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Abstract

A generalized notion of input-to-state ℓ2-gain is proposed for discrete-time switched linear

control systems (SLCSs). Being a function of a certain discount factor, this generalized ℓ2-gain

provides new insight into input-to-state behaviors of the SLCSs under parameter variations.

After establishing several analytical properties of the generalized ℓ2-gain, the paper focuses on

the generating function approach to the study of the generalized ℓ2-gain. Important properties

of generating functions are derived, and it is shown that their radii of convergence characterize

the generalized ℓ2-gain. Furthermore, iterative algorithms are developed for computing the

generating functions with proven uniform or exponential convergence. Numerical results show

that these algorithms yield efficient estimates of both the generalized and classical ℓ2-gains.

1 Introduction

A switched linear control system (SLCS) consists of a finite number of linear control subsystems

along with a switching rule that determines switchings among subsystems. Such systems find

numerous applications such as power electronics and automotive control, where switchings among

multiple linear controllers are exploited to improve system performance. Belonging to the general

framework of hybrid control systems, the SLCSs exhibit rich dynamics in spite of simple structure

in their subsystems. In particular, they demonstrate inherently nonsmooth and hybrid dynamical

behaviors, and require novel analytical and numerical techniques for their study [4].

The concept of L2-gain (or ℓ2-gain) plays an important role in robust control and stability

analysis of control systems. Informally speaking, the L2-gain is the maximum output energy excited

using a given input/perturbation energy and measures the disturbance attenuation of the system.

This concept has been extensively studied for classical linear control systems and smooth nonlinear

control systems [13, 27], and its study has been extended to the SLCSs and other hybrid systems

recently [6, 7]. For instance, the L2-gains are addressed under the assumption of slow switchings

in [5], and an LMI-based method is proposed in [28]. Other methods include the common storage

function approach [8, 9, 10] and the variational approach [18]. Furthermore, the design of switching

signal to achieve a certain L2-gain and related stability analysis are presented in [32]. For the

discrete-time SLCSs, the ℓ2-gains are characterized under dwell time constraints in [29] and their

bounds are developed in [2, 16]; convergence and computation of classical or finite-horizon ℓ2-gains
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are also studied in [14, 25] respectively. Despite these advances, computation of the L2-gain (or ℓ2-

gain) of the SLCSs remains a difficult problem, due to switching induced combinatorial complexity.

Attempts have been made toward finding nonconservative bounds of the L2-gains at the cost of

solving certain existence problems, e.g., [8].

Motivated by robust analysis and characterization, the present paper studies the input-to-state

ℓ2-gains (or simply ℓ2-gains) of the discrete-time SLCSs subject to system parameter variations.

Specifically, two important and interconnected issues are addressed: (i) analytic issue: how does

the ℓ2-gain vary with respect to system parameters? (ii) numerical issue: how can the ℓ2-gain be

effectively computed with proven convergence under different system parameters? Note that the

finiteness of the classical ℓ2-gain of the SLCS is closely related to strong stability of the associated

autonomous switched linear system, which in turn can be characterized by the joint spectral radius

or a related scaling parameter; see [11] and references therein. Inspired by this observation, we

consider a particular, yet nontrivial, case of parameter variations: both the system transition matrix

and the control matrix of each subsystem are scaled by a varying discount factor (cf. Section 2.1).

Treating the classical ℓ2-gain as a function of this discount factor, we propose a generalized notion

of the input-to-state ℓ2-gain. This generalized notion not only includes the classical counterpart

as a special case and leads to a generating function based alternative approach to compute the

classical ℓ2-gain, but also offers insight into the input-to-state behaviors of parameter perturbed

SLCSs. Moreover, it is worth pointing out that many results of this paper can handle, or can be

extended to handle, general system parameter variations (cf. Theorem 2.1 and Proposition 2.2).

New analytic and numerical results are developed for the following aspects of the generalized

ℓ2-gain, which constitute the main contributions of the paper:

(1) Important analytic properties of the generalized ℓ2-gain are established. In particular,

necessary and sufficient conditions are derived for the finiteness of the generalized or classical ℓ2-

gains under a suitable reachability assumption. Furthermore, it is shown that the finite generalized

or classical ℓ2-gain is (locally) continuous in system parameters.

(2) A novel generating function approach is developed for characterization and effective ap-

proximation of the generalized ℓ2-gains, driven by the recent development for stability analysis of

autonomous switched systems via this approach [11, 24]. Roughly speaking, a generating function

is a power series in a discount factor with coefficients dependent on state trajectories; its radii of

convergence characterize the maximum exponential growth rates of the system trajectories under

different switching rules. This approach also yields effective computation of stability quantities.

Towards the study of the generalized ℓ2-gain, we introduce the controlled generating functions and

show that their radii of convergence characterize the generalized ℓ2-gain. Various analytic properties

of the controlled generating functions and related quantities, e.g., the quadratic bounds and the do-

main of convergence, are derived and used to develop Bellman equation based iterative procedures

for approximation of the generating functions with proven uniform or exponential convergence.

(3) Based on the analytic results of the controlled generating functions, finite-horizon generating

function based algorithms are proposed for computation of the generalized ℓ2-gain. While the worst-

case computation of the generalized ℓ2-gain remains (and is inherently) NP-hard (?), it is shown

that by exploring certain relaxation techniques, the proposed algorithms yield effective and less

conservative estimates of the generalized or classical ℓ2-gains compared to the existing methods.

The paper is organized as follows. Section 2 introduces the generalized ℓ2-gain and establishes

its analytic properties. Section 3 addresses controlled generating functions and their properties,

and Section 4 shows that radii of convergence of the generating functions provide complete charac-

terization of the generalized ℓ2-gain. As an example, one dimensional SLCSs and their generating

functions are studied in Section 5. Numerical algorithms and computational results are presented

in Section 6 with conclusion drawn in Section 7.
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2 Generalized ℓ2-Gain of Switched Linear Control Systems

A discrete-time switched linear control system (SLCS) has the dynamics

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ Z+ := {0, 1, . . .}. (1)

In essence, the system evolves by switching among a finite collection of linear control systems

(or subsystems) {(Ai ∈ Rn×n, Bi ∈ Rn×m)}i∈M indexed by the set M := {1, . . . ,M}, with the

switching governed by the switching sequence σ := {σ(0), σ(1), . . .}, where σ(t) ∈M for t ∈ Z+.

Denote by x(t;σ, u, z), t ∈ Z+, the state trajectory or solution of the SLCS (1) under the

switching sequence σ and the control input u := {u(0), u(1), . . .} starting from x(0) = z. For a

fixed σ, the SLCS reduces to a linear time-varying system and thus x(t;σ, u, z) is jointly linear in

u and z. The reachable set of the SLCS (1) is the set of all states x(t;σ, u, 0) that can be reached

within a finite time t starting from x(0) = 0 under arbitrary σ and u. Unlike classical linear systems,

the reachable set of a discrete-time SLCS may not be a subspace [26]. For example, a one-step

finite impulse response (FIR) system satisfying AiBj = 0 for all i, j ∈ M has the reachable set

∪i∈MR(Bi), which is in general not a subspace. Here R(·) denotes the range of a matrix. The

following reachability assumption is imposed throughout the paper (unless otherwise indicated).

Assumption 2.1. The reachable set of the SLCS (1), denoted by R, spans the state space Rn, i.e.,

span(R) = Rn.

Note that Assumption 2.1 implies that at least one Bi ̸= 0.

The autonomous switched linear system (SLS) corresponding to the SLCS (1) is obtained by

setting u ≡ 0:

x(t+ 1) = Aσ(t)x(t), ∀ t ∈ Z+, (2)

whose solution under the switching sequence σ and initial state z is denoted x(t;σ, z) := x(t;σ, u, z)|u≡0.

2.1 Generalized Input-to-State ℓ2-Gain

Let ℓ2(Rm) denote all Rm-valued sequences u with finite ℓ2-norm ∥u∥2 :=
√∑∞

t=0 ∥u(t)∥2. The

classical input-to-state ℓ2-gain of the discrete-time SLCS (1) is defined by

κ := sup
σ

sup
0 ̸=u∈ℓ2(Rm)

√∑∞
t=0 ∥x(t+ 1;σ, u, 0)∥2√∑∞

t=0 ∥u(t)∥2
. (3)

Given λ ∈ R+ := [0,∞), let ∥u∥λ,2 :=
√∑∞

t=0 λ
t ∥u(t)∥2 be the λ-discounted ℓ2-norm of u, and

Uλ := {u | ∥u∥λ,2 <∞}. The generalized input-to-state ℓ2-gain with a discount factor λ ∈ R+ is

κ(λ) := sup
σ

sup
0 ̸=u∈Uλ

√∑∞
t=0 λ

t∥x(t+ 1;σ, u, 0)∥2√∑∞
t=0 λ

t ∥u(t)∥2
. (4)

In other words, κ(λ) is the largest amplification factor of the λ-discounted ℓ2-norm of state over

that of input under any switching sequence. The goal of this paper is to characterize κ(λ) for

different λ ∈ R+.

Remark 2.1. The classical input-to-state ℓ2-gain is a special case of the generalized ℓ2-gain κ(λ)

with λ = 1. Conversely, κ(λ) is the classical ℓ2-gain of the following SLCS:

x̃(t+ 1) = Ãσ(t)x̃(t) + B̃σ(t)ũ(t), (5)

where Ãi :=
√
λAi and B̃i := Bi. In fact, under the scaled control input ũ(t) :=

√
λt · u(t), the

solution of the new SLCS satisfies x̃(t+ 1;σ, ũ, 0) =
√
λt · x(t+ 1;σ, u, 0) for t ∈ Z+ and all σ. By

the homogeneity of x̃(t;σ, ũ, 0) in ũ, κ(λ) = supσ sup∥ũ∥2=1

√∑∞
t=0 ∥x̃(t+ 1;σ, ũ, 0)∥2. �
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For each k ∈ Z+, the (generalized) k-horizon ℓ2-gains, κk(λ), of the SLCS (1) is defined as

κk(λ) := sup
σ

sup
0 ̸=u∈Uk

√∑k
t=0 λ

t∥x(t+ 1;σ, u, 0)∥2√∑k
t=0 λ

t∥u(t)∥2
, (6)

where Uk ⊂ Uλ is the set of inputs u with duration at most k, namely, u(t) ≡ 0 for all t > k. Note

that ∪k∈Z+Uk is a dense subset of Uλ. In what follows, we define the constant γ0 as

γ0 := max
i∈M

∥Bi∥. (7)

Here, ∥Bi∥ denotes the largest singular value of Bi. Since at least one Bi ̸= 0 by Assumption 2.1,

we must have γ0 > 0 .

Proposition 2.1. The generalized ℓ2-gain κ(λ) and its finite horizon couterparts κk(λ) have the

following properties:

(1) κk(λ) ↑ κ(λ) as k →∞ for each λ ∈ R+;

(2) κk(λ) is continuous in λ ∈ R+ for each k ∈ Z+, and κ(λ) is lower semi-continuous in λ ∈ R+;

(3) At λ = 0, κ(0) = γ0, where γ0 is defined in (7).

Proof. (1) That κk(λ) is non-decreasing in k follows as the supremum in (6) is taken over a space

Uk that is non-decreasing in k. A similar argument shows that κk(λ) ≤ κ(λ) for any k. As a

result, limk→∞ κk(λ) ≤ κ(λ). To show the other direction, assume first κ(λ) is finite. Then for

any small ε > 0, a control u ∈ Uλ and a switching sequence σ exist such that
∑∞

t=0 λ
t∥u(t)∥2 = 1

and [κ(λ)]2 − ε ≤
∑∞

t=0 λ
t∥x(t + 1;σ, u, 0)∥2 ≤ [κ(λ)]2. By choosing ℓ large enough, we have∑ℓ

t=0 λ
t∥x(t+1;σ, u, 0)∥2 ≥ [κ(λ)]2− 2ε while

∑ℓ
t=0 λ

t∥u(t)∥2 ≤ 1; thus [κℓ(λ)]
2 ≥ [κ(λ)]2− 2ε. As

κk(λ) is non-decreasing in k, [κ(λ)]2 − 2ε ≤ [κk(λ)]
2 ≤ [κ(λ)]2, ∀k ≥ ℓ. As ε > 0 is arbitrary, we

have limk→∞ κk(λ) = κ(λ). The case when κ(λ) =∞ can be similarly proved.

(2) For any λ ≥ 0, let x̃(t;σ, ũ, 0) be the solution of the scaled SLCS (5) with subsystem

matrices {(
√
λAi, Bi)}i∈M and ũ(t) =

√
λt · u(t). By Remark 2.1, κk(λ) = supσ supũ∈Uk,∥ũ∥2=1√∑k

t=0 ∥x̃(t+ 1;σ, ũ, 0)∥2 for each k ∈ Z+. Denote σ0:k := (σ(0), . . . , σ(k)) ∈ Mk+1, v :=(
ũ(0), . . . , ũ(k)

)
∈ R(k+1)m, and define the set Bv := {v |

∑k
t=0 ∥ũ(t)∥2 = 1}. Then κk(λ) =

maxσ0:k
supv∈Bv

fσ0:k
(λ, v) for some function fσ0:k

continuous in (λ, v) for each σ0:k. Let λ0 ∈ R+ be

arbitrary. Each fσ0:k
is continuous, hence uniformly continuous, on the compact set [0, λ0]×Bv. As a

result, gσ0:k
(λ) := supv∈Bv

fσ0:k
(λ, v) is uniformly continuous, thus continuous, in λ on [0, λ0]. As λ0

is arbitrary, gσ0:k
(·) is continuous on R+. Since there are finitely many σ0:k, κk(λ) = maxσ0:k

gσ0:k
(λ)

is continuous in λ on R+. Finally, being the pointwise supremum of all continuous functions κk(λ),

κ(λ) must be lower semi-continuous in λ.

(3) Since x(1;σ, u, 0) = Bσ(0)u(0) at λ = 0, κ(0) = supσ(0)∈M,u(0)̸=0 ∥Bσ(0)u(0)∥/∥u(0)∥ =

γ0.

More properties of κ(λ) under certain stability conditions are given in the next subsection.

2.2 Finiteness of Generalized ℓ2-Gain

It is well known that an LTI system (A,B) has finite input-to-state ℓ2-gain if and only if the

autonomous system A is stable. We show that this result can be extended to the generalized

ℓ2-gain case. Recall that the autonomous SLS (2) with subsystem dynamics matrices {Ai}i∈M is
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called exponentially stable under arbitrary switching (or absolutely exponentially stable [15]) with

the parameters (C, r) if there exist constants C > 0 and r ∈ (0, 1) such that its solution satisfies

∥x(t;σ, z)∥ ≤ Crt∥z∥, ∀ t ∈ Z+, for all z ∈ Rn and switching sequences σ, or equivalently,

∥Φσ
t,k∥ ≤ Crt−k, ∀σ, ∀ t, k ∈ Z+ with t ≥ k.

Here, Φσ
t,k is the state transition matrix defined by Φσ

t,k := Aσ(t−1) · · ·Aσ(k) for t > k and Φσ
t,t := I.

Theorem 2.1. Suppose the autonomous SLS (2) with subsystem matrices {Ai}i∈M is exponentially

stable under arbitrary switching with the parameters (C, r) for some C > 0 and r ∈ [0, 1). Then,

the SLCS (1) with subsystem matrices {(Ai, Bi)}i∈M has finite (classical) ℓ2-gain:

κ ≤ Cγ0
1− r

,

where γ0 is defined in (7). Under Assumption 2.1, the converse also holds: if κ <∞, then the SLS

{Ai}i∈M is exponentially stable under arbitrary switching.

Proof. The solution of the SLCS (1) under a control input u ∈ ℓ2(Rm) and an arbitrary switching

sequence σ is given by

x(t+ 1;σ, u, 0) =
t∑

k=0

Φσ
t+1,k+1Bσ(k)u(k), t ∈ Z+. (8)

The stability assumption implies ∥Φσ
t+1,k+1∥ ≤ Crt−k. Consider a sequence w = (w1, w2, . . .) ∈

ℓ2(Rn) with wt = 0 for all t ≥ N + 2 for some N ∈ Z+. Then,∣∣∣∣∣
∞∑
t=0

(wt+1)
Tx(t+ 1;σ, u, 0)

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
t=0

(wt+1)
T

t∑
k=0

Φσ
t+1,k+1Bσ(k)u(k)

∣∣∣∣∣
≤

∞∑
t=0

t∑
k=0

C rt−kγ0∥u(k)∥ · ∥wt+1∥ =
∞∑
s=0

∞∑
k=0

C rsγ0∥u(k)∥ · ∥ws+k+1∥

≤ Cγ0

∞∑
s=0

rs∥u∥2 · ∥w∥2 =
Cγ0
1− r

∥u∥2 · ∥w∥2.

By setting wt := x(t;σ, u, 0) for t = 1, . . . , N + 1, we have(
N∑
t=0

∥x(t+ 1;σ, u, 0)∥2
)1/2

≤ Cγ0
1− r

∥u∥2.

Letting N → ∞, we have ∥x(·;σ, u, 0)∥2 ≤ Cγ0/(1 − r) · ∥u∥2 for all σ and u ∈ ℓ2(Rm), i.e.,

κ ≤ Cγ0/(1− r).

For the converse statement, assume that the SLS {Ai}i∈M is not exponentially stable under

arbitrary switching. Then it follows from [11, Proposition 1 and Theorem 2] that there exists a

proper subspace V of Rn such that for each z /∈ V,
∑∞

t=0 ∥x(t;σz, 0, z)∥2 = ∞ for some switching

sequence σz. By Assumption 2.1, the reachable set R is not contained in V, since otherwise it fails

to span Rn. Therefore, we can find one z ∈ R \ V , i.e., z = x(τ ;σ′, u′, 0) for some σ′ and u′ and

a finite time τ . A state solution to the SLCS can be constructed so that it first adopts σ′ and u′

to reach z at time τ , and then adopts σz and u = 0 from time τ thereon. This state solution has

infinite ℓ2 energy, even though the input u has a finite duration. Thus κ =∞, a contradiction.
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By Remark 2.1, the following result follows immediately.

Corollary 2.1. Suppose λ ∈ R+ is such that the scaled SLS {
√
λAi}i∈M is exponentially stable

under arbitrary switching with the parameters (C, r) for some C > 0 and r ∈ [0, 1). Then the

generalized ℓ2-gain κ(λ) of the SLCS (1) satisfies κ(λ) ≤ Cγ0
1−r . Conversely, under Assumption 2.1,

if κ(λ) <∞, then the SLS {
√
λAi}i∈M is exponentially stable under arbitrary switching.

The joint spectral radius (JSR) of the matrix set {Ai}i∈M is defined as [12]:

ρ∗ := lim
k→∞

max
{
∥Ai1 · · ·Aik∥

1/k
∣∣ i1, . . . , ik ∈M} .

The SLS {Ai}i∈M is exponentially stable under arbitrary switching if and only if ρ∗ < 1 [12]. Since

the scaled SLS {
√
λAi}i∈M has the JSR

√
λ ·ρ∗, it is exponentially stable under arbitrary switching

if and only if

λ < λ∗ := (ρ∗)−2. (9)

Hence, under Assumption 2.1, Corollary 2.1 implies that κ(λ) <∞ if and only if λ ∈ [0, λ∗).

2.3 Continuity of Generalized ℓ2-Gain

In this section, we show that κ(λ) is continuous on [0, λ∗) where λ∗ is defined in (9). Denote by S

the ordered matrix tuple
(
(Ai, Bi)

)
i∈M. The set of all such S with Ai ∈ Rn×n and Bi ∈ Rn×m is

a vector space denoted by S and endowed with a norm, e.g., ∥ · ∥S . Since the projection operator

S 7→ Ai (resp. S 7→ Bi) is continuous hence bounded, there exists a positive constant θ such that

∥Ai∥ ≤ θ · ∥S∥S , ∥Bi∥ ≤ θ · ∥S∥S , ∀ S ∈ S, i ∈M.

For any given S ∈ S and switching sequence σ, define LS,σ(u) := x(·;σ, u, 0) as in (8) with z = 0.

Assume that the SLS {Ai}i∈M is exponentially stable under arbitrary switching. Then Theorem 2.1

implies that the linear operator LS,σ : ℓ2(Rm)→ ℓ2(Rn) is uniformly bounded in σ, i.e.,

∥L(S)∥ := sup
σ

sup
∥u∥2=1

∥LS,σ(u)∥2 <∞,

where ∥ · ∥2 is the ℓ2-norm on the Hilbert space ℓ2(Rm) or ℓ2(Rn). The following result1 shows that

∥L(S)∥ is locally Lipschitz continuous in the system parameter S.

Proposition 2.2. Let S =
(
(Ai, Bi)

)
i∈M ∈ S be given such that the SLS {Ai}i∈M is exponentially

stable under arbitrary switching. Then there exist ε > 0 and µ > 0 (dependent on S only) such that

for any S′, S′′ within the neighborhood BS(ε) := {S̃ ∈ S | ∥S̃ − S∥S ≤ ε} of S, we have∣∣∥L(S′)∥ − ∥L(S′′)∥
∣∣ ≤ µ · ∥S′ − S′′∥S .

Proof. For the given S, there exist ε > 0, C > 1, and r ∈ (0, 1) such that for any S′ ∈ BS(ε), the
SLS {A′

i}i∈M is exponentially stable under arbitrary switching with the parameter (C, r) (chosen

uniformly in S′ ∈ BS(ε) [12, Proposition 1.4]), i.e., ∥A′
i1
A′

i2
· · ·A′

ik
∥ ≤ Crk for any i1, . . . , ik ∈ M.

Define the constant ξ := maxi∈M supS′∈BS(ε) ∥B
′
i∥, which is finite as BS(ε) is a bounded set.

Let S′, S′′ ∈ BS(ε) and σ be arbitrary. The linear operator T : ℓ2(Rm) → ℓ2(Rn) defined

by T (u) := LS′,σ(u) − LS′′,σ(u) is bounded (hence continuous) with the operator norm ∥T∥ :=

1We thank Dr. Thomas I. Seidman of University of Maryland Baltimore County for helpful discussions on this

result.
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sup∥u∥2=1 ∥T (u)∥2. We will show below that ∥T∥ ≤ µ · ∥S′ − S′′∥S for a positive constant µ

independent of S′, S′′ and σ. By (8), the (t+ 1)-th entry of the sequence T (u) is given by

Tt+1(u) := x′(t+ 1;σ, u, 0)− x′′(t+ 1;σ, u, 0)

=

t+1∑
k=1

[
A′

i1 · · ·A
′
ik−1

B′
ik
−A′′

i1 · · ·A
′′
ik−1

B′′
ik

]
u(t+ 1− k),

where the indices i1, . . . , ik are determined from the given σ, and A′
i1
· · ·A′

ik−1
= A′′

i1
· · ·A′′

ik−1
= I

if k = 1. Then, for each k = 1, . . . , t+ 1,∥∥∥A′
i1 · · ·A

′
ik−1

B′
ik
−A′′

i1 · · ·A
′′
ik−1

B′′
ik

∥∥∥
≤

∥∥∥A′
i1 · · ·A

′
ik−1

B′
ik
−A′

i1 · · ·A
′
ik−1

B′′
ik

∥∥∥
+

k−2∑
s=0

∥∥∥A′
i1 · · ·A

′
is ·A

′′
is+1
· · ·A′′

ik−1
B′′

ik
−A′

i1 · · ·A
′
is+1
·A′′

is+2
· · ·A′′

ik−1
B′′

ik

∥∥∥
≤ Crk−1∥B′

ik
−B′′

ik
∥+ (k − 1)C2rk−2ξ · max

s=0,...,k−2
∥A′

is+1
−A′′

is+1
∥

≤ Crk−2
[
r + (k − 1)Cξ

]
θ · ∥S′ − S′′∥S ≤ ν(r + δ)k · ∥S′ − S′′∥S

for any sufficiently small δ > 0 with r + δ < 1 and some large ν > 0 (dependent on r and δ only).

The last step follows because rk−2 [r + (k − 1)Cξ] is a higher order infinitesimal than (r + δ)k as

k →∞. As a result, by using the same argument as in the proof of Theorem 2.1 (on the operator

T rather than LS,σ with (C, r) replaced by (ν, r + δ)), we obtain that ∥T∥ ≤ µ · ∥S′ − S′′∥S , where
µ := ν/(1− r − δ). It is clear that µ is independent of σ and S′, S′′ ∈ BS(ε). Consequently,

∥L(S′)∥ = sup
∥u∥2=1, σ

∥LS′,σ(u)∥2 ≤ sup
∥u∥2=1, σ

[
∥LS′′,σ(u)∥2 + ∥T (u)∥2

]
≤ ∥L(S′′)∥+ µ∥S′ − S′′∥S .

The roles of S′ and S′′ can be reversed to yield a similar inequality, leading to the desired result.

Recall that the scaled SLS {
√
λAi}i∈M is exponentially stable under arbitrary switching if and

only if λ ∈ [0, λ∗) with λ∗ given in (9).

Theorem 2.2. The generalized ℓ2-gain κ(λ) of the SLCS (1) is continuous in λ on [0, λ∗). Fur-

thermore, κ(λ) is Lipschitz continuous in
√
λ on any compact subset of [0, λ∗).

Proof. For any λ ≥ 0, let x̃(t;σ, ũ, 0) be the solution of the scaled SLCS (5) with subsystem matrices

{(
√
λAi, Bi)}i∈M and ũ(t) =

√
λt · u(t). It follows from the discussions in Remark 2.1 that

κ(λ) = sup
∥ũ∥2=1, σ

∥x̃(·;σ, ũ, 0)∥2 = ∥L(Sλ)∥ ,

where Sλ :=
(
(
√
λAi, Bi)

)
i∈M ∈ S. At any λ0 ∈ [0, λ∗), since the autonomous SLS {

√
λ0Ai}i∈M

corresponding to Sλ0 is exponentially stable under arbitrary switching, Proposition 2.2 implies that

κ(λ) is locally Lipschitz continuous in Sλ, hence in
√
λ as well, at any λ0 ∈ [0, λ∗). This implies

via an open covering argument that κ(λ) is (uniformly) Lipschitz in
√
λ on any compact subset of

[0, λ∗), e.g., [0, λ0]. The continuity of κ(λ) in λ on [0, λ∗) then follows readily.

We note that the continuity results in Proposition 2.2 and Theorem 2.2 hold without the reach-

ability assumption.

Corollary 2.2. For any given λ0 ∈ (0, λ∗), κk(·) converges uniformly to κ(·) on [0, λ0] as k →∞.

Proof. It follows from Proposition 2.1 and Theorem 2.2 that κ(·) and κk(·) for all k are continuous

on the compact interval [0, λ0]. Since κk(·) converges pointwise and monotonically to κ(·), it follows
from Dini’s Theorem [22, Theorem 7.13] that the convergence is uniform on [0, λ0].
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3 Generating Functions of Switched Linear Control Systems

Originally introduced in [11], generating functions are an effective tool for the stability analysis and

computation of autonomous SLSs under various switching rules. In this section, we briefly review

their definitions, and then extend them to the SLCSs case for studying generalized ℓ2-gains.

3.1 Autonomous Generating Function of SLS

The (strong) generating function of the autonomous SLS (2) is the function Gλ(·) ∈ R+ ∪ {∞}
defined by

Gλ(z) := sup
σ

∞∑
t=0

λt∥x(t;σ, z)∥2, ∀z ∈ Rn, λ ∈ R+. (10)

The radius of convergence of Gλ(z) is defined as:

λ∗ := sup{λ ∈ R+ |Gλ(z) <∞, ∀z ∈ Rn}. (11)

Note that this is the same notation defined before in (9) via the JSR ρ∗, as the two are identical [11].

Denote gλ = sup∥z∥=1Gλ(z) and dλ = sup∥z∥=1maxi∈MGλ(Aiz). Then it is shown in [11, Theo-

rem 3] that for λ ∈ [0, λ∗), the SLS {
√
λAi}i∈M is exponentially stable under arbitrary switching

with the parameters (Cλ, rλ), where Cλ :=
√
gλ and rλ := λdλ/(1 + λdλ) ∈ [0, 1). By Theorem 2.1,

this yields a (rough) bound on the generalized ℓ2-gain: κ(λ) ≤ √gλγ0(1 + λdλ), ∀ λ ∈ [0, λ∗).

See [11] for more details of the autonomous generating functions.

3.2 Controlled Generating Function of SLCS

The concept of generating functions can be extended to SLCSs. For each λ, γ ∈ R+, the (controlled)

generating function Gλ,γ(·) ∈ R+ ∪ {+∞} of the SLCS (1) is defined as

Gλ,γ(z) := sup
u∈Uλ, σ

[ ∞∑
t=0

λt∥x(t;σ, u, z)∥2 − γ2λ

∞∑
t=0

λt∥u(t)∥2
]

(12)

= ∥z∥2 + λ sup
u∈Uλ, σ

∞∑
t=0

λt
[
∥x(t+ 1;σ, u, z)∥2 − γ2∥u(t)∥2

]
, (13)

for z ∈ Rn. The signs of the two summations in (12) are chosen to coax u and σ into exciting the

largest state energy using the least control energy. The restriction u ∈ Uλ ensures the convergence

of the second summation in (12). Clearly, Gλ,γ(z) ≥ ∥z∥2 ≥ 0. Moreover, at λ = 0, G0,γ(z) = ∥z∥2.
For k ∈ Z+ and λ, γ ∈ R+, the k-horizon generating function Gλ,γ,k(·) is defined as

Gλ,γ,k(z) := sup
σ, u

[
k∑

t=0

λt∥x(t;σ, u, z)∥2 − γ2λ

k−1∑
t=0

λt∥u(t)∥2
]

(14)

= ∥z∥2 + λ · sup
σ,u

k−1∑
t=0

λt
[
∥x(t+ 1;σ, u, z)∥2 − γ2∥u(t)∥2

]
, (15)

for z ∈ Rn, with the understanding that Gλ,γ,0(·) = ∥ · ∥2.
The following proposition shows that Gλ,γ(z) can be approximated by Gλ,γ,k(z) when k is large.

Proposition 3.1. For each fixed λ, γ ∈ R+ and z ∈ Rn, Gλ,γ,k(z) ↑ Gλ,γ(z) as k →∞.
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Proof. It follows directly from the definitions (12) and (14) that Gλ,γ,k(z) is non-decreasing in k

and Gλ,γ,k(z) ≤ Gλ,γ(z). Consider first the case when Gλ,γ(z) < ∞. For any ε > 0, there exist

uε ∈ Uλ and a switching sequence σε such that

Gλ,γ(z) ≥
∞∑
t=0

λt∥x(t;σε, uε, z)∥2 − γ2λ
∞∑
t=0

λt∥uε(t)∥2 ≥ Gλ,γ(z)− ε.

Since uε ∈ Uλ and Gλ,γ(z) < ∞, both summations above converge. Thus, we can find kε ∈ Z+

large enough such that

kε∑
t=0

λt∥x(t;σε, uε, z)∥2 − γ2λ

kε−1∑
t=0

λt∥uε(t)∥2 ≥ Gλ,γ(z)− 2ε.

This shows Gλ,γ,kε(z) ≥ Gλ,γ(z)− 2ε; hence Gλ,γ,k(z) ↑ Gλ,γ(z) as k →∞ as ε > 0 is arbitrary.

Consider Gλ,γ(z) = ∞ next. For any M > 0, there exist uM ∈ Uλ and a switching sequence

σM such that
∑∞

t=0 λ
t∥x(t;σM , uM , z)∥2 − γ2λ

∑∞
t=0 λ

t∥uM (t)∥2 ≥ 2M . If the first summation is

finite, it follows from a similar argument as in the first case that there exists kM ∈ Z+ such that

Gλ,γ,kM (z) ≥
∑kM

t=0 λ
t∥x(t;σM , uM , z)∥2 − γ2λ

∑kM−1
t=0 λt∥uM (t)∥2 ≥ M . Otherwise, as uM ∈ Uλ,

the same inequality holds for some kM large enough. This shows that Gλ,γ,k(z) ↑ ∞ as k →∞.

The following proposition establishes some basic properties of the generating functions.

Proposition 3.2. The controlled generating function Gλ,γ(·) and its finite-horizon counterparts

Gλ,γ,k(·) for λ, γ ∈ R+ and k ∈ Z+ have the following properties.

(1) (Homogeneity): Gλ,γ(·) and Gλ,γ,k(·) are both homogeneous of degree two, i.e., Gλ,γ(αz) =

α2Gλ,γ(z) and Gλ,γ,k(αz) = α2Gλ,γ,k(z), ∀z ∈ Rn, ∀α ∈ (0,∞). Thus, Gλ,γ(0) ∈ {0,∞}.

(2) (Bellman Equation): For all z ∈ Rn and k ∈ Z+,

Gλ,γ,k+1(z) = ∥z∥2+λ · sup
i∈M,v∈Rm

[
− γ2∥v∥2 +Gλ,γ,k(Aiz +Biv)

]
, (16)

Gλ,γ(z) = ∥z∥2+λ · sup
i∈M,v∈Rm

[
− γ2∥v∥2 +Gλ,γ(Aiz +Biv)

]
. (17)

(3) (Monotonicity): For any z ∈ Rn, Gλ,γ(z) and Gλ,γ,k(z) are non-increasing in γ ∈ R+ (for a

fixed λ) and non-decreasing in λ ∈ R+ (for a fixed γ).

(4) (Sub-additivity):
√

Gλ,γ(z) and
√

Gλ,γ,k(z) for each k ∈ Z+ are sub-additive in z:√
Gλ,γ,k(z1 + z2) ≤

√
Gλ,γ,k(z1) +

√
Gλ,γ,k(z2),√

Gλ,γ(z1 + z2) ≤
√

Gλ,γ(z1) +
√
Gλ,γ(z2), ∀ z1, z2 ∈ Rn

(5) (Convexity):
√

Gλ,γ(z) and
√

Gλ,γ,k(z) for each k ∈ Z+ are convex functions of z on Rn.

(6) (Invariant Subspace): Gλ,γ := {z ∈ Rn |Gλ,γ(z) < ∞} is a subspace of Rn invariant under

subsystem dynamics, i.e., AiGλ,γ +BiRm ⊆ Gλ,γ, ∀i.

(7) (Lower Bound): Gλ,γ(z) ≥ Gλ(z), ∀ z ∈ Rn, where Gλ(z) is the autonomous generating

function in (10).
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Proof. Let λ, γ ∈ R+ and k ∈ Z+ be arbitrary.

(1) The homogeneity property follows directly from x(t;σ, αu, αz) = α · x(t;σ, u, z), ∀ t.
(2) Partition u ∈ Uk as u = (v, u′) for v ∈ Rm, u′ ∈ Uk−1, and let σ = (i, σ′) with i ∈ M.

By (14), we have

Gλ,γ,k+1(z) = sup
i∈M
v∈Rm

{
∥z∥2 − γ2λ∥v∥2 + λ · sup

σ′,u′

[
k∑

t=0

λt · ∥x(t;σ′, u′, Aiz +Biv)∥2 − γ2λ

k−1∑
t=0

λt∥u′(t)∥2
]}

= ∥z∥2 + sup
i∈M, v∈Rm

[
− γ2λ∥v∥2 + λGλ,γ,k(Aiz +Biv)

]
.

The Bellman equation for Gλ,γ(z) can be proved similarly.

(3) By Proposition 3.1, we need only to prove the monotonicity property for Gλ,γ,k(z). Mono-

tonicity of Gλ,γ,k(z) in γ is obvious from (14). We prove its monotonicity in λ by induction. At

k = 0, Gλ,γ,0(z) = ∥z∥2 is clearly non-decreasing in λ. Suppose this is the case for Gλ,γ,k(z) for

some k ∈ Z+. Then for any λ > λ′ ≥ 0, the Bellman equation and the induction hypothesis imply

that

Gλ,γ,k+1(z) ≥ ∥z∥2 + λ′ sup
i∈M,v∈Rm

[
− γ2∥v∥2 +Gλ′,γ,k(Aiz +Biv)

]
= Gλ′,γ,k+1(z).

By induction, Gλ,γ,k(z) is non-decreasing in λ, ∀ k ∈ Z+.

(4) Denote u :=
[
u(0)T · · · u(k − 1)T

]T ∈ Rnk. Define

fσ(z) := sup
u

[ k∑
t=0

λt∥x(t;σ, u, z)∥2 − γ2λ
k−1∑
t=0

λt∥u(t)∥2
]
:= sup

u

[
z

u

]T [
Qzz Qzu

Quz Quu

] [
z

u

]
(18)

for some symmetric matrices Qzz ≽ In ∈ Rn×n and Quu ∈ Rnk×nk, and matrices Qzu = QT
uz ∈

Rn×nk. Noting that Gλ,γ,k(z) = supσ fσ(z), for the sub-additivity of
√

Gλ,γ,k(z), it suffices to show

that, for any fixed σ, √
fσ(z1 + z2) ≤

√
fσ(z1) +

√
fσ(z2), ∀ z1, z2 ∈ Rn. (19)

Let λmax(Quu) be the largest eigenvalue of Quu. Consider the following three cases:

a) If λmax(Quu) > 0, then (19) holds as fσ(z) ≡ ∞.

b) If λmax(Quu) < 0, then the supremum in (18) is achieved by u = −Q−1
uuQuzz; and

√
fσ(z) =[

zT (Qzz −QzuQ
−1
uuQuz)z

]1/2
with Qzz −QzuQ

−1
uuQuz ≻ 0 is a norm hence satisfies (19).

c) If λmax(Quu) = 0, then the null space N (Quu) ̸= {0}. If Quzz ̸∈ R(Quu) = N (Quu)
⊥, there

exists u1 ∈ N (Quu) with uT
1 Quzz > 0. By letting u = αu1 for arbitrarily large α > 0, we obtain

that fσ(z) =∞. If Quzz ∈ R(Quu), i.e., Quzz = Quuu0 for some u0 ∈ Rnk, then

fσ(z) = sup
u

(
zTQzzz + 2uTQuuu0 + uTQuuu

)
= zTQzzz − uT

0 Quuu0 = zT (Qzz −QT
uzQ

†
uuQuz)z <∞.

Here, Q†
uu denotes the Moore-Penrose pseudo inverse of Quu, and Qzz−QT

uzQ
†
uuQuz ≻ 0 as Qzz ≻ 0

and Q†
uu ≼ 0. To sum up,

√
fσ(z) defines a norm on the subspace Q−1

uz [R(Quu)], and is infinite

everywhere else. As a result, (19) still holds.

This proves (19), hence the sub-additivity of
√

Gλ,γ,k(·) and
√

Gλ,γ(·) by Proposition 3.1.

(5) For any α1, α2 ≥ 0 with α1 + α2 = 1, by the sub-additivity and homogeneity properties,√
Gλ,γ(α1z1 + α2z2) ≤

√
Gλ,γ(α1z1) +

√
Gλ,γ(α2z2) = α1

√
Gλ,γ(z1) + α2

√
Gλ,γ(z2).
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This shows the convexity of
√

Gλ,γ(·). The convexity of
√

Gλ,γ,k(·) can be proved similarly.

(6) That Gλ,γ is a subspace follows from the sub-additivity property of
√

Gλ,γ(·). Its invariance
to subsystem dynamics follows from the Bellman equation (17).

(7) By setting u = 0, the right hand side of (12) reduces to the definition (10).

3.3 Quadratic Bound

Denote by Sn−1 := {z ∈ Rn | ∥z∥ = 1} the unit sphere. For each λ, γ ∈ R+, define

gλ,γ := sup
z∈Sn−1

Gλ,γ(z) ∈ R+ ∪ {+∞}. (20)

By homogeneity, Gλ,γ(z) admits the following tight bound:

Gλ,γ(z) ≤ gλ,γ∥z∥2, ∀ z ∈ Rn. (21)

We next study gλ,γ as a function of (λ, γ) ∈ R2
+ := R+ × R+. Obviously gλ,γ is non-decreasing

in λ and non-increasing in γ by the monotonicity of Gλ,γ(z); and g0,γ = 1, ∀ γ ∈ R+.

Proposition 3.3. Both gλ,γ and Gλ,γ(0) are lower semi-continuous functions of (λ, γ) ∈ R2
+.

Proof. Let ϕσ,u,z,k(λ, γ) := [
∑k

t=0 λ
t∥x(t;σ, u, z)∥2 − γ2λ

∑k−1
t=0 λt∥u(t)∥2]. Then

gλ,γ = sup
z∈Sn−1

sup
k∈Z+

sup
σ

sup
u∈Uk−1

ϕσ,u,z,k(λ, γ), Gλ,γ(0) = sup
k∈Z+

sup
σ

sup
u∈Uk−1

ϕσ,u,0,k(λ, γ), (22)

expressing each as the supremum of a family of continuous functions of λ and γ.

For the next property, we first introduce the following lemma [1, pp. 119, Ex. 3.32].

Lemma 3.1. Let f, h : R+ → R+∪{+∞} be two (extended valued) convex non-decreasing functions.

Then their product f · h : R+ → R+ ∪ {+∞} is also a convex function.

Proposition 3.4. gλ,γ is a convex function of λ ∈ R+ for each fixed γ ∈ R+, and a convex function

of γ2 ∈ R+ for each fixed λ ∈ R+.

Proof. To show the convexity of gλ,γ in λ when γ is fixed, we first show by induction that for each

k ∈ Z+, Gλ,γ,k(z) is a convex function of λ for fixed γ ∈ R+ and z ∈ Rn. This is trivially true

at k = 0 since Gλ,γ,0(z) = ∥z∥2 is constant in λ. Suppose it holds for k = 0, 1, . . . , k∗. From the

Bellman equation (17), Gλ,γ,k∗+1(z) = ∥z∥2 + λ · h(λ), where the function h : R+ → R+ ∪ {+∞}
is given by h(λ) := supi∈M,v∈Rm

[
− γ2∥v∥2 + Gλ,γ,k∗(Aiz + Biv)

]
. It follows from the induction

hypothesis and monotone property of Gλ,γ,k∗(z) that the term inside the brackets, and hence h(λ)

itself, is convex and non-decreasing in λ. Applying Lemma 3.1 to the two functions f(λ) := λ

and h(λ), we deduce that Gλ,γ,k∗+1(z) is convex in λ. By induction, Gλ,γ,k(z) are convex in λ

for all k ∈ Z+. It follows from Proposition 3.1 that Gλ,γ(z) is convex in λ. Finally, using the

definition (20), we conclude that gλ,γ is convex in λ. Moreover, by (22), gλ,γ is the supremum of a

family of affine functions of γ2. Hence the second statement holds.

It should be noted that gλ,γ is in general not convex in (λ, γ2), or convex in γ. More properties

of gλ,γ will be presented in Section 3.4.
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3.4 Domain of Convergence

This subsection is concerned with the set of (λ, γ) ∈ R2
+ at which Gλ,γ(z) is finite for all z. This

set plays a crucial role in characterizing the generalized ℓ2-gain κ(λ).

Definition 3.1. The domain of convergence (DOC) of the generating function Gλ,γ(z) is the set

Ω := {(λ, γ) ∈ R2
+ |Gλ,γ(z) <∞, ∀z ∈ Rn} ⊂ R2

+.

The open domain of convergence (open DOC) is defined to be the interior of Ω, i.e., Ω◦ := int (Ω).

Since Gλ,γ(z) = ∥z∥2 < ∞ at λ = 0, the DOC always contains the nonnegative γ-axis Λ0 :=

{(0, γ) | γ ∈ R+}. Denote by Ω+ the nontrivial part of DOC with Λ0 removed:

Ω+ := Ω \ Λ0 = Ω ∩ (R++ × R+), where R++ := (0,∞).

In the following, the DOC may refer to either Ω or Ω+.

Some properties of the DOC are straightforward. For example, due to the monotonicity property

of Gλ,γ(z) in (λ, γ), if (λ, γ) belongs to the DOC, so does any (λ′, γ′) with λ′ ≤ λ and γ′ ≥ γ. Further

properties of the DOC can be derived by utilizing the following finiteness tests.

Proposition 3.5. For any fixed λ, γ ∈ R+, the following statements are equivalent:

1) Gλ,γ(z) <∞, ∀ z ∈ Rn;

2)
√
Gλ,γ(·) is a norm, and thus continuous, on Rn;

3) gλ,γ <∞;

4) Gλ,γ(0) = 0.

Moreover, if further λ > 0, then each of the above statements is equivalent to the following statement:

5) Gλ,γ(Biv) ≤ γ2∥v∥2 for all i ∈M and all v ∈ Rm.

Proof. 1) ⇒ 2) : If 1) holds, then
√

Gλ,γ(·) is finite on Rn, positive homogeneous of degree one,

and sub-additive by Proposition 3.2. Therefore, it defines a norm on Rn.

2) ⇒ 3) : Suppose 2) holds. Since
√

Gλ,γ(·) is a norm, it and Gλ,γ(·) are continuous function

on Rn. Thus, their values on the compact set Sn−1 must be bounded.

3) ⇒ 4) : If gλ,γ <∞, then by (21), 0 ≤ Gλ,γ(0) ≤ gλ,γ∥0∥2 = 0.

4) ⇒ 1) : Suppose Gλ,γ(0) = 0. If λ = 0, then Gλ,γ(z) = ∥z∥2 < ∞, ∀ z. Assume λ > 0 in

the following. Then (17) evaluated at z = 0 yields supi∈M, v∈Rm [Gλ,γ(Biv) − γ2∥v∥2] = 0, i.e.,

Gλ,γ(Biv) ≤ γ2∥v∥2, ∀ i ∈ M, v ∈ Rm. This shows that Gλ,γ(z) < ∞ at all z reachable from

x(0) = 0 in one time step. Next let z be in the reachable set from x(0) = 0 in one step. The

Bellman equation (17) implies

sup
i∈M, v∈Rm

[
− γ2∥v∥2 +Gλ,γ(Aiz +Biv)

]
=

Gλ,γ(z)− ∥z∥2

λ
.

Therefore, for any i ∈M and any v ∈ Rm, Gλ,γ(Aiz+Biv) ≤ λ−1
(
Gλ,γ(z)−∥z∥2

)
+ γ2∥v∥2 <∞.

This shows that Gλ,γ(·) is finite on the reachable set from x(0) = 0 in two steps. By induction, we

deduce that Gλ,γ(z) < ∞ for all z in the reachable set of the SLCS. Since the reachable set spans

Rn by Assumption 2.1 and
√

Gλ,γ(·) is sub-additive by Proposition 3.2, Gλ,γ(·) is finite on Rn.

4)⇔ 5) : Let λ > 0. The equivalence of 4) and 5) follows directly from (17) by setting z = 0.
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Figure 1: A generic plot of the DOC of the generating function Gλ,γ(·).

Additional observations on the DOC can be made based on the above proposition.

(1) The lower bound of Ω+. Since Gλ,γ(z) ≥ ∥z∥2, for (λ, γ) ∈ Ω+, by letting z = Biv we must

have γ2∥v∥2 ≥ ∥Biv∥2, ∀i ∈M, v ∈ Rm, i.e., γ ≥ γ0 with γ0 defined in (7). Thus, the set Ω+

is bounded from below by the horizontal line R++ × {γ0}.

(2) The right asymptotic bound of Ω. Consider any λ ∈ (0, λ∗), where λ∗ is the radius of conver-

gence of the autonomous generating function defined in (11). Since the SLS {
√
λAi}i∈M is

exponentially stable under arbitrary switching, κ(λ) is finite by Theorem 2.1. Thus for all γ

large enough, specifically γ ≥ κ(λ), we have Gλ,γ(0) = 0 by its definition in (13) and hence

(λ, γ) ∈ Ω+. On the other hand, if λ ≥ λ∗, Gλ(z) = ∞ for some z, so is Gλ,γ(z) for any γ

by property 7) of Proposition 3.2. In summary, the DOC is bounded from the right by the

vertical line {λ∗} × R+ and can be arbitrarily close to that line as λ→ λ∗.

(3) The interior of Ω. The argument in (2) above also implies that Ω must have nonempty

interior.

Proposition 3.6. The DOC Ω is a closed subset of R2
+.

Proof. By Proposition 3.5, the DOC can be written as Ω = {(λ, γ) ∈ R2
+ |Gλ,γ(0) ≤ 0}, which

is a sublevel set of the lower semi-continuous function Gλ,γ(0) (cf. Proposition 3.3). Thus Ω is

closed [21, pp. 51].

As a result, gλ,γ is finite not only in the interior Ω◦ but also on the boundary ∂Ω of the DOC.

A generic plot of the DOC is shown in Fig. 1, with more to be given in Section 5. It should be

mentioned that in general Ω+ may not be convex.

When restricted on the DOC, the quadratic bound gλ,γ defined in (20) enjoys more favorable

properties, in addition to the generic ones derived in Section 3.3.

Proposition 3.7. The function gλ,γ : Ω→ R+ ∪ {+∞} has the following properties.

(1) It is finite everywhere on Ω, including on its boundary;

(2) It is continuous on the interior Ω◦ of Ω;

(3) If at least one Ai ̸= 0, then for any fixed γ ∈ R+, gλ,γ is strictly increasing in λ on Ω.
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Proof. Statement (1) follows directly from the definition of the DOC and Proposition 3.6.

For Statement (2), we first show that on Ω, gλ,γ is continuous in each of the two variables when

the other is fixed. For example, let γ ∈ R+ be fixed and let λr := sup{λ | (λ, γ) ∈ Ω}. We show that

the function h(λ) := gλ,γ is continuous on [0, λr] as follow. By Proposition 3.4, h(λ) is convex and

finite on [0, λr], which implies its continuity on the open interval (0, λr). The continuity of h(λ)

at λr follows from its being monotonically non-decreasing and lower semicontinuous. At λ = 0,

h(0) ≤ lim infλ↓0 h(λ) = limλ↓0 h(λ) := η by the monotonicity of h. It is noted that the strict

inequality h(0) < η is impossible since otherwise, it follow from the monotonicity and continuity of

h on the open interval (0, ε) for a small ε > 0 that for any z ∈ (0, ε), h(z) ≥ η and the line segment

joining the points (0, h(0)) and (z, h(z)) would be below the point (z′, h(z′)) ∈ R2
+ for some z′ > 0

sufficiently close to 0. This contradicts the convexity of h. Thus, h(·) is continuous at λ = 0.

Similarly, we can show that gλ,γ is continuous in γ2 (hence in γ) for a fixed λ whenever (λ, γ) ∈ Ω.

Now let (λ′, γ′) ∈ Ω◦ be arbitrary, and let
(
(λs, γs)

)
be a sequence in Ω converging to (λ′, γ′).

Due to the lower semicontinuity of gλ,γ , we have gλ′,γ′ ≤ lim infs→∞ gλs,γs . For any ε > 0 small

enough such that (λ′, γ′− ε) ∈ Ω◦, γs ≥ γ′− ε for all s sufficiently large. Thus, by the monotonicity

property of gλ,γ , lim sups→∞ gλs,γs ≤ lim sups→∞ gλs,γ′−ε = gλ′,γ′−ε, where the equality follows from

the continuity of gλ,γ′−ε in λ. Since ε > 0 is arbitrary, gλ′,γ′−ε is arbitrarily close to gλ′,γ′ due to

the continuity of gλ′,γ in γ. This shows lim sups→∞ gλs,γs ≤ gλ′,γ′ , hence lims→∞ gλs,γs = gλ′,γ′ .

To prove Statement (3), recall that for a given γ ∈ R+, [0, λr]×{γ} is a maximal horizontal line

segment contained in Ω. Assume without loss of generality that λr > 0. Since gλ,γ is convex in λ

(see Proposition 3.4), the function (gλ,γ − g0,γ)/λ is non-decreasing in λ on (0, λr]. Thus, to show

that gλ,γ is strictly increasing on [0, λ0], it suffices to show that gε,γ > g0,γ = 1 for all ε > 0 small

enough. Assume Ai0 ̸= 0 for some i0 ∈ M. Then there exists z0 ∈ Sn−1 such that Ai0z0 ̸= 0. By

setting z = z0, u ≡ 0, and σ = (i0, i0, . . .) in (12), we have Gε,γ(z0) ≥ ∥z0∥2 + ε∥Ai0z0∥2 + · · · > 1;

hence gε,γ > 1. This completes the proof of Statement (3).

Example 3.1 (One-Step FIR System). Consider the case excluded in Statement 3) of Proposi-

tion 3.7 where Ai = 0 for all i ∈ M. The resulting SLCS is a one-step FIR system as AiBj = 0,

∀i, j ∈M. In this case, the SLCS has solutions x(t;σ, u, z) = Bσ(t−1)u(t− 1), ∀ t ∈ N. Therefore,

Gλ,γ(z) = ∥z∥2 +
∞∑
t=0

λt+1 sup
σ(t),u(t)

[
− uT (t)Qσ(t)u(t)

]
, (23)

where Qi := γ2I−BT
i Bi, i ∈M. If γ ≥ γ0 with γ0 given in (7), then Qσ(t) ≽ 0, ∀ t; (23) thus implies

Gλ,γ(z) = ∥z∥2, ∀ z. If γ < γ0, then at least one Qi has a negative eigenvalue and Gλ,γ(z) =∞, ∀z,
for all λ > 0. In summary, the DOC is Ω+ = R++ × [γ0,∞) and gλ,γ ≡ 1 on Ω. �

It is shown in Proposition 3.1 that Gλ,γ,k(·) ↑ Gλ,γ(·) as k →∞ pointwise on Rn. The following

result shows that the convergence is uniform on the unit sphere if (λ, γ) ∈ Ω.

Proposition 3.8. Suppose (λ, γ) ∈ Ω. Then Gλ,γ,k(·) ↑ Gλ,γ(·) uniformly on Sn−1.

Proof. As k →∞, the monotonically increasing sequence of continuous functions
(
Gλ,γ,k

)
converges

pointwise on Sn−1 to Gλ,γ . Since (λ, γ) ∈ Ω, it follows from Proposition 3.5 that
√

Gλ,γ(·), and
hence Gλ,γ(·), is continuous on Sn−1. Therefore, by Dini’s Theorem [22, Theorem 7.13],

(
Gλ,γ,k

)
converges uniformly to Gλ,γ on Sn−1.

A stronger convergence result will be established in Theorem 3.1 and Corollary 3.1 when (λ, γ)

is in the interior of Ω.
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3.5 Approximation of Generating Functions

We uncover some structures of Gλ,γ,k(·) on the interior of the DOC, i.e., Ω◦, which will be exploited

to develop numerical algorithms for computing the generating function Gλ,γ .

Define the following set

W :=

{
(λ, γ) ∈ R2

+

∣∣∣∣λ > 0, γ2 > sup
i∈M,v∈Sm−1

Gλ,γ(Biv)

}
.

Lemma 3.2. The following holds: Ω◦ ⊆ W ⊆ Ω+, where Ω+ is the part of Ω with λ > 0.

Proof. ThatW ⊆ Ω+ is a direct consequence of Statement 5) of Proposition 3.5. To show Ω◦ ⊆ W,

assume (λ, γ) ∈ Ω◦, which satisfies λ > 0. If there exist i0 ∈ M and v0 ∈ Sm−1 such that

Gλ,γ(Bi0v0) ≥ γ2, then for any sufficiently small ε > 0, Gλ,γ−ε(Bi0v0) ≥ Gλ,γ(Bi0v0) ≥ γ2 >

(γ − ε)2. By 5) of Proposition 3.5, (λ, γ − ε) ̸∈ Ω for small ε > 0, contradicting the assumption

(λ, γ) ∈ Ω◦. Thus, Gλ,γ(Biv) < γ2, ∀ i ∈M, v ∈ Sm−1, i.e., (λ, γ) ∈ W.

Denote by P the set of all n×n symmetric positive definite matrices. Whenever a matrix P ∈ P,
we write P ≻ 0. Define the following subset of P for any fixed (λ, γ) ∈ W:

Pλ,γ := {P ∈ P |Gλ,γ(z) ≥ zTPz, ∀ z ∈ Rn}.

Obviously, Pλ,γ is nonempty since it contains the identity matrix I. For any P ∈ Pλ,γ with (λ, γ) ∈
W, we have γ2 > Gλ,γ(Biv) ≥ vTBT

i PBiv for any v ∈ Sm−1, and hence γ2I−BT
i PBi ≻ 0, ∀ i ∈M.

Thus the following mapping ρλ,γ,i : Pλ,γ → P is well defined for each i ∈M:

ρλ,γ,i(P ) := I + λAT
i PAi + λAT

i PBi

(
γ2I −BT

i PBi

)−1
BT

i PAi, ∀ P ∈ Pλ,γ . (24)

This mapping is called the Riccati mapping of the subsystem i ∈M of the SLCS (1).

Lemma 3.3. For any (λ, γ) ∈ W and i ∈ M, the Riccati mapping ρλ,γ,i : Pλ,γ → Pλ,γ is a self

mapping of Pλ,γ.

Proof. Let (λ, γ) ∈ W and P ∈ Pλ,γ be arbitrary. Then Gλ,γ(·) is finite everywhere. Using the

Bellman equation (17) and the definition of Pλ,γ , we obtain, for any z ∈ Rn,

Gλ,γ(z) ≥ sup
i∈M, v∈Rm

[
∥z∥2 − λ · γ2∥v∥2 + λ · (Aiz +Biv)

TP (Aiz +Biv)
]
= max

i∈M
zTρλ,γ,i(P )z,

where the last step follows by choosing the optimal v∗ = (γ2I − BT
i PBi)

−1BT
i PAiz for each i in

the supremum. This shows that ρλ,γ,i(P ) ∈ Pλ,γ , ∀ i ∈M.

Let (λ, γ) ∈ W. The set-valued switched Riccati mapping ρλ,γ,M : 2Pλ,γ → 2Pλ,γ is defined as

ρλ,γ,M(A) := {ρλ,γ,i(P ) | i ∈M and P ∈ A} , ∀A ⊆ Pλ,γ ,

which maps A to ρλ,γ,M(A), both of which are subsets of Pλ,γ . The following sequence of subsets

of Pλ,γ , called the Switched Riccati Sets (SRSs), can be generated recursively:

H0 := {I} , and Hk+1 := ρλ,γ,M(Hk), ∀ k ∈ Z+. (25)

It turns out that Hk’s completely characterize the finite-horizon generating functions Gλ,γ,k(·).

Proposition 3.9. Suppose (λ, γ) ∈ W. The following hold:
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(1) Gλ,γ,k(z) = maxP∈Hk
zTPz, ∀ z ∈ Rn, k ∈ Z+;

(2) For each z ∈ Rn, the supremum in the Bellman equation (17) can be achieved by some i∗(z) ∈
M and v∗(z) ∈ Rm, namely, Gλ,γ(z) = ∥z∥2−λ·γ2∥v∗(z)∥2+λ·Gλ,γ(Ai∗(z)z+Bi∗(z)v∗(z)), with

the properties that i∗(z) and v∗(z) are homogeneous along the ray directions: i∗(αz) = i∗(z)

and v∗(αz) = α · v∗(z) for all α > 0 and z ∈ Rn; and that v∗(z) is uniformly bounded in z:

∥v∗(z)∥ ≤ Kv∥z∥, ∀ z ∈ Rn, for some finite constant Kv ∈ R+ independent of z;

(3) For any z ∈ Rn and any k ∈ Z+, the supremum in the Bellman equation (16) can be achieved

by some ik∗(z) ∈M and vk∗ (z) ∈ Rm that have the same homogeneous and uniformly bounded

properties (and the same constant Kv as well) as i∗(z) and v∗(z) in (1).

Proof. (1) We prove this by induction on k. The case k = 0 is trivial as H0 = {I} and Gλ,γ,0(z) =

∥z∥2. Suppose Gλ,γ,j(z) = maxP∈Hj z
TPz for j = 0, 1, . . . , k − 1. By (16), we have

Gλ,γ,k(z) = ∥z∥2 + sup
i∈M, v∈Rm

[
−λγ2∥v∥2 + λ ·Gλ,γ,k−1(Aiz +Biv)

]
= sup

i∈M, v∈Rm, P∈Hk−1

[
∥z∥2 − λγ2∥v∥2 + λ · (Aiz +Biv)

TP (Aiz +Biv)

]
= sup

i∈M, P∈Hk−1

zTρλ,γ,i(P )z = sup
P ′∈Hk

zTP ′z, ∀ z ∈ Rn.

Note that in deriving the last two equalities, we choose the (z-dependent) optimal switching and

control as(
ik∗, P

k
∗

)
:= argmax

i∈M, P∈Hk−1

[
zTρλ,γ,i(P )z

]
, vk∗ :=

(
γ2I −BT

ik∗
P k
∗ Bik∗

)−1
BT

ik∗
P k
∗ Aik∗

z. (26)

The desired result then follows from the induction principle.

(2) Since (λ, γ) ∈ W, there exists a small ε > 0 such that γ − ε > 0 and Gλ,γ(Biv) ≤ (γ − ε)2,

∀ v ∈ Sm−1, i ∈M. Define the finite constant Kv := ε−1 ·maxi∈M supz∈Sn−1

√
Gλ,γ(Aiz). Then for

any z ∈ Rn and i ∈M, whenever v ̸∈ Vz := {v ∈ Rm | ∥v∥ ≤ Kv∥z∥},

−γ2∥v∥2 +Gλ,γ(Aiz +Biv) ≤ −γ2∥v∥2 +
(√

Gλ,γ(Aiz) +
√

Gλ,γ(Biv)

)2

≤ −γ2∥v∥2 +
(
εKv∥z∥+ (γ − ε)∥v∥

)2
< 0,

where the sub-additivity of
√

Gλ,γ(·) is used in the first step. Thus, the supremum in the Bellman

equation (17) cannot be achieved by v outside Vz. As Gλ,γ(·) is continuous and Vz is compact,

the supremum must be achieved by some v∗(z) ∈ Vz and some i ∈ M. The homogeneity of i∗(z)

and v∗(z) along rays follows immediately by noting that equation (17) is positive homogeneous of

degree two in z and v.

(3) This follows by replacing Gλ,γ with Gλ,γ,k in the above proof of (2).

The first statement of Proposition 3.9 shows that, for (λ, γ) ∈ W, each finite horizon generating

function is piecewise quadratic and continuous in z and can be represented by a finite set Hk of

matrices generated by an iterative algorithm in (25). Furthermore, the optimal state sequence xk∗(t)

and control sequence uk∗(t) over the horizon t = 0, . . . , k − 1 achieving Gλ,γ,k(z) can be obtained

from the solution of a closed-loop system adopting in sequence the optimal state feedback switching

and control policy
(
ik−t
∗ (·), vk−t

∗ (·)
)
given in (26) for t = 0, 1, . . . , k− 1. In what follows, we discuss

this representation for the infinite horizon case.
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Let (λ, γ) ∈ W. Then i∗(·) and v∗(·) defined in the second statement of Proposition 3.9 specify

a state feedback switching and control policy for the SLCS (1). Denote by x̂(t) the resulting state

trajectory under this policy starting from the initial state z ∈ Rn, namely, x̂(0) = z, and

x̂(k + 1) = Aσ∗,z(k)x̂(k) +Bσ∗,z(k)u∗,z(k), ∀ k ∈ Z+,

where σ∗,z(k) = i∗(x̂(k)), u∗,z(k) = v∗(x̂(k)). The switching and control sequences σ∗,z(·) and u∗,z(·)
above are in general dependent on z. In the case this dependency needs to be highlighted, we write

x̂(·) explicitly as x̂(·;σ∗,z, u∗,z, z). Under (σ∗,z, u∗,z), the supremum in the Bellman equation (17) is

exactly achieved at each step along x̂(·), i.e., for each k ∈ Z+,

Gλ,γ(z) = Gλ,γ(x̂(0)) = ∥x̂(0)∥2 − γ2λ∥u∗,z(0)∥2 + λ ·Gλ,γ(x̂(1)) = · · ·

=

k∑
t=0

λt
[
∥x̂(t)∥2 − γ2λ∥u∗,z(t)∥2

]
+ λk+1Gλ,γ(x̂(k + 1)). (27)

In contrast, when a generic switching-control sequence (σ, u) is applied, the resulting state trajectory

x(·;σ, u, z) satisfies only the inequality, i.e., for each k ∈ Z+,

Gλ,γ(z) ≥
k∑

t=0

λt
[
∥x(t;σ, u, z)∥2 − γ2λ∥u(t)∥2

]
+ λk+1Gλ,γ(x(k + 1;σ, u, z)). (28)

For the above reason, we refer to (σ∗,z, u∗,z) as a Bellman switching-control sequence for a given

initial state z. Note that such sequences may not be unique. The results developed in the next

proposition hold uniformly for all possible Bellman switching-control sequences.

Proposition 3.10. Let (λ, γ) ∈ Ω◦ and let (σ∗,z, u∗,z) be any choice of the Bellman switching-

control sequences for an arbitrary initial state z ∈ Rn. Then the following hold:

(1) u∗,z ∈ Uλ;

(2)
√
λt · x̂(t;σ∗,z, u∗,z, z) → 0 as t → ∞, and (σ∗,z, u∗,z) achieves the supremum in the defini-

tion (12) of Gλ,γ(z), namely, Gλ,γ(z) =
∑∞

t=0 λ
t∥x̂(t;σ∗,z, u∗,z, z)∥2 − γ2λ

∑∞
t=0 λ

t∥u∗,z(t)∥2;

(3) The trajectories
√
λt · x̂(t;σ∗,z, u∗,z, z) are uniformly bounded for all z ∈ Sn−1;

(4) The
√
λ-discounted state trajectories of the SLCS (1), i.e.,

√
λt·x̂(t;σ∗,z, u∗,z, z), are (strongly)

asymptotically stable at the origin.

Proof. For notational simplicity, we denote x̂(·;σ∗,z, u∗,z, z) by x̂(·) when necessary in this proof.

(1) Note that (27) holds. Since (λ, γ) ∈ Ω◦, we can find a small ε > 0 such that (λ, γ − ε) ∈ Ω◦.

By applying the inequality (28) and then comparing it with (27), we have, for each k ∈ Z+,

Gλ,γ−ε(z) ≥
k∑

t=0

λt
[
∥x̂(t)∥2 − (γ − ε)2λ∥u∗,z(t)∥2

]
+ λk+1 ·Gλ,γ(x̂(k + 1))

= Gλ,γ(z) + ε(2γ − ε)λ ·
k∑

t=0

λt∥u∗,z(t)∥2. (29)

We conclude that u∗,z ∈ Uλ, for otherwise the right hand side of the above inequality tends to

infinity as k →∞, contradicting the fact that Gλ,γ−ε(z) is finite due to (λ, γ − ε) ∈ Ω◦.
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(2) Applying (27) and the fact that u∗,z ∈ Uλ, we have, for each k ∈ Z+,

k∑
t=0

λt∥x̂(t)∥2 ≤ Gλ,γ(z) + γ2λ

k∑
t=0

λt∥u∗,z(t)∥2 ≤ Gλ,γ(z) + γ2λ

∞∑
t=0

λt∥u∗,z(t)∥2 <∞.

Hence,
∑∞

t=0 λ
t∥x̂(t)∥2 < ∞, which implies limt→∞

√
λt · x̂(t) = 0. By letting k → ∞ in (27) and

noting that λk+1Gλ,γ(x̂(k + 1)) ≤ gλ,γ · λk+1∥x̂(k + 1)∥2 → 0, we obtain the second result.

(3) Fix a sufficiently small ε > 0 such that (λ, γ − ε) ∈ Ω◦. For any z ∈ Sn−1 and associated

Bellman sequence (σ∗,z, u∗,z), the inequality (29) holds, which implies that

∞∑
t=0

λt∥u∗,z(t)∥2 ≤
Gλ,γ−ε(z)−Gλ,γ(z)

ε(2γ − ε)λ
≤ Mu :=

gλ,γ−ε

ε(2γ − ε)λ
.

This, together with the results in Statement (2), implies that for each z ∈ Sn−1,∥∥∥√λt · x̂(t)
∥∥∥2 ≤ ∞∑

t=0

λt∥x̂(t)∥2 ≤ gλ,γ + γ2λMu, ∀ t ∈ Z+,

where the upper bound is a constant independent of z ∈ Sn−1 and the associated (σ∗,z, u∗,z).

(4) As
√
λt · x̂(t;σ∗,z, u∗,z, z) is homogeneous in z, the asymptotic stability follows directly from

the convergence property in Statement (2) and the uniform boundedness property in Statement

(3), regardless of z and (σ∗,z, u∗,z).

In the following, strong exponential stability of the state trajectories
√
λt · x̂(t;σ∗,z, u∗,z, z) is

further proved.

Theorem 3.1. Let (λ, γ) ∈ Ω◦. Then the
√
λ-discounted state trajectories

√
λt · x̂(t;σ∗,z, u∗,z, z)

of the SLCS (1) under any Bellman switching-control policy (σ∗,z, u∗,z) are (strongly) exponentially

stable at the origin, i.e., there exist constants ρ > 0 and r ∈ [0, 1) such that for any z ∈ Rn and

(σ∗,z, u∗,z), ∥
√
λt · x̂(t;σ∗,z, u∗,z, z)∥ ≤ ρ · rt∥z∥, ∀ t ∈ Z+.

Proof. Fix (λ, γ) ∈ Ω◦. Motivated by [23, Theorem 3], we first show that the closed-loop system

under any (σ∗,z, u∗,z) is (strongly) uniformly asymptotically stable at the origin, i.e., for any given

constants δ > 0 and c ∈ (0, 1), there exists Tδ,c ∈ Z+ such that ∥
√
λt · x̂(t;σ∗,z, u∗,z, z)∥ ≤ cδ,

∀ t ≥ Tδ,c under any (σ∗,z, u∗,z), whenever ∥z∥ ≤ δ. We prove this assertion by contradiction.

Suppose it fails for some given δ > 0 and c ∈ (0, 1). Then there exist a sequence of initial states

(zk) with ∥zk∥ ≤ δ for each k, a sequence of corresponding Bellman switching-control sequences

(σ∗,zk , u∗,zk), and a strictly increasing sequence of times (tk) with lim
k→∞

tk = ∞ such that ∥
√
λtk ·

x̂(tk;σ∗,zk , u∗,zk , zk)∥ > c δ for all k ∈ Z+. By Proposition 3.10, there exist two constants ϱ ≥ δ and

µ ∈ (0, δ) satisfying the following two conditions:

(i) ∥
√
λt · x̂(t;σ∗,zk , u∗,zk , zk)∥ ≤ ϱ, ∀ t ∈ Z+, ∀ k;

(ii) ∥
√
λt · x̂(t;σ∗,z, u∗,z, z)∥ ≤ c δ, ∀ t ∈ Z+ under any (σ∗,z, u∗,z), whenever ∥z∥ < µ.

The condition (ii) implies that for each k, ∥
√
λt · x̂(t;σ∗,zk , u∗,zkzk)∥ ≥ µ for t = 0, 1, . . . , tk. Since

µ ≤ ∥zk∥ ≤ δ for each k, a subsequence of (zk), which we assume without loss of generality to be

(zk) itself, converges to some z∗ satisfying µ ≤ ∥z∗∥ ≤ δ. Since the index setM is finite, there also

exist a subsequence of (zk), which is again assumed to be (zk) itself, and j0 ∈M such that

Gλ,γ(zk) = ∥zk∥2 − λ · γ2∥u∗,zk(0)∥
2 + λ ·Gλ,γ

(
Aj0zk +Bj0u∗,zk(0)

)
, ∀ k. (30)
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It follows from Statement (2) of Proposition 3.9 that the sequence
(
u∗,zk(0)

)
is bounded; hence there

exists a subsequence of it, assumed to be (u∗,zk(0)) itself without loss of generality, that converges

to some v∗(0) ∈ Rm. By letting k →∞ in (30) and noting the continuity of Gλ,γ(·), we obtain

Gλ,γ(z∗) = ∥z∗∥2 − λ · γ2∥v∗(0)∥2 + λ ·Gλ,γ

(
Aj0z∗ +Bj0v∗(0)

)
.

In other words, (j0, v∗(0)) achieves the supremum in the Bellman equation (17) for z∗. Based on

condition (ii) and the construction of (tk), we must have ∥
√
λ · x̂(1;σ∗,zk , u∗,zkzk)∥ ≥ µ for each

k ≥ 1. Letting k →∞, this shows that x̂∗(1) := Aj0z∗ +Bj0v∗(0) satisfies ∥
√
λ · x̂∗(1)∥ ≥ µ.

By condition (i), for a fixed t ≥ 1, any subsequence of
(√

λt ·x̂(t;σ∗,zk , u∗,zk , zk)
)
has a convergent

subsequence. Using this result and Statement (2) of Proposition 3.9 (to bound the corresponding(
u∗,zk(t)

)
at each fixed t ≥ 1) and repeating a similar argument for t = 0 as above, we obtain

via induction a switching sequence σ∗ = (j0, j1, . . .) and a control sequence v∗ = (v∗(0), v∗(1), . . .)

such that: (i) (σ∗, v∗) is a Bellman switching-control sequence for the initial state z∗; and (ii)

the resulting state trajectory x̂∗(·), which starts from x̂∗(0) = z∗ and is recursively defined by

x̂∗(t+ 1) = Aσ∗(t)x̂∗(t) + Bσ∗(t)v∗(t), t ∈ Z+, satisfies ∥
√
λt · x̂∗(t)∥ ≥ µ for each t ∈ Z+. However,

this contradicts the convergence property in Statement (2) of Proposition 3.10. Consequently, the

uniform asymptotic stability holds.

Having proved the uniform asymptotic stability, by using the homogeneity of x̂(t;σ∗,z, u∗,z, z)

in z and employing a similar argument in [13, Theorem 4.11], we can easily establish the (strong)

exponential stability at the origin.

The next corollary shows that the exponential stability of the closed-loop system of the SLCS (1)

under (σ∗,z, u∗,z) leads to exponential convergence of
(
Gλ,γ,k

)
to Gλ,γ on the unit sphere. This result

is a cornerstone for numerical approximation of the generating function Gλ,γ discussed in Section 6.

Corollary 3.1. Let (λ, γ) ∈ Ω◦. Then the sequence of finite-horizon generating functions
(
Gλ,γ,k

)
converges uniformly exponentially on Sn−1 to Gλ,γ as k →∞, i.e., there exist constants ϱ > 0 and

η ∈ [0, 1) such that |Gλ,γ(z)−Gλ,γ,k(z)| ≤ ϱ · ηk, ∀ z ∈ Sn−1, k ∈ Z+.

Proof. It follows from (27) and Theorem 3.1 that, for any Bellman switching-control sequence

(σ∗,z, u∗,z) associated with z ∈ Sn−1 and any k ∈ Z+,

Gλ,γ(z) =
k∑

t=0

λt
[
∥x̂(t;σ∗,z, u∗,z, z))∥2 − γ2λ∥u∗,z(t)∥2

]
+ λk+1Gλ,γ

(
x̂(k + 1;σ∗,z, u∗,z, z)

)
≤ Gλ,γ,k(z) + gλ,γ(ρ r

k+1)2.

The corollary thus holds with ϱ := gλ,γ(ρr)
2 and η := r2.

Note that if (λ, γ) lies on the boundary of Ω, then the above results may fail. Indeed, it is

shown in Section 5.1 that for (λ, γ) ∈ ∂Ω, (i) the convergence of
(
Gλ,γ,k

)
to Gλ,γ is slower than

exponential (cf. Fact 1), and (ii) there is no a Bellman switching-control sequence (σ∗,z, u∗,z) with

u∗,z ∈ Uλ that achieves the supremum in Gλ,γ(z) (cf. Fact 2).

4 Characterizing Generalized ℓ2-Gain via Generating Functions

In this section, radii of convergence of the generating functions are introduced and shown to com-

pletely characterize the generalized ℓ2-gain of the SLCS. These results provide the key connection

between the generalized ℓ2-gain in Section 2 and the generating functions in Section 3.

The radius of convergence of a power series
∑∞

t=0 λ
tat is the supremum of all λ > 0 for which

the series converges. Viewing Gλ,γ(z) in (15) as a power series in λ, a similar notion is defined.
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Definition 4.1. The radius of convergence of the generating function Gλ,γ(z) is defined as

λ∗(γ) := sup{λ ∈ R+ |Gλ,γ(z) <∞, ∀z ∈ Rn}, ∀ γ ∈ R+.

Alternatively, λ∗(γ) := sup{λ | gλ,γ <∞}. In view of the DOC, λ∗(γ) = sup{λ | (λ, γ) ∈ Ω}, i.e.,
(λ∗(γ), γ) ∈ R2

+ is on the right boundary of Ω. Since Ω is closed, (λ∗(γ), γ) ∈ Ω and gλ∗(γ),γ < ∞
for each γ; see Proposition 3.7.

Proposition 4.1. The radius of convergence λ∗(γ) for γ ≥ 0 has the following properties.

(1) λ∗(γ) ≡ 0 for 0 ≤ γ < γ0 where γ0 is defined in (7);

(2) λ∗(γ) is non-decreasing in γ;

(3) λ∗(γ) is upper semicontinuous in γ.

Proof. Statement (1) is obvious as we have shown that the DOC Ω+ is bounded from below by the

horizontal line R+ × {γ0}. Statement (2) follows as gλ,γ is non-increasing in γ. Statement (3) is

due to the fact that the hypograph of the function λ∗(γ), namely {(λ, γ) ∈ R2
+ |λ ≤ λ∗(γ)}, is a

closed set (in fact, it is exactly the DOC Ω).

Example 4.1. For the one-step FIR system with all Ai = 0, it has been shown in Example 3.1

that the DOC is Ω+ = R++ × [γ0,∞). As a result, the radius of convergence is

λ∗(γ) =

{
0 if 0 ≤ γ < γ0

∞ if γ ≥ γ0,

which is upper semicontinuous but not continuous in γ. �

The graph of the function λ∗(γ) describes the right boundary of the DOC. By a change of

perspective, the same boundary can be viewed from bottom up as the graph of the function γ∗(λ)

defined as follows,

γ∗(λ) := inf{γ ∈ R+ | gλ,γ <∞}, ∀λ ∈ R+. (31)

Or equivalently, γ∗(λ) := inf{γ ∈ R+ | (λ, γ) ∈ Ω}.

Proposition 4.2. γ∗(λ) has the following properties.

(1) γ∗(0) = 0 and γ∗(λ) ≥ γ0 for λ > 0;

(2) γ∗(λ) is non-decreasing in λ;

(3) γ∗(λ) is lower semicontinuous in λ.

Proof. We deduce (1) by noting that Ω contains the nonnegative γ-axis and that Ω+ is bounded

from below by the horizontal line R+ × {γ0}. Statement (2) follows as gλ,γ is non-decreasing in λ.

To prove (3), we note that the epigraph of γ∗(λ), i.e., {(λ, γ) | γ ≥ γ∗(λ)}, is the closed set Ω.

Example 4.2. For the one-step FIR system whose DOC is given by Ω+ = R0
+ × [γ0,∞), we have

γ∗(λ) =

{
0 if λ = 0

γ0 if λ > 0
,

which is lower semicontinuous but not continuous in λ. �
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As γ∗(λ) and λ∗(γ) are different characterizations of the same boundary of the DOC, it is not

surprising that they are (generalized) inverse of each other, as is shown below.

Proposition 4.3. The two functions γ∗(λ) for λ > 0 and λ∗(γ) for γ > 0 satisfy

γ∗(λ) = inf {γ > 0 : λ∗(γ) ≥ λ} , ∀λ > 0,

λ∗(γ) = sup{λ > 0 : γ∗(λ) ≤ γ}, ∀ γ > 0.

Proof. For any λ > 0, the condition λ∗(γ) ≥ λ is equivalent to (λ, γ) ∈ Ω+, which in turn is

equivalent to γ ≥ γ∗(λ). This proves the first identity. Similarly, for any γ > 0, assuming λ > 0,

the condition γ∗(λ) ≤ γ is equivalent to (λ, γ) ∈ Ω+, which in turn is equivalent to λ∗(γ) ≥ λ. This

proves the second identity.

It turns out that γ∗(λ) for λ > 0 is exactly the generalized ℓ2-gain κ(λ) that we focus on.

Theorem 4.1. The generalized ℓ2-gain κ(λ) of the SLCS (1) satisfies κ(λ) = γ∗(λ) for all λ > 0.

As a result,

κ(λ) = inf {γ > 0 : λ∗(γ) ≥ λ} , ∀λ > 0,

λ∗(γ) = sup{λ > 0 : κ(λ) ≤ γ}, ∀ γ > 0.

Proof. Suppose λ > 0 is arbitrary. It suffices to show that the two conditions γ ≥ κ(λ) and

γ ≥ γ∗(λ) are equivalent. By definition (4), γ ≥ κ(λ) if and only if
∞∑
t=0

λt∥x(t+ 1;σ, u, 0)∥2 ≤ γ2
∞∑
t=0

λt ∥u(t)∥2, ∀σ, ∀u ∈ Uλ.

By (13), the above inequality holds if and only if Gλ,γ(0) = 0. By Proposition 3.5, the latter is

equivalent to gλ,γ < ∞, i.e., (λ, γ) ∈ Ω. Finally, (λ, γ) ∈ Ω is equivalent to γ ≥ γ∗(λ) by the

definition (31) of γ∗(λ). This proves the first statement. The rest follows from Proposition 4.3.

Theorem 4.1 connects the generating functions with the generalized ℓ2-gain of the SLCSs. It im-

plies that, to determine κ(λ), it suffices to characterize the DOC, or more precisely, the right/bottom

boundary of the DOC. As an example, using Theorem 4.1 and Proposition 4.2, we arrive at the

following result that is not obvious from the definition (4).

Corollary 4.1. The generalized ℓ2-gain κ(λ) is a non-decreasing function of λ ∈ R+.

The following example shows that κ(λ) may not be strictly increasing even if at least one Ai ̸= 0.

Example 4.3. Consider the following SLCS with a constant θ > 1 that satisfies Assumption 2.1:

A1 = 0, B1 = θ ·
[
1

0

]
; A2 =

[
0 1

0 0

]
, B2 =

[
0

1

]
.

For all P ∈ R2×2 such that BT
i PBi ≺ γ2I, the Riccati mapping for subsystem i ∈ {1, 2} is

ρλ,γ,i(P ) = I + λAT
i PAi + λAT

i PBi

(
γ2I −BT

i PBi

)−1
BT

i PAi.

For a diagonal matrix P = diag(p1, p2), it is easy to see that (1) ρλ,γ,1(P ) ≡ I if θ2p1 < γ2; and (2)

ρλ,γ,2(P ) = diag(1, 1+λp1) if p2 < γ2. Assume γ > θ and γ >
√
1 + λ, and let Pλ := diag(1, 1+λ).

Then the Riccati iteration of the SLCS is given by: H0 = {I}, H1 = ρλ,γ,M(H0) = {I, Pλ},
H2 = ρλ,γ,M(H1) = {I, Pλ, ρλ,γ,1(Pλ), ρλ,γ,2(Pλ)} = {I, Pλ}, and Hk = {I, Pλ}, ∀ k = 3, 4, . . ..

Note that I is redundant because I ≼ Pλ. Thus Gλ,γ(z) = Gλ,γ,k(z) = zTPλz ⇒ gλ,γ = 1 +

λ < ∞. This implies that the interior of DOC contains the intersection of Ω◦
1 = {(λ, γ) | γ > θ}

and Ω◦
2 = {(λ, γ) | γ >

√
1 + λ}, where Ω◦

1 and Ω◦
2 are the interiors of the DOC of subsystem 1

and subsystem 2, respectively. Therefore, Ω◦ = {(λ, γ) | γ > max(
√
1 + λ, θ)}. This shows that

κ(λ) = max(
√
1 + λ, θ), ∀λ > 0, which remains constant for all λ ∈ (0, θ2 − 1). �
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Figure 2: DOC of linear system (32) for the three cases in Proposition 5.1.

5 One-dimensional Switched Linear Control Systems

We study a special class of SLCSs, i.e., one-dimensional (1-D) SLCSs or the SLCSs on R.

5.1 One-dimensional Linear Control System

First consider the 1-D (non-switched) linear control system for some a, b ∈ R:

x(t+ 1) = ax(t) + bu(t), t ∈ Z+. (32)

For any λ, γ ∈ R+, its controlled generating function and finite horizon counterparts are all

quadratic: Gλ,γ(z) = gλ,γz
2, Gλ,γ,k(z) = gkz

2, ∀ z ∈ R, k ∈ Z+. In the following we focus on

the nontrivial case λ > 0. The Bellman equation implies

gk+1z
2 = z2 + λ · sup

v∈R

[
−γ2v2 + gk(az + bv)2

]
, ∀ z ∈ R (33)

⇒ gk+1 = Fa,b(gk), k = 0, 1, . . . , with g0 = 1. (34)

Here, Fa,b : R+ → R+ is non-decreasing and convex with Fa,b(0) = 1. The generating function

Gλ,γ(·) is finite if the sequence (gk) generated from (34) converges, i.e., gk ↑ gλ,γ < ∞, or equiva-

lently, if the graph of Fa,b(g) intersects that of the identify function id(g) := g at some g > 0.

Proposition 5.1. Given λ > 0, the DOC Ω+ of the generating function Gλ,γ(z) = gλ,γz
2 for the

system (32) and the corresponding gλ,γ are characterized as follows.

(1) If a = 0 and b ̸= 0, then Ω+ = {(λ, γ) ∈ R2
+ | γ ≥ |b|, λ > 0}, on which gλ,γ ≡ 1.

(2) If a ̸= 0 and b = 02, then Ω+ = {(λ, γ) | 0 < λ < 1/a2}, on which gλ,γ = 1/(1− a2λ).

(3) If a ̸= 0, b ̸= 0, then Ω+ = {(λ, γ) | γ > |b|, 0 < λ ≤ (γ − |b|)2/(a2γ2)}, on which

gλ,γ =
c0 −

√
(c0)2 − 4b2γ2

2b2
, (35)

where c0 := b2 + γ2 − a2λγ2.

The proof of Proposition 5.1 is given in Appendix. Fig. 2 plots the DOC for the above three

cases. Note that Ω is not closed in Case (2). This does not contradict Proposition 3.6, since

Assumption 2.1 fails in this case.

2Strictly speaking, the system in this case does not satisfy the reachability assumption (Assumption 2.1). It is

included here for the sake of completeness.
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Corollary 5.1. For the three cases in Proposition 5.1, the radius of convergence and the generalized

ℓ2-gain of system (32) are given by

(1) λ∗(γ) =

{
0 if 0 ≤ γ < |b|
∞ if γ ≥ |b|,

, and κ(λ) = |b|, ∀λ ≥ 0;

(2) λ∗(γ) = 1
a2
, ∀γ ≥ 0, and κ(λ) =

{
0 if 0 ≤ λ < 1

a2

∞ if λ ≥ 1
a2
;

(3) λ∗(γ) =

{
0 if 0 ≤ γ ≤ |b|
(γ−|b|)2
a2γ2 if γ > |b|,

, and κ(λ) =


|b|

1−
√
λ|a| if 0 ≤ λ < 1

a2

∞ if λ ≥ 1
a2
.

We present two interesting facts of Gλ,γ when (λ, γ) is on the boundary of Ω as follows. Consider

Case (3) with a ̸= 0, b ̸= 0. For a given γ > |b|, let λ = λ∗ be the λ∗(γ) given in Corollary 5.1.

Plugging it into (35), we obtain gλ∗,γ = γ/|b| <∞. Denote by (gk) the sequence generated in (34),

which is strictly increasing and converges to gλ∗,γ as k →∞. Then Gλ∗,γ,k(z) = gk∥z∥2.
Fact 1: The convergence rate of the sequence (gk) to gλ∗,γ is slower than exponential. This is

because the linearized system of (34) around its equilibrium point gλ∗,γ is marginally stable, i.e.,
d
dgFa,b(gλ∗,γ) = 1. Geometrically, the graphs of the function 1+(a2λγ2g)/(γ2−b2g) and the identity

function are tangential at gλ∗,γ . In contrast, when 0 < λ < λ∗, (gk) converges to gλ,γ exponentially

fast as shown in Corollary 3.1.

Fact 2: As the time horizon k increases, the “optimal” input sequence and the resulting state

sequence that achieve the supremum in the definition (14) of k-horizon generating function both have

unbounded energy. To see this, we first find the optimal control u∗ achieving Gλ∗,γ,k(z) = gk∥z∥2
for a horizon k ≥ 1. From the Bellman equation (33) with λ = λ∗ and k replaced by k − 1, we

see that starting from x∗(0) = z, the optimal control u∗(0) = abgk−1/(γ
2− b2gk−1)x

∗(0). Plugging

this into (32) yields x∗(1) = aγ2/(γ2 − b2gk−1)x
∗(0). Thus, the k-horizon optimal u∗ and x∗ are

u∗(t) = abgk−t−1(γ
2−b2gk−t−1)x

∗(t) and x∗(t+1) = aγ2/(γ2−b2gk−1−t)x
∗(t) for t = 0, 1, . . . , k−1.

The energy of the state sequence x∗ up to time k, Jk(x
∗) =

∑k
t=0(λ

∗)t|x∗(t)|2, is given by

Jk(x
∗) = z2

k∑
t=0

t−1∏
s=0

(
γ/|b| − 1

γ/|b| − gk−1−s/gλ∗,γ

)2

,

which tends to infinity as k → ∞ since gk → gλ∗,γ . Similarly, we can show that the energy of the

control sequence, Jk(u
∗), tends to ∞ as k →∞. Thus, while both Jk(x

∗) and Jk(u
∗) approach ∞

as k →∞, their difference is bounded and approaches the finite value Gλ∗,γ(z).

5.2 One-dimensional SLCS

Consider the SLCS on R with each ai, bi ∈ R:

x(t+ 1) = aσ(t)x(t) + bσ(t)u(t), t ∈ Z+, σ(t) ∈M. (36)

The generating functions of the SLCS (36) remain quadratic, i.e., Gλ,γ(z) = gλ,γz
2, Gλ,γ,k(z) = gkz

2,

∀ z ∈ R. It follows from the Bellman equation that gk is recursively defined by

gk+1 = max
i∈M

Fai,bi(gk), g0 = 1, (37)

where Fai,bi : R+ → R+ is defined in (34) with (a, b) replaced by (ai, bi). The generating function is

finite if and only if the above iteration converges, or equivalently, the graph of the convex function
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Figure 3: SLCS in Example 5.1: (a) plots of Fai,bi(g) for λ = 0.7, γ = 2; (b) plots of Fai,bi(g) for

λ = 0.5, γ = 2; (c) boundaries of DOCs of the SLCS and its two subsystems.

maxi∈M Fai,bi(g) intersects that of the identity function Id. Moreover, if this is the case, then the

first intersection point of the two graphs occurs at g = gλ,γ .

Denote by g
(i)
λ,γ ∈ R+ ∪ {+∞}, i ∈ M, the final value of iteration (33) with (a, b) replaced

by (ai, bi), which characterizes the generating function of the i-th subsystem without switching.

Clearly, gλ,γ ≥ maxi∈M g
(i)
λ,γ . It is possible that a strict inequality holds. Due to the convexity of

Fai,bi(·), this is only possible if gλ,γ =∞ while g
(i)
λ,γ <∞ for all i ∈M.

Example 5.1. Consider a 1-D SLCS with two subsystems: a1 = 0.3, b1 = 1, a2 = 1, b2 = 0.3. In

the first two figures of Fig. 3, we plot the functions Fai,bi(g), i = 1, 2, for two different choices of

λ, γ. In subfigure (a) where λ = 0.7 and γ = 2, the graph of either function intersects that of Id

(dashed dotted line) while the graph of their maximum does not. Thus, without switching both

subsystems have finite generating functions while the SLCS has an infinite one: gλ,γ > maxi=1,2 g
(i)
λ,γ .

In subfigure (b), we set λ = 0.5 and γ = 2, in which case gλ,γ = maxi=1,2 g
(i)
λ,γ <∞. �

Determining the convergence of (37), and if so, the limit gλ,γ , is achieved by solving the following

optimization problem:

minimize g subject to Fai,bi(g) ≤ h ≤ g, ∀ i ∈M. (38)

The feasible set of (g, h) in (38) is the part of the epigraph of maxi∈M Fai,bi(g) on and below the

graph of the identity function (e.g., the shaded region in Fig. 3(b)). The solution of (38) is exactly

gλ,γ if the feasible set is nonempty. Otherwise gλ,γ = ∞. Note that each constraint Fai,bi(g) ≤ h

can be reduced to linear and/or second order cone constraints:

1. In the case ai = 0: g ≤ γ2/b2i and h ≥ 1;

2. In the case ai ̸= 0, bi = 0: h ≥ 1 + a2iλg;

3. In the case ai ̸= 0, bi ̸= 0: 0 ≤ g ≤ γ2/b2i , h ≥ 1, and

∥∥∥∥[b2i (g + h) + c1
2aiγ

2
√
λ

]∥∥∥∥ ≤ b2i (h − g) + c2,

where c1 = a2iλγ
2 − b2i − γ2 and c2 = a2iλγ

2 − b2i + γ2.

Thus (38) is a second order cone program that can be solved efficiently by many of the existing

LMI tools.

Using the software tool SeDuMi, the boundaries of the DOCs for the SLCS in Example 5.1

(solid line) and for its two subsystems (dashdot and dash lines, respectively) are computed and are

depicted in Fig. 3(c). Clearly, the DOC of the SLCS is a proper subset of the intersection of its

two subsystems’ DOCs. Furthermore, it is noted that the DOCs are not convex.
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6 Computation of Generating Functions

In this section, the results established in Section 3 are exploited to develop numerical algorithms

for computing the generating functions, and hence the generalized ℓ2-gain of the SLCS (1).

6.1 Numerical Algorithms

As shown in Proposition 3.8 and Corollary 3.1, if (λ, γ) ∈ Ω, the finite-horizon generating func-

tions Gλ,γ,k(·) converge uniformly on the unit sphere to the infinite-horizon generating function

Gλ,γ(·) as k → ∞; and the convergence is uniformly exponential when (λ, γ) ∈ Ω◦. Thus, a strat-

egy to compute Gλ,γ(·) within a given accuracy is to compute Gλ,γ,k(·) for sufficiently large k.

By Proposition 3.9, each Gλ,γ,k(·) is represented by a finite set Hk of positive definite matrices:

Gλ,γ,k(z) = supP∈Hk
zTPz, where Hk is generated through the switched Riccati iteration procedure

in (25). This yields a basic algorithm for computing Hk, hence Gλ,γ,k.

A drawback of this basic algorithm is that its complexity measured by the size of the set Hk

grows exponentially as k increases: |Hk| = |M|k, where |M| is the number of subsystems of the

SLCS. To reduce complexity, a technique originally proposed in [30] is employed. Note that not

all matrices in Hk are useful in the representation Gλ,γ,k(z) = supP∈Hk
zTPz. A matrix P ∈ Hk

is redundant if it can be removed without affecting the representation, or more precisely, if for any

z ∈ Rn, we can find P ′ ∈ Hk with P ′ ̸= P such that zTPz ≤ zTP ′z. A sufficient (though not

necessary) condition for P ∈ Hk to be redundant is

P ≼
∑

P ′∈Hk, P ′ ̸=P

αP ′P ′ (39)

for some nonnegative constants αP ′ that sum up to one. This condition can be formulated as an

LMI feasibility problem and checked efficiently by convex optimization software. By incorporating

this technique, the basic switched Riccati iteration is enhanced and summarized in Algorithm 1.

Algorithm 1 (Enhanced Switched Riccati Iteration)

k ← 0 and H0 ← {I};
repeat

k ← k + 1;

Hk ← ρλ,γ,M(Hk−1);

for P ∈ Hk do

if P satisfies condition (39) then

Hk ← Hk \ {P};
end if

end for

until prescribed stopping criteria are met

Return Hk and Gλ,γ,k(z) = supP∈Hk
zTPz, ∀ z ∈ Rn.

The computational complexity of Algorithm 1 may still be prohibitive, especially when the

state space dimension n and the number of subsystems are large. Inspired by the idea of relaxed

dynamic programming [17], complexity can be further reduced (though at the expense of accuracy)

by removing those matrices that are almost redundant at each iteration. For a given small ε > 0,

a matrix P in Hk is called ε-redundant ([30, 31]) if its relaxed version, P − εI, is redundant in

Hk. Again, an easy-to-check sufficient condition for ε-redundancy is given by (39) with the matrix

P on the left hand side replaced by P − εI. Denote by Hε
k the remaining set after removing
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Figure 4: Results of Algorithm 1 on Example 6.1 with λ = 1.1 and γ = 8: (a) the size of matrix set

Hk vs. the number of iterations k; (b) the level curves Gλ,γ,k(·) = 1 for different k; (c) the DOC Ω

(shaded region).

all the ε-redundant matrices from Hk. Then, max
P∈Hk

zTPz − ε∥z∥2 ≤ max
P∈Hε

k

zTPz ≤ max
P∈Hk

zTPz.

Thus, pruning ε-redundant matrices at each iteration leads to an under approximation error of the

generating function by at most ϵ∥z∥2. This yields a new algorithm, i.e., Algorithm 2.

Algorithm 2 (Relaxed Switched Riccati Iteration)

k ← 0 and H̃0 ← {I};
repeat

k ← k + 1;

H̃k ← ρλ,γ,M

(
H̃k−1

)
;

H̃k ← H̃ε
k where H̃ε

k is obtained by removing ε-redundant matrices from H̃k;

until prescribed stopping criteria are met

Return H̃k and G̃λ,γ,k(z) = sup
P∈H̃k

zTPz, ∀ z ∈ Rn.

Since errors are introduced at each step and accumulate with the iteration, the functions G̃λ,γ,k(·)
returned by Algorithm 2 are in general only under approximations of the true generating functions

Gλ,γ,k(·). It is shown in [31] that, by a suitable choice of ε, the relaxation technique can lead to a

significant reduction in the size of the matrix sets while maintaining a prescribed accuracy when

solving the switched LQR problem. A similar error analysis can be extended to Algorithm 2, but

detailed discussions are beyond the scope of the present paper and will be reported in future.

6.2 Numerical Examples

Numerical examples are presented as follows to illustrate the proposed algorithms.
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Figure 5: Distribution of |Hk| in equilibrium for random SLCSs on R3.

Example 6.1. Consider the following SLCS:

A1 =

[
1
2

2
5

1
3

1
3

]
, B1=

[
1
1
2

]
; A2 =

[
3
5

1
3

1
2

1
4

]
, B2=

[
0

1

]
;

A3 =

[
1
3

1
2

1
3

1
4

]
, B3=

[
1
2

1

]
; A4 =

[
1
6

1
5

1
4

1
2

]
, B4=

[
1

1

]
,

which can be verified to satisfy the reachability assumption. Fig. 4 shows the results of applying

Algorithm 1 to compute the generating functions Gλ,γ,k(·) for λ = 1.1 and γ = 8 and various k.

Although in theory the size of matrix sets Hk could grow exponentially fast with the maximum size

being 4k, the actual size after removing redundant matrices never exceeds five, as can be seen from

Fig. 4(a). This indicates the effectiveness of the complexity reduction technique in Algorithm 1. In

Fig. 4(b), we plot the level curves Gλ,γ,k(·) = 1 for different k. As k increases, the level curves shrink

to an equilibrium curve away from the origin. As a result, Gλ,γ,k(·) is finite and hence (λ, γ) ∈ Ω

for λ = 1.1 and γ = 8.

By repeating the above procedure for different combinations of λ and γ, the DOC Ω is found

and plotted as the shaded region in Figure 4(c). By Theorem 4.1, the generalized ℓ2-gain κ(λ) and

the radius of convergence λ∗(γ) can be obtained from the boundary of Ω. For instance, at λ = 1,

the (classical) ℓ2-gain κ(1) of the SLCS is approximately 5.8. By using a bisection type algorithm,

a finer estimate of κ(1) within arbitrary precision can be further achieved. In comparison, sufficient

conditions based approaches (e.g., [3, 16]) provide only conservative estimates of the ℓ2-gain. �

In more extensive tests, a set of SLCSs on R3 are randomly generated, each with three stable

single-input subsystems. Algorithm 1 is applied to compute the generating functions up to the

horizon k = 75 for λ = 0.75, γ = 15. Only those SLCSs for which the computation converges

at k = 75 are kept, and a total of 250 such SLCSs are generated. Fig. 5 displays the number of

matrices required to characterize the generating function Gλ,γ,75(·). We observe that a maximum

of 19 matrices are needed among the 250 cases while a majority of the cases require fewer than

8 matrices. Running on an Intel Core2Duo desktop and using SeDuMi, it takes typically 3–15

minutes to compute k = 75 iterations of the generating functions for a randomly generated SLCS.

Example 6.2. To demonstrate the effectiveness of relaxation, consider the following SLCS from
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Figure 6: Example 6.2 with λ = 0.75 and γ = 15: (a) the level surface {z ∈ R3 |Gλ,γ,75(z) = 1};
(b) the DOC Ω.

the above randomly generated ones with the highest complexity:

A1 =

0.1515 0.2351 0.3763

0.2696 0.3257 0.1295

0.0822 0.2374 0.2100

 , B1 =

0.99810.1132

0.3316

 ;

A2 =

0.1719 0.1846 0.1186

0.2420 0.2792 0.3645

0.0066 0.3453 0.1936

 , B2 =

0.65110.2015

0.7880

 ;

A3 =

0.3249 0.0105 0.1955

0.0499 0.1833 0.3756

0.2664 0.0009 0.4905

 , B3 =

0.28720.0415

0.6339

 .

For λ = 0.75 and γ = 15, Algorithm 1 requires 19 matrices for representing the generation function

after k = 75 iterations, and the level curve {z : Gλ,γ,75(z) = 1} is plotted in Fig. 6(a). In comparison,

Algorithm 2 with the relaxation parameter ε = 10−3 requires only 14 matrices. This number is

further reduced to 9 if ε = 10−2. In both the cases, the maximum error incurred due to relaxation

is less than 10−3 on the unit sphere in R3. The DOC of the SLCS is shown in Fig. 6(b). �

7 Conclusion

In this paper, a generalized input-to-state ℓ2-gain is introduced for the discrete-time SLCS, and

a generating function based approach is proposed for analysis and computation of the generalized

ℓ2-gain. It is shown that the radii of convergence of the generating function characterize the ℓ2-gain,

and effective algorithms are developed for computing the generating function and the ℓ2-gain with

proven convergence.

Many interesting issues of the ℓ2-gain of the SLCS remain unsolved and call for further research;

examples include analysis and computation of the ℓ2-gain subject to general system parameter

variations, extended notions and properties of the ℓ2-gain under different switching rules, and

input-output ℓ2-gain. The generating function approach proposed in this paper has shed lights on

these issues, which will be addressed in detail in the future.
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8 Appendix: Proof of Proposition 5.1

Proof. Case (1): If a = 0, then the conclusions follow directly from the fact that (33) is reduced to

gk+1 = Fa,b(gk) =

{
1 if γ2 ≥ b2gk

∞ if γ2 < b2gk.

Case (2): If a ̸= 0 and b = 0, then (33) implies gk+1 = Fa,b(gk) = 1 + a2λgk, which converges

to a finite value 1/(1− a2λ) if and only if a2λ < 1.

Case (3): If a ̸= 0 and b ̸= 0, then (33) can be written as

gk+1 = Fa,b(gk) =

{
1 + a2λγ2gk

γ2−b2gk
if gk < γ2

b2

∞ if gk ≥ γ2

b2
.

(40)

For the conclusion on Ω+, we only need to show that the iteration (40) converges if and only if

γ > |b| and 0 < λ ≤ (γ − |b|)2/(a2γ2). (41)

For the necessity of (41), suppose (gk) converges to g∞ < ∞. Then we must have γ > |b| for
otherwise g1 =∞. In addition, g∞ must be a positive solution to the equation

g∞ = 1 +
a2λγ2g∞
γ2 − b2g∞

⇐⇒ b2g2∞ − (b2 + γ2 − a2λγ2)g∞ + γ2 = 0. (42)

This is possible only if b2 + γ2 − a2λγ2 ≥ 0 and (b2 + γ2 − a2λγ2)2 ≥ 4b2γ2. These imply a2λγ2 ≤
(γ − |b|)2, i.e., the second part of condition (41). (Here λ > 0 is by assumption.)

To show the sufficiency of condition (41), we first prove the following claim under (41) by

induction: the monotone sequence (gk) generated by the iteration (40) is bounded, i.e., gk ≤ γ/|b|,
∀ k. Clearly, the claim is trivially true for k = 0 as g0 = 1 and γ/|b| > 1 by (41). Suppose it holds for

some k ∈ Z+, i.e., gk ≤ γ/|b|. Then it follows from (41) that (γ−|b|)γ ≥ (γ−|b|)|b|+a2λγ2 implies(
γ
|b| − 1

)
γ2 ≥

[(
γ
|b| − 1

)
b2 + a2λγ2

]
gk, which further implies γ

|b| ≥ 1 + a2λγ2gk
γ2−b2gk

= gk+1. Note that

in the last step, we use the fact that γ2 − b2gk > 0, which follows from gk ≤ γ/|b| < γ2/b2. This

proves the claim. As a result, (gk) converges (to some g∞ < r/|b|). Finally, suppose (λ, γ) satisfies

condition (41). Then the limit g∞ (i.e., gλ,γ) of (gk) is the smallest positive root of equation (42),

which is exactly given by (35).
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