectively;

(3) q ω̃s(·) is onto [ ν ω̃s , σ ω̃s ];

(4) the ratio of any two basis frequencies associated with distinct equivalent classes is irrational.

Suppose there are k equivalent classes Eω̃s , i.e. s = 1, · · · , k. Hence, f(t) =
∑k

s=1 q ω̃s(t). We

have the following result:

Lemma 13. [25, Lemma 5] Let σ ω̃s and ν ω̃s be defined in the above setting for the function f .

Then

k∑

s=1

σ ω̃s = sup
[t∗,∞)

f(t) and

k∑

s=1

ν ω̃s = inf
[t∗,∞)

f(t) for any t∗ ∈ R.

It is worth pointing out that Lemma 13 implies that
∑k

s=1 ν ω̃s = inf(−∞,∞) f(t), and that

f(t) ≥ ρ, ∀ t for some scalar ρ if and only if
∑k

s=1 ν ω̃s ≥ ρ.

We introduce more notions for the following development. We assume that A has the real

Jordan canonical form via a real similarity transformation A = diag
(
J̃1, J̃2, · · · , J̃p

)
, where each

submatrix J̃i contains all the Jordan blocks associated with a real eigenvalue λi or a complex

eigenvalue and its conjugate (i.e. µi and µ̄j) whose real parts are λ̃, i.e., λi = λ̃ and µi = λ̃+ ı ωi.

Without loss of generality, we also assume that J̃i’s are ordered in a way such that the real

parts of their corresponding eigenvalues are strictly decreasing. Furthermore, each J̃i is given by

J̃ i = diag
(
Ji1, Ji2, · · · , Jir(i)

)
. Here r(i) is the number of Jordan blocks in J̃i and Jij is the jth

real Jordan block given by

(i) Jij =




λi 1

λi 1
. . .

. . .

. . . 1

λi




corresponding to the real eigenvalue λi, or

(ii) Jij =




Di I2

Di I2

. . .
. . .

. . . I2

Di




corresponding to the complex eigenvalue pair λi ± ı ωi,

where λi, ωi ∈ R with ωi > 0, I2 is the 2× 2 identity matrix, and Di =

[
λi ωi

−ωi λi

]
.

Accordingly, the matrix C can be partitioned as

C =
[
C̃1 C̃2 · · · C̃p

]
, with C̃i =

[
Ci1 Ci2 · · · Cir(i)

]
(10)
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Obviously, Cij has at least one column (resp. two columns) if it corresponds to a real eigenvalue

(resp. a complex eigenvalue pair). For each J̃i, define the index set

Kr
i ≡

{
j ∈ {1, · · · , r(i)} | Jij corresponds to the real eigenvalue λi

}
,

and Kc
i ≡ {1, · · · , r(i)}\Kr

i . Hence, for each j ∈ Kc
i , the Jordan block Jij corresponds to a complex

eigenvalue pair with the real part λi.

Let (C̃a)` • be the first nonzero block in (C)` •, i.e., (C̃i)` • = 0 for i = 1, · · · , a−1 and (C̃a)` • 6= 0.

Notice that (C̃a)` • e
J̃at is a finite sum of the terms of the form κe(λa±ı ωs)t t bs , where bs is a non-

negative integer. Let b denote the largest such bs. We call eλat t b the principal mode associated

with the pair
(
(C)` •, A

)
. It is noted that (C)` •e

Atx = µ0
` (t, x)e

λat tb +
∑

k≥1

µk
` (t, x) e

λkt tbk , where

(
λa, b

)
Â (λk, bk) for all k. Here for each i ≥ 0, µi

`(t, x) takes the form ci`(x)+
∑

s

(
gi`, ωs(x) cos(ωst)+

hi
`, ωs

(x) sin(ωst)
)
, where ci`(x), g

i
`, ωs

(x) and hi
`, ωs

(x) are all linear. In particular, we show as follows

how to determine c0
` (x), g

0
`, ωs

(x), and h0
`, ωs

(x); this eventually leads to the concept of “principal

coefficient”.

(1) For each j ∈ Kr
a, let Jaj ∈ R

mj×mj and kj be the index corresponding to the first

nonzero number in (Caj)` • (from the left), i.e., (Caj)` kj 6= 0. It is easy to verify that the

dominating mode in (Caj)` •e
Jajt for large t ≥ 0 is given by 1

(mj−kj)!
(Caj)` kj e

λat t(mj−kj). In

other words, the principal mode associated with
(
(Caj)` •, Jaj

)
is eλat t(mj−kj). Define the index

set Lr
a ≡ {j ∈ Kr

a |mj − kj = b} (note that by the definition of the principal mode associ-

ated with the pair
(
(C)` •, A

)
, mj − kj ≤ b for all j ∈ Kr

a). Therefore, writing x ∈ R
n as(

(x11)T , · · · , (xij)T , · · ·
)T

, where xij is the sub-vector corresponding to the Jordan block Jij , we

see that c0
` (x) =

1

b!

∑

j∈Lra

(Caj)` kj x
aj
mj

, where each xaj
mj is the last element of the sub-vector xaj .

(2) For each s ∈ Kc
a, let Jas ∈ R

2ms×2ms , and we write the row (Cas)` • ∈ R
1×2ms as

(Cas)` • =
(
(Cas)` 1, · · · , (Cas)`ms

)
, where each (Cas)` j is a sub-row of two entries. Let (Cas)` ks

be the first nonzero sub-row (from the left) such that ms − ks = b. For each (distinct) imaginary

part ωj of the complex eigenvalues λa± ωj of A, define the index set Lc
a,ωj

≡ { s ∈ Kc
a | ms − ks =

b and Jas corresponds to λa ± ı ωj } and Lc
a ≡ ∪ωj Lc

a,ωj
. Let xas

2mj−1 and xas
2mj

denote the last

two elements of the sub-vector xas corresponding to the Jordan block Jas. It can be shown that

g0
`, ωj

(x) = 1
b!

∑
s∈Lca,ωj

(Cas)` ks
(
xas

2ms−1, x
as
2ms

)T
and h0

`, ωj
(x) = 1

b!

∑
s∈Lca,ωj

(Cas)` ks
(
xas

2ms
,−xas

2ms−1

)T
.

Moreover, Lr
a ∪ Lc

a is nonempty by the definition of the principal mode.

We comment more on
∑

s

(
g0
`, ωs

(x) cos(ωst) + h0
`, ωs

(x) sin(ωst)
)
, following Lemmas 12 and

13. Let p`, ωj (t, x) ≡ g0
`, ωj

(x) cos(ωjt) + h0
`, ωj

(x) sin(ωjt). We thus obtain the collection of (dis-

joint) equivalent classes Eωj = { p`, ωi(t, x) | ωi/ωj is rational } (which is independent of x). Let

ω̃s > 0 be the basis frequency associated with each equivalent class Eωj and denote it by Eω̃s . Let

q`, ω̃s(t, x) :=
∑

p`,ωi ∈Eω̃s

p`, ωi(t, x). Then we obtain the similar properties for q`, ω̃s(·, x) as shown

before Lemma 13, namely, for a fixed x ∈ R
n, (i) q`, ω̃s(·, x) is a smooth and periodic function

with the frequency ω̃s; (ii) if q`, ω̃s(·, x) is not identically zero, then it attains the maximal and

minimal values σ`, ω̃s(x) > 0 and ν`, ω̃s(x) < 0 on (−∞,∞) respectively; (iii) q`, ω̃s(·, x) is onto

[ ν`, ω̃s(x), σ`, ω̃s(x) ]; and (iv) the ratio of any two basis frequencies associated with distinct equiv-

alent classes is irrational. Suppose there are k equivalent classes Eω̃s , i.e. s = 1, · · · , k. We have
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µ0
` (t, x) = c0

` (x) +
∑k

s=1 q`, ω̃s(t, x). Define ϕ`(x) ≡
[
c0
` (x) +

k∑

s=1

ν`, ω̃s(x)
]
. For a given x, we call

ϕ`(x) the principal coefficient associated with the tuple
(
(C)` •, A, x

)
. It can be shown, via the

above properties (i-iv) and Lemma 13, that for any x, ϕ`(x) = inf [t∗,∞) µ
0
` (·, x) for any t∗ ≥ 0.

It should be noted that the closed-form expression of ν`, ω̃s(x), and thus that of ϕ`(x), is hardly

obtained. In spite of this, ϕ` possesses nice properties, e.g., Lipschitz continuity, as shown below.

Lemma 14. The function ϕ`(x) is Lipschitz continuous for each `.

Proof. For each `, ϕ`(x) ≡ c0
` (x) +

∑k
s=1 ν`, ω̃s(x). Since c0

` (x) is linear and thus Lipschitz

continuous, it is sufficient to show that each ν`, ω̃s(x) is Lipschitz continuous. Recall that ν`, ω̃s(x) =

min q`, ω̃s(·, x), where q`, ω̃s(t, x) is smooth and periodic in t for any fixed x. In addition, since

q`, ω̃s(t, x) is the summation of finitely many sinusoidal functions whose coefficient is linear in x,

we have (i) for any x, y ∈ R
n, q`, ω̃s(t, x) = q`, ω̃s(t, y) + q`, ω̃s(t, x − y), and (ii) there exists ρ > 0

such that |q`, ω̃s(t, x)| ≤ ρ ‖x‖, ∀ t. Notice that for any x, y ∈ R
n,

q`, ω̃s(t, x) ≤ q`, ω̃s(t, y) + |q`, ω̃s(t, x− y)| ≤ q`, ω̃s(t, y) + ρ‖x− y‖, ∀ t ∈ R

Let t′ be a minimum of q`, ω̃s(·, y). Therefore,

min q`, ω̃s(·, x) ≤ q`, ω̃s(t
′, x) ≤ q`, ω̃s(t

′, y) + ρ‖x− y‖ = min q`, ω̃s(·, y) + ρ‖x− y‖

This shows that ν`, ω̃s(x) ≤ ν`, ω̃s(y) + ρ‖x− y‖. Similarly, ν`, ω̃s(y) ≤ ν`, ω̃s(x) + ρ‖x− y‖. Conse-
quently, |ν`, ω̃s(x)− ν`, ω̃s(y)| ≤ ρ‖x− y‖. Hence, ν`, ω̃s is Lipschitz continuous.

The following theorem provides necessary and sufficient conditions for the interior of A. Note

that the two conditions given below are independent, i.e., they do not imply each other in general.

See Example 11 for illustration.

Theorem 15. Let x∗ ∈ R
n. Then x∗ ∈ intA if and only if the following conditions both hold:

(a) CeAtx∗ > 0, ∀ t ≥ 0;

(b) for each ` ∈ {1, · · · ,m}, the principal coefficient associated with
(
(C)` •, A, x∗

)
is positive.

Proof. “Necessity”. We show this by contradiction. Suppose x∗ ∈ intA but (a) does not hold,

then there exists t∗ ≥ 0 such that (C)` •e
At∗x∗ = 0 for some `. Since (C)` • 6= 0 (recall that

C has no zero rows), we have (C)` •e
At∗
[
x∗ − εe−At∗

(
(C)` •

)T ]
= −ε(C)` •

(
(C)` •

)T
< 0 for all

ε > 0. Hence, x∗ 6∈ intA, a contradiction. Now we assume that (b) does not hold. Then

there is an ` such that the principal coefficient associated with
(
(C)`•, A, x∗

)
is non-positive, i.e.,

ϕ`(x
∗) ≡ c0

` (x
∗) +

∑k
s=1 ν `, ω̃s(x

∗) ≤ 0. We consider a vector of the form x̂ = x∗ + εv, where the

scalar ε > 0, and the vector v 6= 0 is chosen in the following two cases:

(1) Lr
a is nonempty. Let j ∈ Lr

a and v =
(
0, · · · , 0, (vaj)T , 0, · · · , 0

)T
. Here vaj is the sub-vector

corresponding to Jaj whose last element is chosen as −(Caj)` kj 6= 0, i.e., vajmj = −(Caj)` kj . Note

that this choice of x̂ does not affect g0
`,ωj

(x) and h0
`,ωj

(x) (see the expressions of these functions

above), and hence does not change ν `, ω̃s . Therefore, ϕ`(x̂) = c0
` (x̂) +

∑k
s=1 ν `, ω̃s(x

∗). More-

over, since c0
` (x) is linear, we have c0

` (x̂) = c0
` (x

∗) − 1
b! ε [(Caj)` kj ]

2. Thus the principal coefficient

ϕ`(x̂) = ϕ`(x
∗)− 1

b! ε [(Caj)` kj ]
2 < 0 for all ε > 0.
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(2) Lr
a is empty but Lc

a is nonempty. Therefore c0
` (x) = 0 for all x such that ϕ`(x) =∑k

s=1 ν `, ω̃s(x), where ν `, ω̃s(x) ≤ 0, ∀ s. Consider two subcases: (2.1)
(
g0
`, ωj

(x∗), h0
`, ωj

(x∗)
)
6= (0, 0)

for some j ∈ Lc
a, and (2.2)

(
g̃0
`, ωj

(x∗), h̃0
`, ωj

(x∗)
)

= (0, 0) for all j ∈ Lc
a. In subcase (2.1),

let ωj ∈ Eω̃s for some s. Then ν `, ω̃s(x
∗) < 0 and thus ϕ(x∗) < 0. Let v 6= 0 be arbitrary.

It follows from the continuity of ϕ` (cf. Lemma 14) that ϕ(x̂) < 0 for all ε > 0 sufficiently

small. For subcase (2.2), ν `, ω̃s(x
∗) = 0, ∀ s and thus ϕ(x∗) = 0. Let s ∈ Lc

ωj
for some ωj and

v =
(
0, · · · , 0, (vas)T , 0, · · · , 0

)T
, where vas is the sub-vector corresponding to Jas whose last two

elements satisfy
(
vas2ms−1, v

as
2ms

)
= −(Cas)` ks ∈ R

1×2. Since (Cas)` ks 6= 0, it can be shown via the

formulation of g0
`, ωj

(x) and h0
`, ωj

(x) that g0
`, ωj

(x̂) = − 1
b! ε ‖(Cas)` ks‖22 < 0 and h0

`, ωj
(x̂) = 0. This

implies that for all ε > 0, ν`, ω̃
s
′
(x̂) < 0 for some s′. Therefore ϕ`(x̂) < 0 for all ε > 0.

Noting ϕ`(x̂) < 0 for all ε > 0 sufficiently small in both of the above cases, we see via Lemma

12 that for any small ε > 0 and any t∗ ≥ 0, there is t ′ ∈ [t∗,∞) such that µ0
` (t

′, x̂) ≤ ϕ`(x̂)/2 < 0.

Furthermore, since C` •e
Atx̂ tends to µ0

` (t, x̂)e
λat t b as t→ +∞ (i.e., for any ε > 0, there is tε ≥ 0

such that
∣∣C` •e

Atx̂−µ0
` (t, x̂)e

λat t b
∣∣ ≤ ε, ∀ t ≥ tε), we deduce that for any ε > 0 sufficiently small,

C` •e
At̂x̂ < 0 for some large t̂ ≥ 0. As a result, x∗ 6∈ intA. This is a contradiction.

“Sufficiency”. Consider an ` ∈ {1, · · · ,m}. For each µk
` (t, x) ≡ ck` (x) +

∑
s g

k
`, ωs

(x) cos(ωst) +

hk
`, ωs

(x) sin(ωst) with k ≥ 1, define dk` (x) ≡ |ck` (x)| +
∑

s

(
|gk`, ωs(x)| + |hk

`, ωs
(x)|

)
. Hence, dk` (x)

is continuous and provides an upper bound for µk
` (·, x) on R for any given x, i.e., dk` (x) ≥

max |µk
` (·, x)| . In view of the continuity of ϕ` (cf. Lemma 14), we deduce that there exists a neigh-

borhoodN1 of x
∗ such that for each `, dk` (x) is bounded onN1 for all k and that ϕ`(x) ≥ 2ϕ`(x

∗)
3 > 0

for all x ∈ N1. Note that for each `, C` •e
Atx ≥ ϕ`(x)e

λattb −∑k≥1 d
k
` (x)e

λkttbk for all t ≥ 0 and

that
(
λa, b

)
Â (λk, bk) for each k. Consequently, we obtain a scalar t∗ > 0, via the bounds for dk` (x)

and ϕ`(x), such that for each ` and all x ∈ N1, C` •e
Atx ≥ ϕ`(x

∗)
2 eλattb > 0, ∀ t ≥ t∗. Furthermore,

since CeAtx∗ > 0 on the compact time interval [0, t∗], we claim that there exists a neighborhood

N2 of x∗ such that CeAtx > 0, ∀ (t, x) ∈ [0, t∗]×N2. To see this, define r`(x) ≡ min[0, t∗] C` •e
Atx.

It follows from the compactness of [0, t∗] and the similar argument of Lemma 14 that each r`

is Lipschitz continuous. Since r`(x
∗) > 0 for each `, we deduce, via the continuity of r`, that

there exists a neighborhood N2 of x∗ such that r`(x) > 0, ∀x ∈ N2 for each `, or equivalently,

CeAtx > 0, ∀ (t, x) ∈ [0, t∗]×N2. Finally, letting N ≡ N1 ∩N2, we have CeAtx > 0, ∀ t ≥ 0 for any

x in the neighborhood N of x∗. Therefore, x∗ ∈ intA.

For further illustration, we revisit Example 11. For the given C = (1, 1)T and A = diag(1, 2) ∈
R

2×2, the principal mode associated with (C,A) is e2 t and for the given x∗ = (1, 0)T , the principal

coefficient associated with the triple (C,A, x∗) is 0. Hence, x∗ is not in the interior of the positively

invariant cone A, even though CeAtx∗ > 0, ∀ t ≥ 0. This agrees with the conclusion drawn in

Example 11. Furthermore, it can be shown via Theorem 15 that x∗ = (0, 1)T is in the interior of

A. The interior conditions established in Theorem 15 play an important role in characterization

of the connection between finite-time and long-time local observability discussed in Section 4; see

Theorem 21 and Example 23 for more details.
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4 Finite-time and Long-time Observability Analysis of the CLS

via Directional Derivative and Positive Invariance

Throughout this section, let H ∈ R
r×n be a given matrix that defines the linear output Hx for

the CLS (1). We recall some observability notions as follows:

Definition 16. A pair of states (ξ, η) ∈ R
n+n is called

• short-time indistinguishable if ε > 0 exists such that Hx(t, ξ) = Hx(t, η) for all t ∈ [0, ε];

• T -time indistinguishable for a given T > 0 if Hx(t, ξ) = Hx(t, η) for all t ∈ [0, T ];

• long-time indistinguishable if Hx(t, ξ) = Hx(t, η) for all t ≥ 0.

Clearly, long-time indistinguishability implies T -time indistinguishability, and the latter implies

short-time indistinguishability for any pair of states.

Definition 17. A state ξ ∈ R
n is called

• short-time (resp. T -time/long-time) locally observable if there exists a neighborhood N of ξ

such that no pair (ξ, η) with η ∈ N \ {ξ} is short-time (resp. T -time/long-time) indistinguishable;

• finite-time locally observable if there exist a T > 0 and a neighborhood N of ξ such that no

pair (ξ, η) with η ∈ N \ {ξ} is T -time indistinguishable.

To unify the notation, we allow T =∞. In such a case, T -time observability means long-time

observability. Global observability can be defined in the similar manner; see [7] for details.

4.1 Finite-time and Long-time Local Observability

It is clear that short-time observability implies finite-time observability, which in turn yields long-

time observability, but the converse generally do not hold [7]. While short-time observability

has been recently extensively studied in [7], much less is known about finite-time and long-time

observability, except some limited results for the bimodal CLS. The difficulty in addressing the

latter observability concepts is largely attributed to the lack of understanding of state-dependent

mode switchings of the CLS, particularly finite-time and long-time switching behaviors. In this

section, we exploit the results of mode switching, directional derivative and positive invariance

developed in the prior sections to obtain concrete observability conditions. We begin with T -time

local observability.

Given a finite T > 0. A neat sufficient condition for a state ξ to be T -time locally observable

is given by the following implication in term of directional derivatives [21, Theorem 10]:

[
Hx ′(t, ξ; η) = 0, ∀ t ∈ [0, T ]

]
=⇒ η = 0 (11)

It turns out that if there is no critical time on [0, T ] along x(t, ξ), then this condition is also

necessary as indicated in the following theorem. It is worth mentioning that although the nominal

trajectory x(t, ξ) has no critical time, a perturbed trajectory may have critical times and even

mode switchings on [0, T ]. This substantially complicates the observability analysis.

Theorem 18. Given ξ ∈ R
n and T > 0. Suppose there is no critical time on [0, T ] along x(t, ξ).

Then ξ is T -time locally observable if and only if the condition (11) holds.
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Proof. We prove the necessity only. In light of (b) of Theorem 9, we see that for all τ > 0

sufficiently small, x(t, ξ + τη) = x(t, ξ) + τx ′(t, ξ; η) on [0, T ]. Suppose η 6= 0 but Hx ′(t, ξ; η) =

0, ∀ t ∈ [0, T ]. Then Hx(t, ξ + τη) = Hx(t, ξ) on [0, T ] for all τ > 0 sufficiently small. Noticing

η 6= 0, we deduce that ξ is not T -time locally observable. This is a contradiction.

Theorem 18 completely characterizes T -time local observability of a state whose corresponding

trajectory does not have critical times via directional derivatives, which in turn rely on critical time

and mode switching results from Section 2. Admittedly, the closed-form expression of directional

derivatives is generally difficult to obtain. In the following, we provide more explicit sufficient

and necessary conditions; the obtained necessary condition even holds for T = ∞ and a nominal

non-switching trajectory (possibly with critical times along it).

Proposition 19. Consider a state ξ ∈ R
n such that x(t, ξ) has no mode switching on [0, T ] with

0 < T ≤ ∞. Then ξ is T -time locally observable only if

O(H,Ai) ∩
{
v | Cie

Aitv ≥ 0, ∀ t ∈ [0, T ]
}

= {0}, ∀ i ∈ J (ξ) (12)

Moreover, suppose T > 0 is finite and x(t, ξ) has no critical time on [0, T ]. Then ξ is T -time locally

observable if the following conditions both hold:

O(H,Ai) ∩
{
v | x(t, ξ + v) = eAit(ξ + v), ∀ t ∈ [0, T ]

}
= {0}, ∀ i ∈ J (ξ), (13)

O(H,Ai) ∩ O(H,Aj) = {0}, ∀ i, j ∈ J (ξ) with Ai 6= Aj (14)

Furthermore, if the CLS is simple, then the condition (13) is equivalent to

O(H,Ai) ∩
{
v | Cie

Ait(ξ + v) ≥ 0, ∀ t ∈ [0, T ]
}

= {0}, ∀ i ∈ J (ξ) (15)

Proof. Note that if the condition (12) fails, then there exist i ∈ J (ξ) and v 6= 0 such that

v ∈ O(H,Ai) and Cie
Aitv ≥ 0 on [0, T ]. Consider the sequence {ηk}, where ηk = ξ+ v/k, ∀ k ∈ N.

Hence, {ηk} converges to ξ with ηk 6= ξ for all k. Moreover, it follows from Lemma 5 that

Cie
Aitξ ≥ 0, ∀ t ∈ [0, T ]. This shows that Cie

Aitηk = Cie
Ait[ξ + v/k] ≥ 0, ∀ t ∈ [0, T ] for each

k. Hence, x(t, ηk) = eAitηk on [0, T ]. However, each pair (ξ, ηk) is T -time indistinguishable as

Hx(t, ξ) = Hx(t, ηk) on [0, T ]. This is contradictory to the T -time local observability at ξ.

We prove the second statement by contradiction. Suppose ξ is not T -time locally observable. It

follows from Theorem 18 that there exists a nonzero η such that Hx ′(t, ξ; η) = 0 for all t ∈ [0, T ].

Moreover, we deduce via Theorem 9 that there exist 0 = t̂0 < t̂1 < · · · < t̂p−1 < t̂p = T and matrices

Aki with ki ∈ J (ξ) such that for all t ∈ [t̂i, t̂i+1], x
′(t, ξ; η) = eAki

(t−t̂i)x ′(t̂i, ξ; η), i = 0, · · · , p− 1.

Without loss of generality, we assume that Aki ’s associated with two neighboring intervals are

distinct. We consider two case as follows: (1) p = 1, and (ii) p ≥ 2. For the first case, x ′(t, ξ; η) =

eAk1
tη, ∀ t ∈ [0, T ]. Hence, HeAk1

tη = 0, ∀ t ∈ [0, T ], which implies η ∈ O(H,Ak1
). Moreover, we

have, via statement (b) of Theorem 9, x(t, ξ+τη) = x(t, ξ)+τeAk1
tη = eAk1

t(ξ+τη) on [0, T ] for all

τ > 0 sufficiently small. This contradicts the condition (13). For the second case, it is known from

Theorem 9 that x ′(t, ξ; η) = eAk1
tη, ∀ t ∈ [0, t̂1] and x ′(t, ξ; η) = eAk2

(t−t̂1)x ′(t̂1, ξ; η), ∀ t ∈ [t̂1, t̂2],

where k1, k2 ∈ J (ξ) and Ak1
6= Ak2

. Since Hx ′(t, ξ; η) = 0, ∀ t ∈ [0, T ], we have x ′(t̂1, ξ; η) ∈
O(H,Ak1

) ∩ O(H,Ak2
). On the other hand, notice that x ′(t̂1, ξ; η) 6= 0 as η 6= 0. This is

contradictory to (14). Finally, the equivalence between (13) and (15), under the assumption that

the CLS is simple, follows from Lemma 3.
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By virtue of this result and Proposition 7, we combine observability conditions for each subin-

tervals defined by consecutive critical times to obtain the following corollary pertaining to an

arbitrary nominal trajectory without further proof; the obtained conditions can be further simpli-

fied if the CLS is simple.

Corollary 20. Consider a state ξ ∈ R
n and T > 0. Let ti ∈ [0, T ], i = 1, · · · , p− 1 be the critical

times such that 0 = t0 < t1 < · · · < tp−1 < tp = T and the interval (ti, ti+1) does not contain

a critical time for each i = 0, · · · , p − 1. If, for some interval (tj , tj+1) with j ∈ {0, · · · , p − 1},
there exists a compact interval [t̂1, t̂2] ⊂ (tj , tj+1) such that O(H,Ai) ∩

{
v |x(t, x∗+v) = eAit(x∗+

v), ∀ t ∈ [0, t̂2− t̂1]
}
= {0}, ∀ i ∈ J (x∗) and O(H,Ai) ∩ O(H,Aj) = {0}, ∀ i, j ∈ J (x∗) with Ai 6=

Aj , where x∗ ≡ x(t̂1, ξ), then ξ is T -time locally observable.

In the following, we establish subtle connections between finite-time and long-time observability

by making use of the positive invariance results. Especially we address the question of whether long-

time observability implies finite-time observability, since the former is much more difficult to check

in general. We focus on the case where a nominal trajectory eventually remains in a polyhedral

cone of the CLS. It should be pointed out that a perturbed trajectory, even locally perturbed, may

not stay in the same polyhedral cone in a long time unless certain positive invariance conditions are

imposed for the nominal trajectory (cf. Theorem 21). This is one of major difficulties in large-time

observability analysis and a motivation for employing positive invariance.

The first result affirms the equivalence of finite-time and long-time local observability under

the assumption that a nominal trajectory will enter the interior of a positively invariant cone.

Theorem 21. Given a state ξ ∈ R
n. Suppose there exists t∗ ≥ 0 such that x(t∗, ξ) ∈ intAi, where

Ai is the positively invariant cone of the ith mode. Then the following are equivalent:

(a) ξ is long-time locally observable;

(b) ξ is finite-time locally observable;

(c) ξ is t∗-time locally observable.

Proof. The implication (c)⇒ (b)⇒ (a) is obvious. In order to prove the other implications, it is

sufficient to consider (a)⇒ (c) which we shall prove by contradiction as follows. Suppose ξ is not

t∗-time locally observable. Then, there exists a sequence {ην} with ην 6= ξ, ∀ ν ∈ N such that {ην}
converges to ξ and the pair (ξ, ην) is t∗-time indistinguishable for all ν, namely, Hx(t, ξ) = H(x, ην)

for all t ∈ [0, t∗]. Since the CLS is globally Lipschitz, ‖x(t∗, ξ) − x(t∗, η
ν)‖ ≤ eLt∗‖ξ − ην‖ for all

ν, where L > 0 is the Lipschitz constant. This, together with the assumption that x(t∗, ξ) is in

the interior of Ai, implies that there exist a neighborhood U of x(t∗, ξ) and a subsequence {η̃ν} of
{ην} such that x(t∗, η̃

ν) ∈ U ⊆ intAi for all ν. Hence, x(t, η̃ν) ∈ Xi for all t ≥ t∗ and all ν due to

positive invariance. It further follows from the continuity of the CLS trajectories that for each pair

(ξ, η̃ν), there exists εν > 0 such that x(t, ξ) ∈ Ai and x(t, η̃ν) ∈ Ai for all t ∈ [t∗−εν , t∗]. Since each

pair (ξ, η̃ν) is t∗-time indistinguishable, we have Hx(t, ξ) = Hx(t, η̃ν) for all t ∈ [t∗ − εν , t∗]. Note

that Ai ⊆ Xi and x(t, ξ) = eAi(t−t∗+εν)x(t∗ − εν , ξ) and x(t, η̃ν) = eAi(t−t∗+εν)x(t∗ − εν , η̃
ν) for all

t ≥ (t∗−εν). In view of HeAi(t−t∗+εν)x(t∗−εν , ξ) = HeAi(t−t∗+εν)x(t∗−εν , η̃
ν) for all t ∈ [t∗−εν , t∗],

we deduce that [x(t∗−εν , η̃
ν)−x(t∗−εν , ξ)] ∈ O(H,Ai). Thus [x(t∗, η̃

ν)−x(t∗, ξ)] ∈ O(H,Ai) also

holds such that HeAi(t−t∗)x(t∗, ξ) = HeAi(t−t∗)x(t∗, η̃
ν) for all t ≥ t∗, or equivalently Hx(t, ξ) =
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Hx(t, η̃ν) for all t ≥ t∗. This thus shows that Hx(t, ξ) = Hx(t, η̃ν) for all t ≥ 0. Consequently,

the pair (ξ, η̃ν) is long-time indistinguishable for each ν. Therefore ξ is not long-time locally

observable. This is a contradiction. Hence (a)⇒ (c) holds, so does (a)⇒ (b).

The interior condition in the above theorem can be verified using Theorem 15. While this

condition seems strict, it is shown via Proposition 22 and Example 23 below that if this condition

fails, then long-time local observability may not give rise to finite-time observability, even if a

nominal trajectory will eventually remain in the interior of a polyhedral cone. Indeed, it is revealed

in Proposition 22 and Example 23 that for a given state ξ and a time t∗ > 0, even if x(t∗, ξ) satisfies

condition (a) of Theorem 15, the failure of condition (b) of Theorem 15 at x(t∗, ξ) may lead to the

non-equivalence between finite-time and long-time local observability of ξ. In other words, without

the interior condition, a state may be long-time locally observable even though it is not T -time

locally observable for any T > 0. To further elaborate on this, we need the following result:

Proposition 22. Consider a state ξ ∈ R
n. Suppose there exist t∗ > 0 and a cone Xi such that

x(t, ξ) ∈ intXi for all t ≥ t∗. Then ξ is finite-time locally observable if and only if either (a) ξ is

t∗-time locally observable or (b) (H,Ai) is an observable pair.

Proof. The “if” part is trivial under the condition (a); we only need to consider the condition

(b). Since x(t∗, ξ) is in the interior of Xi, we deduce, with the aid of the global Lipschitz property

of the CLS, that there exists a neighborhood N of ξ such that x(t∗, x
0) is in the interior of Xi for

all x0 ∈ N . This implies that x(t, x0) ∈ Xi for all t sufficiently close to t∗. Hence, in view of the

condition (b), we conclude that x(t∗, ξ) is small-time locally observable. This further shows that

ξ is finite-time locally observable, following from [7, Proposition 4.11].

We prove the “only if” part by contraposition. Suppose both (a) and (b) fail. As ξ is not

t∗-time locally observable, it is obvious that ξ is not T -time locally observable for any T ∈ (0, t∗].

Moreover, the former implies that there exists a sequence {ην} converging to ξ such that for

each ν ∈ N, ην 6= ξ and Hx(t, ξ) = Hx(t, ην) for all t ∈ [0, t∗]. By appropriately restricting

the sequence {ην}, we may assume, without loss of generality, that x(t∗, η
ν) ∈ U ⊆ intXi for

some neighborhood U of x(t∗, ξ) and each ν. We further deduce, via an argument similar to

Theorem 21, that [x(t∗, η
ν) − x(t∗, ξ)] ∈ O(H,Ai). (Indeed, we only need to replace intAi by

intXi in order to obtain this result.) Define τν ≡ sup{ t ≥ t∗ |x(t, ην) ∈ Xi}. Notice that τν > t∗

and Hx(t, ξ) = Hx(t, ην) on [t∗, τν ]. Since x(t, ξ) ∈ intXi for all t ≥ t∗, Ci x(t, ξ) > 0, ∀ t ≥ t∗

(cf. Section 2). Moreover, for any T > t∗, let ρT ≡ min
t∈[t∗,T ], `∈{1,··· ,mi}

(Ci)` • x(t, ξ), where (Ci)` •

denotes the `th row of Ci ∈ R
mi×n. Therefore, ρT > 0. It follows from

‖Ci

(
x(t, ην)− x(t, ξ)

)
‖ ≤ eL(T−t∗)‖Ci‖ ‖x(t∗, ην)− x(t∗, ξ)‖ ≤ eLT ‖Ci‖ ‖ην − ξ‖, ∀ t ∈ [t∗, T ]

that there exists KT ∈ N such that for all ν ≥ KT , |(Ci)` • x(t, η
ν) − (Ci)` • x(t, ξ)| ≤ ρT /2, for

all t ∈ [t∗, T ] and all ` ∈ {1, · · · ,mi}. Hence, Ci x(t, η
ν) > 0 on [t∗, T ] for all ν ≥ KT . This

yields x(t, ην) ∈ Xi on [t∗, T ] for each ν ≥ KT . This thus implies that τν ≥ T and Hx(t, ην) =

Hx(t, ξ), ∀ t ∈ [0, T ] for each ν ≥ KT . In other words, the sequence {ην}∞ν=KT
converges to ξ such

that ην 6= ξ and the pair (ην , ξ) is T -time locally indistinguishable for each ν ≥ KT . Hence, ξ is

not T -time locally observable. Since T ≥ t∗ is arbitrary, ξ is not finite-time locally observable.

In what follows, we revisit the bimodal CLS that first appears in [7, Example 5.14] to illustrate

the above observability results and their connection to the positive invariance conditions. We
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reveal and emphasize the underlying positive invariance property that has been neglected in the

original example.

Example 23. Consider the bimodal CLS in R
3 with

A =




λ 0 0

0 α ω

0 −ω α


 , b =




b1

0

0


 , c =




c1

c2

0


 , and H =

(
1 0 0

)
,

where λ < 0, α > 0, ω > 0, b1 6= 0, and c1 and c2 are both nonzero. Let ξ = (ξ1, 0, 0)
T with

c1 ξ1 < 0. It is easy to verify that cTx(t, ξ) < 0, ∀ t ≥ 0 such that x(t, ξ) remains in the interior

of the polyhedral cone X2 ≡ {x | cTx ≤ 0} for all t ≥ 0. Notice that the principal mode associated

with (−cT , A) is eα t and the principal coefficient associated with (−cT , A, ξ) is zero. Hence, we

deduce via Theorem 15 that ξ is not in the interior of the positively invariant cone A2 associated

with X2. The same holds true for x(t, ξ) for any t > 0. Let t∗ > 0 be given. Since x(t, ξ) ∈ intX2 on

[0, t∗] and (H,A) is not an observable pair, ξ is not t∗-time locally observable. It thus follows from

Proposition 22 that ξ is not finite-time locally observable. While this result has been established via

elementary computations in [7, Example 5.14], Proposition 22 generalizes it to a broader setting.

More importantly, Proposition 22 unveils the critical positive invariance property for the failure of

finite-time observability. Another interesting observation is that ξ is long-time locally observable

as shown in [7, Example 5.14]. Hence, this example shows that without the interior condition

requested in Theorem 21, long-time and finite-time observability are generally not equivalent.

4.2 Finite-time and Long-time Observability of the Bimodal CLS

We turn to the bimodal CLS (3) to obtain more concrete observability conditions. If there is

no switching along x(t, x0) on [0, T ] with 0 < T ≤ ∞ for a given x0, then cTx(t, x0) ≡ 0 and

I(x(t, x0)) = J (x(t, x0)) = {1, 2} on [0, T ]. This further shows that there is no critical time on

[0, T ]. Therefore, the conditions in Proposition 19 can be greatly simplified. In fact, the sufficient

conditions turn to be necessary [7, Theorem 5.6]. Specifically, x0 is T -time locally observable if

and only if O(H,A) ∩O(H,A+ bcT ) = {0}, and

O(H,A) ∩
{
v | cT eAt v ≤ 0, ∀ t ∈ [0, T ]

}
= {0},

O(H,A+ bcT ) ∩
{
v | cT e(A+bcT )t v ≥ 0, ∀ t ∈ [0, T ]

}
= {0}.

(16)

It is worth pointing out that if T = ∞, then, under the non-switching assumption, long-time

local observability requires that the intersection of each unobservable subspace and its correspond-

ing positively invariant cone be trivial, i.e., the intersection contains the zero vector only. Hence,

long-time observability relies on the positively invariant cone of each mode. In the following, we

focus on a class of bimodal CLSs to illustrate the positive invariance and observability results.

Recall that a CLS is referred to as the CLS with infinite mode switchings if for any non-

equilibrium state x0 ∈ R
n, x(·, x0) has infinitely many mode switchings in [0,∞) [26]. This implies

that for the ith mode, the positively invariant cone Ai is equal to the equilibrium set of the ith

mode, namely, Ei ≡ {x | Aix = 0}. An explicit characterization of such a CLS has been established

via positive invariance in [26]. For a bimodal CLS, suppose that A is of order greater than one

and (cT , A) is an observable pair. Then the bimodal CLS has infinite mode switchings if and only

if either of the following conditions holds [26, Corollary 24]:
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(a) if A is of even order, then A and A+ bcT have complex eigenvalues only;

(b) if A is of odd order, then A (resp. A + bcT ) has no nonzero real eigenvalue except the zero

eigenvalue with algebraic multiplicity one and each complex eigenvalue of A (resp. A+ bcT )

has a positive real part.

Hence, the positively invariant cones become trivial in case (a) and equal to the null spaces of

the respective defining matrices in case (b). Based upon these positive invariance results and [7,

Theorem 5.6], we obtain the following corollary pertaining to long-time local observability of ξ = 0:

Corollary 24. Consider the bimodal CLS with infinite mode switches, where A is of order greater

than one and (cT , A) is an observable pair.

(a) Let A be of even order. Then ξ = 0 is long-time locally observable if and only if b 6∈ O(H,A).

(b) Let A be of odd order. Then ξ = 0 is long-time locally observable if and only if b 6∈ O(H,A),

NulH ∩NulA = {0}, and NulH ∩Nul (A+ bcT ) = {0}.

Proof. For case (a), it is clear that the positively invariant cone of each mode contains the zero

vector only such that condition (16) holds trivially. Moreover, since the pair (cT , A) is observable,

O(H,A) ∩ O(cT , A) = {0}. Hence, it follows from Propositions 5.1 and 5.2 of [7] that O(H,A) ∩
O(H,A+ bcT ) = {0} holds if and only if b 6∈ O(H,A).

For case (b), since A1 = {v | (A+ bcT )v = 0} = Nul (A+ bcT ) and A2 = {v | Av = 0} = NulA,

the condition (16) holds if and only if O(H,A)∩NulA = {0} and O(H,A+ bcT )∩Nul (A+ bcT ) =

{0}. The latter is further equivalent to the implications
[
Hv = 0, v ∈ NulA

]
⇒
[
v = 0

]
and[

Hv = 0, v ∈ Nul(A+ bcT )
]
⇒
[
v = 0

]
. This, together with the argument for case (a), leads to

the desired result.

5 Conclusions

In this paper, we have investigated finite-time observability via directional derivative techniques

and addressed long-time observability from the positive invariance perspective. These perspectives

yield new observability conditions for a general CLS. Nevertheless, there remain many open issues.

For example, long-time observability of a state whose corresponding trajectory has infinitely many

switchings is largely unknown. A main difficulty is due to possible orbital instability along a

nominal trajectory. Moreover, a further study is warranted to understand positively invariant

cones and their implications to long-time dynamics of the CLS. Another interesting issue, different

from the analytic perspective of the current paper, is how to design an observer for state estimation

(namely, observer synthesis). Certain topological techniques may be invoked with suitable stability

assumptions; see, for example, [32].
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