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Abstract

We study the simultaneous control of three dimensional translation
and rotation of an underactuated multibody space robot using sliding
masses that are configured as ideal prismatic actuators. A crucial
assumption is that the total linear and angular momenta of the space
robot are zero. The prismatic actuators may be intentional actuation
devices or they may be dual-use devices such as retractable booms,
tethers, or antennas that can also serve as space robot actuation
devices. The paper focuses on the underactuation case, i.e., the space
robot has three independent prismatic actuators, which are used to
control the six base body degrees of freedom. Controllability results
are developed, revealing controllability properties for the base body
translation, base body attitude, and actuator displacement. Based
on the controllability results, an algorithm for rest-to-rest base body
maneuvers is constructed using a Lie bracket expansion. An example
of a three dimensional space robot maneuver is presented. The results
in the paper demonstrate the importance of “nonholonomy” and
related nonlinear control approaches for space robots that satisfy
the prismatic actuation assumptions.

KEY WORDS—space robots, translational and rotational
maneuvers, nonlinear control, underactuated systems, pris-
matic actuators, nonholonomy

1. Introduction

Dynamics and control of complex multibody space robots for
future space missions have attracted considerable attention.
In space missions, the relative position and attitude of space
robots often need to be accurately controlled over long time
periods. This imposes severe requirements on control and sys-
tem design to achieve high precision positioning and pointing
while maintaining long duration flight and high system relia-
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bility. If the space robot has retractable booms, telescopes, or
antennas, it may be possible to use such retractable prismatic
devices as sole or auxiliary actuators to achieve high precision
base body positioning and pointing. This paper demonstrates
the feasibility of such an approach.

There is no prior published literature on the space robot po-
sitioning and pointing problem considered in this paper, but
there is an extensive literature on related robotics problems.
Complex space robots have been viewed as multibody me-
chanical systems consisting of a rigid base body and a num-
ber of movable components. The relative motions of these
movable components with respect to the base body define the
shape change of the robot. Traditional space robot control
approaches often ignore coupling between the space robot
translational dynamics, attitude dynamics, and shape dynam-
ics, but recent progress in the dynamics and control of multi-
body space systems suggests that shape change mechanisms
can be actively utilized for control purposes. See Senda et al.
(1995), Spofford and Akin (1990), Ueba and Yasaka (1994),
and Yoshida and Umetani (1990), where attitude control of
free-flying space robots using shape change mechanisms is in-
vestigated. In Carignan and Akin (2000), the authors study the
coupling between the base body dynamics and robot manip-
ulator dynamics; they propose a scheme to reduce undesired
base body motions when a manipulator performs a maneuver.
This scheme is tested on an underwater robot. Other experi-
mental studies include Koningstein and Cannon (1995) for a
free-flying robot with two arms and Walsh and Sastry (1995)
for a planar multi-link space robot. Attitude and shape con-
trol for fully actuated multibody space systems are treated in
Umetani and Yoshida (1989) using inverse dynamics. In Mat-
sumoto, Wakabayashi, and Watanbe (2000), internal shape
change and gravity gradient effects are combined to control
base body attitude.

A common assumption in the above studies, valid for many
space robot systems, is that the total external force and mo-
ment on the entire space robot can be neglected so that the
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total spatial linear and angular momenta are conserved. In
particular, the conservation of angular momentum provides a
non-integrable constraint, i.e., a nonholonomic constraint in
the sense of classical mechanics. Hence, the space robot can
be viewed as a nonholonomic system. Noholonomic control
systems have been widely studied in the robotics and nonlin-
ear control communities in the last few years (Kolmanovsky
and McClamroch 1995). One of the most interesting problems
is the control of underactuated systems where the number of
control inputs is less than the number of degrees of freedom
to be controlled and the system is controllable in a nonlin-
ear sense, but not in a linear sense. We only mention a few
results here. In Kelly and Murray (1995), controllability re-
sults are presented for a class of robotic systems based on use
of the Lie group structure. Motion planning algorithms are
constructed for purely kinematic systems in Li and Cannay
(1990), Leonard and Krishnaprasad (1995), Murray and Sas-
try (1993), and Murray, Li, and Sastry (1994). In Arai, Tanie,
and Shiroma (1998) and Arai, Tanie, and Tachi (1993), con-
trollability and feedback control problems are studied for pla-
nar underactuated manipulators. See Kolmanovsky and Mc-
Clamroch (1995) and the references therein for a comprehen-
sive survey of developments in this area.

Applications of nonlinear control theory to momentum-
conserved underactuated multibody space robots have also
been studied by many researchers. Krishnaprasad (1990) and
Sreenath (1992) developed results on the attitude control of
underactuated multibody space systems. Planar space robot
reconfiguration has been investigated in Reyhanoglu and Mc-
Clamroch (1992) and Walsh and Sastry (1995). A hybrid con-
trol scheme consisting of a continuous inner loop and a dis-
crete outer loop is proposed in Giamberardino, Monaco, and
Normand-Cyrot (2000) for planar maneuvers. Three dimen-
sional attitude and shape maneuvers are even more challeng-
ing. There are substantial modeling and computational diffi-
culties that are due to the complex dynamics of three dimen-
sional rotations. This problem is treated in a unified formu-
lation in Rui, Kolmanovsky, and McClamroch (2000), where
controllability analysis and constructive motion planning are
carried out and applied to several interesting shape change
mechanisms.

In this paper, we address controllability and motion plan-
ning problems for three dimensional translational and rota-
tional maneuvers of an underactuated space robot. Prismatic
actuators, as described previously, are used to control the robot
shape. As we shall show, these actuators are sufficient to con-
trol the position and attitude of the base body of the space
robot. A planar version of this problem has been addressed
in Shen and McClamroch (2001). Although prismatic actua-
tors may only have limited translation control authority due
to stroke limits, they can be used in place of thrusters for high
precision local positioning and global attitude control. This
leads to reduced fuel consumption and improves reliability in
case of thruster failure.

The paper is organized as follows. In Section 2, we de-
scribe the configuration of a space robot with several pris-
matic actuators. The notation and key assumptions are intro-
duced. In Section 3, equations of motion are derived based
on the assumptions. Controllability properties are studied in
Section 4. A necessary controllability condition for the mini-
mum number and placement geometry of prismatic actuators
is given. The remainder of Section 4 concentrates on non-
linear controllability properties of a space robot with three
independent prismatic actuators. Controllability equivalence
between base body translation, base body rotation and shape
change is demonstrated. Local controllability is shown to im-
ply “global” controllability, and its relation to the Lie algebraic
rank condition is identified. Since the equations of motion are
globally real analytic, it is further shown that if the Lie al-
gebraic rank condition is satisfied at one shape, then there is
a simple algorithm for solving rest-to-rest motion planning
problems at different shapes. In Section 5, a design proce-
dure for rest-to-rest base body maneuvers using three inde-
pendent prismatic actuators is described. A three dimensional
base body translational and rotational maneuver illustrates the
controllability results and the maneuver design procedure.

2. Space Robot Description

We study an idealized space robot consisting of a rigid base
body and several prismatic actuators (see Figure 1). The base
body can translate and rotate in three dimensional space. The
actuator mass elements can slide along straight slots that are
fixed in the base body; the slot axes need not pass through
the center of mass of the base body. These actuators may be
robot booms or other space robot components that undergo
constrained prismatic motions relative to the base body. For
simplicity, the actuators are modeled as ideal mass particles
controlled by electrical-mechanical linear motors, and they
are referred to as prismatic actuators. We assume that in an
appropriate inertial coordinate frame, the total external forces
and moments on the system are zero. The total spatial linear
and angular momenta of the space robot are further assumed
to be zero.

The notation is:

mb = the mass of the base body;

Ib = the moment of inertia of the base body with respect

to the center of mass of the base body;

r = the inertial position vector of the center of mass of

the base body;

R = the rotation matrix from the base body coordinates

to the inertial frame;

mi = the mass of the ith prismatic actuator;

zi = the relative displacement of the ith actuator mass

with respect to the base body;
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Fig. 1. Schematic configuration of a space robot with
prismatic actuators.

li = the minimum distance from the center of mass of

the base body to the ith slot;

Ri = the constant rotation matrix defining the orientation

of the ith slot with respect to the base body frame.

Here r ∈ R3, R ∈ SO(3), Ri ∈ SO(3), zi ∈ R, and zi = 0
corresponds to a position of the ith actuator mass such that its
distance to the center of mass of the base body is minimum.
Indeed this minimum distance is li .

The constant matrix Ri defines a transformation from the
base body frame to the ith prismatic actuator frame defined
as follows: its origin is located at the point in the slot whose
distance to the center of mass of the base body is minimum,
its X axis is aligned with the slot axis, its Y axis is aligned in
the direction of the minimum distance to the center of mass
of the base body, and its Z axis completes an orthogonal co-
ordinate frame, following the right hand rotation rule. There-
fore, Ri(1), the first column of Ri , denotes the direction of
the ith slot axis in the base body frame. Prismatic actuators
are called independent if their slot axis directions are linearly
independent.

3. Equations of Motion

We obtain the equations of motion for a space robot with n
prismatic actuators in this section. For convenience, the origin
of the inertial frame is chosen at the fixed center of mass of
the space robot. Let ρi denote the position of the ith prismatic
actuator relative to the center of mass of the base body in the
inertial frame; ρi can be expressed as

ρi = RRi


 zi

li
0


 , i = 1, . . . , n.

We summarize the translational and rotational equations
of motion in the following; their derivation can be found in
the Appendix. Zero linear momentum of the space robot can
be written as

ṙ = −
∑n

i=1 miρ̇i

M
,

= −
n∑
i=1

mi

M
ṘRi


 zi

li
0


 −

n∑
i=1

mi

M
RRi


 żi

0
0


 ,(1)

where M = mb + ∑n

i=1 mi is the total mass of the system.
This equation is integrable so that

r = r0 −
∑n

i=1 miρi − ∑n

i=1 miρ
0
i

M
,

= r0−R
n∑
i=1

mi

M
Ri


 zi
li
0


+R0

n∑
i=1

mi

M
Ri


 z0

i

li
0


, (2)

where r0, R0, z0
i
, i = 1 · · · n, are initial values.

Zero angular momentum of the space robot yields

Ṙ = R
{ n∑

i=1

̂̃
Fi(z)żi

}
, (3)

where

F̃i(z) = J−1(z)Fi(z), i = 1, · · · , n,
and

J (z) = Ib +
n∑
i=1

(
1 − mi

M

)
miĨii(zi)

−
n∑
i=1

n∑
j=1,j �=i

mimj

M
Ĩij (zi, zj ),

Fi(z) = −
(

1 − mi

M

)
miBii +

n∑
j=1,j �=i

mimj

M
Bji(zj ),

Bij (zi) = −R̂j (1)Ri


 zi

li
0


 , Rj (1) = Rj


 1

0
0


 ,
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Ĩij (zi, zj ) = [zi li 0]RT

i
Rj


 zj

lj
0


 I3×3

−Rj


 zizj lizj 0

lj zi li lj 0
0 0 0


RT

i
.

Here the notation â, where a = (a1, a2, a3) ∈ R3, denotes a
skew symmetric matrix given by

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

Therefore, âb = a × b, where a, b ∈ R3 and × is the usual
cross product operation.

The above equations of motion completely determine the
motion of the space robot. The base body translation and ro-
tation are given by the pair (r, R), and the vector of relative
displacements of the actuator masses z = (z1, . . . , zn) define
the shape of the space robot.

It can be shown that eqs (1) and (3) can be written in the
form [

v

ω

]
= −

[
At(z)

Ar(z)

]
ż,

ṙ = Rv,

Ṙ = Rω̂,

for suitable functions At(z) and Ar(z) referred as to the me-
chanical connection that characterizes the coupling between
the shape velocities and linear and angular velocities of the
space robot base body expressed in the base body coordinate
frame. Rather than using this form in the subsequent develop-
ment, we make use of eq (3) and the integrated form of eq (1)
given in eq (2).

4. Controllability Results

In this section, we carry out controllability analysis for the
space robot described by eqs (1) and (2). A variety of control
problems can be defined. In particular, we are interested in
cases where the number of independent prismatic actuators is
less than the six degrees of freedom for the base body position
and attitude to be controlled; these are the so-called underac-
tuated cases. These cases lead to non-trivial controllability
results and to non-trivial control algorithms.

4.1. Main Results

A simple necessary condition for controllability of base body
position and attitude can be obtained immediately. From
eq (2), we see that the base body position and attitude are

controllable only if there are at least three independent pris-
matic actuators, i.e., n ≥ 3, and [Ri(1) Rj (1) Rk(1)] has full
rank, where Ri(1) is the first column of Ri which defines the
ith slot axis direction. Otherwise, it is easy to construct a base
body position and attitude pair (r, R) (in any neighborhood
of any equilibrium) such that no shape variables z can satisfy
eq (1), which means that the pair (r, R) cannot be achieved
by any shape change. This observation provides a necessary
condition on the minimum number of prismatic actuators for
controllability and on the design of actuator placement; this
condition requires that there are at least three prismatic actu-
ators whose slot axes are linearly independent.

We now study controllability properties for a space robot
with three prismatic actuators whose slot axes are linearly
independent. The control objective is to achieve desired base
body position and attitude changes via actuator mass motions
in a given time interval. To simplify the problem, actuator
stroke limits are ignored. The equations of motion are given
by:

r = r0−R
3∑
i=1

mi

M
Ri


 zi
li
0


+R0

3∑
i=1

mi

M
Ri


 z0

i

li
0


, (4)

Ṙ = R
{ 3∑

i=1

̂̃
Fi(z)vi

}
, (5)

żi = vi, i = 1, 2, 3, (6)

where the actuator velocities defined in eq (6) are viewed as
control inputs. We present the main controllability results in
the following proposition:

PROPOSITION 1. Under the assumptions that have been in-
troduced, the following statements are equivalent:

1. The base body position and attitude (r, R) are globally
controllable;

2. The drift-free control system described by eqs (5) and
(6) is small time locally controllable at each (R, z) ∈
SO(3) ×Qs ;

3. The drift-free control system described by eqs (5) and
(6) is small time locally controllable at one shape z for
all R ∈ SO(3);

4. The Lie algebraic rank condition for the nonlinear drift-
free control system described by eqs (5) and (6) holds
at one shape;

5. The Lie algebraic rank condition for the nonlinear drift-
free control system described by eqs (5) and (6) holds
at every shape.

Proof. We first show the equivalence between Statements 1
and 2 using eq (4), which can be written as
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r = RPz+ r0 − R

3∑
i=1

mi

M
Ri


 0
li
0


 + R0

3∑
i=1

mi

M
Ri


 z0

i

li
0


 ,

where z = [z1, z2, z3]T and

P = −
[m1

M
R1(1),

m2

M
R2(1),

m3

M
R3(1)

]
.

Since the three slot axes are linearly independent, P has full
rank. Hence, r is uniquely determined by z and vice versa,
for any fixed attitude R and for arbitrarily given initial con-
ditions. Now suppose Statement 1 is true, i.e. (r, R) can be
globally reached via change of z, it is obvious that arbitrary
shape variables z must be achieved for any attitude R. This
shows that Statement 1 implies Statement 2. Now we show
the other direction. Assume that each (R, z) is controllable by
shape change. For arbitrarily given (r, R), we can uniquely de-
termine a corresponding z, and we are able to steer the shape
and the attitude to this z and the desired attitude R simulta-
neously according to the assumption. Then the desired (r, R)
is reached. Therefore, arbitrary (r, R) can be achieved. This
completes the proof of the equivalence between the first two
statements.

We now focus on the equivalence between Statements 2
and 3. Obviously, Statement 2 implies Statement 3; we only
need to show the converse. Suppose Statement 3 holds at a
shape z0. That is, there exists a shape control that achieves
arbitrary attitude change at z0 in an arbitrarily given time in-
terval. Let z1 denote another shape, let R̃ denote an arbitrary
attitude change to be achieved at z1, and [0, tf ] be the given
time interval. Let t1, t2 satisfy 0 < t1 < t2 < tf . There exist
two suitable finite control inputs, v1, which steers the shape
from z1 to z0 in [0, t1], and v3, which transfers the shape back
to z1 from z0 in [t2, tf ]. Furthermore, let R1 and R3 denote the
unique resulting attitude changes under controls v1 and v3,
respectively. (Since F̃i(z(t)), i = 1, 2, 3, are finite over any
compact time interval, uniqueness follows from the Lipschitz
condition.) Note that these attitude changes are independent
of the initial attitudes. Consider the following procedure:

Step 1. In the time interval [0, t1], use v1 to steer the shape
from z1 to z0;

Step 2. In the time interval [t1, t2], design a control v2 to
achieve the attitude change (R1)−1R̃(R3)−1 with zero
net change of the shape, i.e. z(t2) = z0. Since State-
ment 3 holds at z0, such v2 always exists;

Step 3. In the time interval [t2, tf ], use v3 to steer the shape
from z0 to z1.

The above procedure is illustrated schematically in Figure 2.
At the final instant tf , the final attitude change is given

by R1(R1)−1R̃(R3)−1R3 = R̃, which is what is desired. This

R

R

1

3

 z 0z
1 (R

1
)
-1

R
~

(R
3
)
-1

Step 1

Step 3

Step 2

Fig. 2. The schematic shape transfer and attitude change.

means that an arbitrary attitude change can be achieved at z1

in an arbitrary time interval. Since z1 is arbitrary, we claim
that any (z, R) can be reached as well as its neighborhood.
This shows Statement 2 holds.

Next, we show the equivalence between Statements 3 and
4. Since the base body attitude and shape dynamics are de-
scribed by drift-free eqs (5) and (6), their local controllability
is equivalent to local accessibility. It is shown in Rui, Kol-
manovsky, and McClamroch (2000) that Statement 4 implies
small time local controllability at a designated shape and that
arbitrary base body attitude and local shape change can be
achieved in a neighborhood of that shape, following the left-
invariance property in Rui, Kolmanovsky, and McClamroch
(2000) and the fact that SO(3) is compact. This means that
Statement 3 holds if Statement 4 is satisfied. We now show
the converse. Note that each term in the vector fields F̃i(z)

has the form N(z)

(detJ (z))k , where N(z) is a polynomial function

of z, and k ∈ Z+. Since detJ (z) > 0,∀z, F̃i(z)’s are global
real analytical functions. Hence, the equations are globally
real analytic. Following the argument that the Lie Algebraic
Rank Condition (LARC) is necessary for local accessibility
for real analytical systems (Sontag 1998), we conclude that
Statement 3 implies Statement 4.

We complete the rest of the proof by using the above ar-
gument for any shape. Once Statement 2 holds, then control-
lability holds at every shape. Applying the above argument,
we have the equivalence between Statements 2 and 5. �
REMARK 1. At least three independent prismatic actuators
are required to achieve local controllability of the space robot
base body translation and rotation. Further, three independent
prismatic actuators can achieve “global” controllability of the
space robot base body translation and rotation if attitude and
local shape controllability conditions are satisfied at some
shape.

REMARK 2. Proposition 1 expresses the equivalence be-
tween the controllability of the base body translation and ro-
tation and the controllability of the base body attitude and
shape. This equivalence property can be used to simplify the
controllability tests.
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REMARK 3. If stroke limits are placed on the displacement of
the actuator masses, then the translational control authority of
the base body is substantially limited, but the rotational control
authority is not limited in the sense that arbitrary base body
attitude maneuvers can be achieved at any shape satisfying
the constraint.

REMARK 4. A local controllability test for eqs (4) and (5) has
been given in Rui, Kolmanovsky, and McClamroch (2000).
This test provides a sufficient condition for global attitude and
local shape change based on the LARC, which can be checked
by computing Lie brackets. The first order Lie brackets for
vector fields F̃i(z) and F̃j (z), i, j = 1, 2, 3, i �= j , are given
by

ω[F̃i (z),F̃j (z)] = F̃j (z)× F̃i(z)+ ∂F̃i(z)

∂zj
− ∂F̃j (z)

∂zi
, (7)

with higher order Lie brackets defined accordingly. An easily
computed formula is given by

ω[F̃i (z),F̃j (z)] = J (z)

det J (z)
[Fj(z)× Fi(z)]

−J−1(z)

[
∂J (z)

∂zj
J−1(z)Fi(z)

−∂J (z)

∂zi
J−1(z)Fj (z)

]

+J−1(z)

[
∂Fi(z)

∂zj
− ∂Fj(z)

∂zi

]
. (8)

The derivation of this formula is given in the Appendix.

REMARK 5. According to Proposition 1, controllability may
be verified at any base body attitude and corresponding shape.
The controllability results presented in Proposition 1 simplify
the test considerably. It is not necessary to check the LARC
at every shape; one only needs to find one shape where the
LARC holds. A shape may be chosen that leads to relatively
simple Lie bracket computations.

REMARK 6. Since local controllability implies global con-
trollability, we will make no further distinction between local
and global controllability in the subsequent development.

REMARK 7. Once controllability is verified, Statement 5 in
Proposition 1 implies that there always exist Lie brackets that
span the tangent space of SO(3) at each shape. Therefore, con-
trol algorithms can be developed based on Lie bracket expan-
sions using any set of spanning Lie brackets. Since different
choices of spanning Lie brackets correspond to different al-
gorithms with different computational complexity, the choice
can be made to simplify the motion planning algorithms and
to reduce the computational complexity.

PROPOSITION 2. If there are three Lie brackets that satisfy
the LARC at some shape, then these Lie brackets satisfy the

LARC on an open dense subset of the shape space.

Proof. Suppose that there are three Lie brackets satisfying
the LARC at shape z0. Recall that the vector fields F̃i(z) are
globally real analytic; therefore the three Lie brackets are also
global analytic functions of the shape z, because each term
of the brackets is a rational function of the form P(z)

(detJ (z))j ,

where P(z) is a polynomial function of z, j ∈ Z+, and
detJ (z) > 0,∀z. Hence, the determinant dω(z) of the ma-
trix formed by the three Lie brackets is a global analytical
function of z, which satisfies dω(z0) �= 0. It is easy to see
that the set satisfying dω(z) �= 0 is open in the shape space;
we only need to show that this open set is dense, that is, its
closure is the whole shape space. An equivalent argument is
that every neighborhood of the shape with zero dω contains
a shape with nonzero dω (Munkres 1974). Suppose not. This
means that there is an open set in which dω is identically zero.
Since dω(z) is globally real analytical and the shape space is
connected, dω(z) is identically zero on the whole shape space
(Courant and John 1965). This contradicts the condition that
dω(z

0) �= 0. �
This proposition can be interpreted as follows. Suppose we

find three Lie brackets spanning the tangent space of SO(3)
at one shape. According to Proposition 2, the shape where
the LARC fails cannot be clustered as an open ball in the
three-dimensional shape space. This implies that at almost all
shapes, these Lie brackets span the tangent space. Therefore, a
shape change algorithm constructed based on these particular
spanning Lie brackets applies to almost every shape. Even if
the LARC fails at some shape, a nearby shape can be located
where the LARC holds, and the procedure described in the
proof of Proposition 1 can be used to achieve the desired mo-
tion. This means that a single algorithm can be constructed
to solve motion planning problems at different shapes. Of
course, there may be many Lie bracket combinations satis-
fying the LARC, but we can choose the simplest one, e.g.,
using only the first order Lie brackets, to reduce computa-
tional complexity.

In the following, we present an example to show that if all
the three slots have zero offsets, then the space robot base body
position and attitude are controllable via shape change. We
further show a stronger result, i.e., for almost all offsets, the
space robot base body position and attitude are controllable.

4.2. A Space Robot Controlled by Three Prismatic Actua-
tors: Controllability Analysis

We check the controllability for a space robot with three inde-
pendent prismatic actuators whose slot axes have zero offsets,
i.e., l1 = l2 = l3 = 0. In such a case, we have

F1(z) = m1m2z2

M
R2(1)× R1(1)+ m1m3z3

M
R3(1)× R1(1),

F2(z) = m2m1z1

M
R1(1)× R2(1)+ m2m3z3

M
R3(1)× R2(1),
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F3(z) = m3m1z1

M
R1(1)× R3(1)+ m3m2z2

M
R2(1)× R3(1).

We first check local controllability at the origin z = (0, 0, 0)
by computing the first order Lie brackets. At z = (0, 0, 0), it
is easy to show that Fi(z) = 0 and

∂Fi(z)

∂zj
= mimj

M
Rj(1)× Ri(1).

Therefore, using eq (8), the first order Lie bracket ω[F̃i (z),F̃j (z)]
evaluated at z = (0, 0, 0) can be expressed as

ω[F̃i (z),F̃j (z)]
∣∣∣
z=0

= J−1(0)
2mimj

M
Rj(1)× Ri(1).

The three first order Lie brackets, evaluated at z = (0, 0, 0),
form the following matrix:

G̃ =
[
ω[F̃1(z),F̃2(z)], ω[F̃1(z),F̃3(z)], ω[F̃2(z),F̃3(z)]

]
z=0

= 2J−1(0)

M

[
m1m2R2(1)× R1(1),

m1m3R3(1)×R1(1), m2m3R3(1)×R2(1)
]
.

Since [R1(1), R2(1), R3(1)] are linearly independent, it can
be shown that[

m1m2R2(1)× R1(1), m1m3R3(1)× R1(1),

m2m3R3(1)× R2(1)
]

has full rank, which implies that the three first order Lie brack-
ets span the tangent space of SO(3) at z = (0, 0, 0). As a re-
sult, eqs (4) and (5) satisfy the LARC at z = (0, 0, 0). Using
Proposition 1, it is clear that the system is controllable at every
shape, and the base body position and attitude are controllable
via shape change.

It is interesting to note that the determinant function dω in
the proof of Proposition 2 can be viewed as a global real ana-
lytic function not only of the shape z = (z1, z2, z3) but also of
the offset vector l = (l1, l2, l3). Since dω �= 0 at z = (0, 0, 0)
and l = (0, 0, 0) as shown above, we see that dω|z=(0,0,0) �= 0
on an open dense subset of the offset vector l = (l1, l2, l3),
following the argument in the proof of Proposition 2. This
implies that the first order Lie brackets satisfy the LARC at
z = (0, 0, 0) for almost all offset combinations. Hence, using
Proposition 2, we further conclude:

PROPOSITION 3. The space robot base body position and
attitude are controllable for almost all offset combinations.

5. Design of Space Robot Maneuvers

In this section, we present a motion planning procedure based
on the controllability results developed previously, assuming

controllability is verified. The objective is to achieve a de-
sired space robot base body position and attitude change via
prismatic actuator motions. The basic idea follows (Shen and
McClamroch 2001): steer the actuator masses to their desired
final shape which can be uniquely determined by solving a
simple set of algebraic equations; then use periodic shape mo-
tions to achieve the desired attitude of the base body. Control
algorithms based on Lie bracket expansions are constructed to
obtain the desired shape motions. The construction follows the
development in Rui, Kolmanovsky, and McClamroch (2000).

We describe the maneuver design procedure as follows.
Assume that the base body initial position and attitude r0, R0

are to be transferred to final position and attitude rf , Rf in
the given time interval [0, tf ]; the initial shape is z0.

Step 1. Determine the unique values of the final shape vector
zf that solves the algebraic equation

rf − r0 = −Rf

3∑
i=1

mi

M
Ri


 z

f

i

li
0




+ R0

3∑
i=1

mi

M
Ri


 z0

i

li
0


 . (9)

Step 2. Steer the shape variables from z0 to zf in [0, t1], where
0 < t1 < tf . A suitable choice for the shape velocities
is

vi(t) = ci sin2
(2πn1t

t1

)
, i = 1, 2, 3, (10)

wheren1 ∈ Z+, and ci = 2(zf
i

−z0
i
)

t1
. This necessarily guar-

antees zi(t1) = z
f

i and żi(0) = żi(t1) = 0.

Step 3. Design a periodic shape change that steers the base
body attitude to Rf in [t1, tf ] while leading to zero
net change in the shape, so that the final shape re-
mains zf . Since the space robot is controllable by shape
change, such inputs always exist. To be more specific,
we consider a first order Lie bracket based algorithm in
Rui, Kolmanovsky, and McClamroch (2000) for illus-
tration. We assume satisfaction of the LARC at zf , that
is the first order Lie bracketsω[F̃1(z),F̃2(z)],ω[F̃1(z),F̃3(z)], and
ω[F̃2(z),F̃3(z)] at zf are linearly independent.

Find ωd ∈ R3 satisfying

R−1(t1)R
f = eω̂d ,

where R(t1) is the base body attitude at the end of Step 2.
Determine α ∈ R3 as

α = [α1, α2, α3]T
=

[
ω[F̃1(z),F̃2(z)], ω[F̃2(z),F̃3(z)], ω[F̃1(z),F̃3(z)]

]−1

z=zf
ωd.
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Choose n ∈ Z+ and shape velocity inputs in [t1, tf ] as

v1(t) = 2π
√
n

tf − t1

(
b11 sin

2πn(t − t1)

tf − t1

+b12 sin
4πn(t − t1)

tf − t1

)
,

v2(t) = 2π
√
n

tf − t1

(
b21 sin

2πn(t − t1)

tf − t1

+a22 cos
4πn(t − t1)

tf − t1
− a22 cos

6πn(t − t1)

tf − t1

)
,

v3(t) = 2π
√
n

tf − t1

(
a31 cos

2πn(t − t1)

tf − t1

−a31 cos
6πn(t − t1)

tf − t1

)
,

where the parameters b11, b12, b21, a22, and a31 satisfy

a22b12 = 2α1

π
, a31b21 = α2

π
, a31b11 = α3

π
.

This completes the development of the maneuver design pro-
cedure. It can be verified that żi(t1) = żi(tf ) = 0, i = 1, 2, 3.
An attitude error bound for this algorithm is given in Rui,
Kolmanovsky, and McClamroch (2000).

We now provide an example to illustrate the maneuver
design procedure described above. The space robot consists
of a rigid base body and three independent prismatic actua-
tors, whose slot axes pass through the center of mass the base
body and each slot axis is aligned with a principal axis of
the base body. Therefore, the offsets li = 0, i = 1, 2, 3, and
[R1(1) R2(1) R3(1)] is the 3 × 3 identity matrix.

The mass for the base body and the actuator masses are
mb = 10 kg, andm1 = m2 = m3 = 2 kg; the base body inertia
is given by Ib = diag(1, 1.5, 1.5)kgm2. At the initial instant
t = 0, r0 = 0, R0 = I3, and z0 = (0, 0, 0). The maneuver
task is to transfer the base body from the given initial position
and attitude to the final position rf = (0.3,−0.25, 0.1)m and
final attitude expressed in exponential coordinates as Rf =
eω̂

f in 4900 s, where ωf = (0.5,−0.15, 0.1) rad.
Based on the controllability results in Section 4.2, we know

that the space robot is controllable via shape change. We de-
sign the required shape motions, following the indicated pro-
cedure. First, we determine the required final shape zf from
eq (8); the result is zf = (−2.3784, 1.6873,−1.3377) m.

In the second step, the robot shape is changed from z0

to zf in the first 100 s. Following Step 2 in the procedure,
the shape velocities have the form given in eq (9), where the
parameters are chosen as n1 = 10, and c1 = −0.0476, c2 =
0.0337, c3 = −0.0275. At t = 100 s, the robot base body
attitude is almost unchanged, i.e., R(100) = I3.

In the third step, we construct periodic shape motions to
achieve the desired final robot base body attitude while keep-
ing the shape unchanged at the final time. The three first-
order Lie brackets at zf span the tangent space of SO(3) as

shown in Section 4.2. Hence, we solve for ω2 ∈ R3 satisfying
eω̂2 = R−1(100)Rf ; the result isω2 = (0.5,−0.15, 0.1). Next
we determine α as

α =
[
ω[F̃1(z),F̃2(z)], ω[F̃1(z),F̃3(z)], ω[F̃2(z),F̃3(z)]

]−1

z=zf
ω2

= [0.8438,−61.09,−18.82]T .

As a result, we choose the periodic shape velocities in t ∈
[100, 4900] as

v1(t) = 0.05236
(

− 0.7373 sin
2π(t − 100)

3

−0.6715 sin
4π(t − 100)

3

)
,

v2(t) = 0.05236
(

− 2.393 sin
2π(t − 100)

3

+0.8 cos
4π(t − 100)

3
− 0.8 cos 2π(t − 100)

)
,

v3(t) = 0.05236
(

8.125 cos
2π(t − 100)

3

−8.125 cos 2π(t − 100)
)
.

This completes the maneuver construction.
MATLAB has been used to simulate the space robot mo-

tions corresponding to this maneuver. The simulation results
for the robot base body position and attitude as well as for the
shape are shown in Figures 3–5, and the space robot configura-
tion changes are presented in Figures 6–8. At the final instant
tf = 4900 s, the base body attitude in exponential coordinates
is given by ω(tf ) = (0.5342,−0.1511, 0.0943) rad, and the
base body position is r(tf ) = (0.2995,−0.2557, 0.0931) m.
The small errors arise from the Lie bracket expansion approx-
imation in the third step of the control algorithm.

6. Conclusions

We have studied the dynamics and control of a specific under-
actuated space robot, focusing on three dimensional maneu-
vers using prismatic actuators. The feasibility of using such
shape change mechanisms to simultaneously control space
robot base body translational and rotational motions has been
demonstrated. Nonlinear control theory has been used for con-
trollability analysis and for development of rest-to-rest space
robot maneuvers. These results can be applied to advanced
space robot missions.

In this paper, all gravitational and gravity gradient effects
are ignored; such an approximation is often justified. Our on-
going research is concerned with the case that gravity gradient
effects are included in the model and utilized to achieve base
body control via shape change.
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Fig. 6. Initial space robot configuration at t = 0 s. “+”: the
origin of the inertial frame (coincides with the initial position
of the center of mass of the base body); “◦”: the center of
mass of the base body.
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Fig. 7. Space robot configuration at t = 100 s.
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Fig. 8. Final space robot configuration at t = 4900 s.

Appendix

A.1. Derivation of the Translation and Rotation Equations
of Motion

We derive the equations of motion for a space robot with n
prismatic actuators. An inertial frame is chosen at the fixed
center of mass of the space robot. Let ρi denote the position
of the ith actuator mass relative to the center of mass of the
base body in the inertial frame; then ρi can be expressed as

ρi = RRi


 zi

li
0


 , i = 1, . . . , n.

As shown before, the assumption that the total linear mo-
mentum is zero implies

ṙ = −
n∑
i=1

mi

M
ṘRi


 zi

li
0


 −

n∑
i=1

mi

M
RRi


 żi

0
0


 , (A1)

where M = mb + ∑n

i=1 mi is the total mass of the system.

Let ρB
i

be the relative position of the ith actuator mass
given by

ρB
i

= Ri


 zi

li
0


 ,

and ω be the angular velocity of the base body satisfying Ṙ =
Rω̂, both expressed in the base body frame. The assumption
that the total angular momentum is zero implies

Hb +
n∑
i=1

Hi = 0, (A2)

where Hb denotes the angular momentum of the base body
andHi represents the angular momentum of the ith prismatic
given by

Hb = mbr × ṙ + RIbω, (A3)

Hi = mi(r + ρi)× (ṙ + ρ̇i). (A4)

Substituting eqs (A3) and (A4) into (A2), and making use
of the linear momentum eq (A1), we have

− 1

M

n∑
i=1

miρ
B

i
×

n∑
i=1

mi(ρ̇i)
B +

n∑
i=1

miρ
B

i
× (ρ̇i)

B + Ibω = 0,

where (ρ̇i)B = R−1ρ̇i is the relative velocity of the ith actuator
mass expressed in the body frame.

Since

(ρ̇i)
B = ρ̇B

i
+ ω × ρB

i
,
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we obtain

ρB
i

× (ρ̇j )
B = Bij (zi)żj + Ĩij (zi, zj )ω,

where Bij ∈ R3 and Ĩij (zi) ∈ R3×3 are given by

Bij (zi) = −R̂j (1)Ri


 zi

li
0


 , Rj (1) = Rj


 1

0
0


 ,

Ĩij (zi, zj ) = [zi li 0]RT

i
Rj


 zj

lj
0


 I3×3

−Rj


 zizj lizj 0

lj zi li lj 0
0 0 0


RT

i
.

If i = j , we get

ρB
i

× (ρ̇i)
B = Bii żi + Ĩii (zi)ω,

where

Bii = Ri


 0

0
−li


 , Ĩii(zi) = (z2

i
+ l2

i
)I3×3

−Ri


 z2

i
lizi 0

lizi l2
i

0
0 0 0


RT

i
.

It is easy to verify that Ĩii (zi) is positive semi-definite for all
zi, li .

Finally, we obtain the angular momentum equation

J (z)ω =
n∑
i=1

Fi(z)żi, (A5)

where

J (z) = Ib +
n∑
i=1

(1 − mi

M
)miĨii(zi)

−
n∑
i=1

n∑
j=1,j �=i

mimj

M
Ĩij (zi, zj ),

Fi(z) = −
(

1 − mi

M

)
miBii +

n∑
j=1,j �=i

mimj

M
Bji(zj ).

It can be shown that J (z) is positive definite for all z.
Consequently, the rotation equations can be written as

Ṙ = R
{ n∑

i=1

̂̃
Fi(z)żi

}
, (A6)

where

F̃i(z) = J−1(z)Fi(z), i = 1, . . . , n.

Note that rotational eq (A6) is of the same form as the
rotational equations for a multibody space system with n

appendages given in Rui, Kolmanovsky, and McClamroch
(2000).

A.2. Derivation of Equation (8)

To rewrite the Lie bracket expression, the following identity
is used:

∂J−1(z)

∂zj
= −J−1(z)

∂J (z)

∂zj
J−1(z).

Since J (z) is positive definite for all z, it can be de-
composed as J (z) = RT-R, where R is orthogonal, and
- = diag(λ1, λ2, λ3), λi > 0. Hence,

F̃i(z)× F̃j (z) = J−1(z)Fi(z)× J−1(z)Fj (z),

= RT

(
-−1RFi(z)

)
× RT

(
-−1RFj(z)

)
,

= RT

(
-−1RFi(z)×-−1RFj(z)

)
,

= RT-

λ1λ2λ3

(
RFi(z)× RFj(z)

)
,

= RT-R

λ1λ2λ3

(
Fi(z)× Fj(z)

)
,

= J (z)

detJ (z)

(
Fi(z)× Fj(z)

)
,

where we use detJ (z) = λ1λ2λ3. Equation (8) is then ob-
tained by substituting the above identities into the original
expression.
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