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SUMMARY

Inspired by the dynamic complementarity problem introduced by Mandelbaum, we define several matrix
classes in terms of some integral conditions and discuss their connection with the existing class of strictly
semicopositive matrices in linear complementarity theory. Using a time-stepping approximation scheme,
we establish the existence of an integrable solution to a class of index-one linear complementarity systems
(LCSs) involving these matrices, and that such a solution is ‘short-time’ unique if the initial state belongs to
a semiobservable cone defined in the recent paper (IEEE Trans. Autom. Control 2007, in press). In contrast
to the existing well-posedness theory for the LCS, our result is based on a well-known matrix property that
has not been used in the LCS literature before. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Matrix classes play an important role in linear complementarity theory. A variety of such classes
have been employed to characterize fundamental solution properties of the linear comple-
mentarity problem (LCP), including feasibility, existence (i.e. solvability), and various kinds of
uniqueness. For our purpose in this paper, we mention particularly the P-matrices, the
S-matrices, and the (strictly) semicopositive matrices. We refer the reader to the monograph [1]
for detailed descriptions of these matrix classes and their roles in LCP theory, see also [2]. (Note
on a nomenclature: a (strictly) semicopositive matrix is traditionally called a (strictly)
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semimonotone matrix; since these matrices bear a closer connection to a copositive matrix than
to a monotone (i.e. positive semidefinite) matrix, we feel that it is more appropriate to use the
term ‘semicopositivity’ than ‘semimonotonicity’ to reflect the connection; see the precise
definition in the next section.)

Being static in nature, the classical LCP is defined on a finite-dimensional Euclidean space and
its solutions are vectors in such a space. In recent years, a dynamic version of the LCP, called a
linear complementarity system (LCS), has been introduced and studied extensively; the
importance of the LCS is well documented in several theses, articles, and surveys [3–11]. In
essence, an LCS is a piecewise linear dynamical system defined by a linear time-invariant
ordinary differential equation (ODE) that is parameterized by an auxiliary algebraic variable,
which is required to be a solution of a finite-dimensional LCP that is in turn linearly coupled
with the state of the differential equation. Thus in contrast to the LCP, solutions to the LCS are
time-dependent vector functions whose ‘regularity’ is a principal concern in the study of the
well-posedness of the LCS, i.e. the issue of existence and uniqueness of solution trajectories,
which is critical to non-smooth and hybrid systems such as the LCS. Needless to say,
understanding this issue is the first step to the system analysis and control design of LCSs.
Closely related to the LCS is the so-called dynamic complementarity problem (DCP) coined in
the unpublished article by Mandelbaum [12]. Although the LCS and DCP are obviously linked,
their precise connection has not been formally established. In the process of developing our
results in this paper, we will rewrite the LCS in an integral form that will reveal its connection to
the DCP in a transparent way; see Lemma 8 and the following remark.

The systematic study of the well-posedness of the LCS began in the two doctoral dissertations
[3, 5] and continues to date. A brief summary of the state of the art is as follows. In [5, 7, 8], the
authors study this topic under the assumption that all the solutions are locally impulsive
smooth, i.e. they are Bohl distributions; sufficient conditions in terms of leading column and row
coefficient matrices are derived for the local well-posedness of LCSs. Moreover, local well-
posedness conditions expressed in terms of the solvability and uniqueness of the corresponding
‘rational complementarity problems’ (RCPs) are given in [7] for solutions of Bohl type. (The
RCP is a complementarity problem involving rational functions on the complex field and has a
close tie with LCSs; see [8] for more discussion.) Based on these results, Çamlibel [3] and
Çamlibel and Schumacher [4] show that an index-one LCS has a unique bounded piecewise-
Bohl solution on any finite time interval for any feasible initial condition. Departing from the
class of Bohl solutions, the authors in [13] brought in the classical control-theoretic concept of
passivity for the analysis of LCSs. In essence, linear passive complementarity systems are LCSs
whose input and output variables satisfy a standard dissipative condition [3]; they form an
important subclass of LCSs because of their significant practical values in modelling electrical
networks and other physical systems. Under passivity, it was shown in the references that the
LCS has a unique L2 solution; moreover, the same holds for LCSs that are passifiable by pole
shifting. In addition to the well-posedness issue, various system and control theoretic issues have
been investigated for the LCS; see [14–21].

Left open in the study of the LCS to date is the question of whether non-passive index-one
LCSs possess integrable solutions and whether such solutions are unique. Here, we follow the
convention in the recent paper [22] for an index-one system, which is related to but different
from what is given in [3]. The main goal of this paper is to address this question formally.
Part of the significance of this question is the fact that the class of integrable functions is much
broader than that of piecewise-Bohl functions and is more suitable for LCSs that may fail the
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forward-time non-Zeno property [3]. For existence, the main tool we will employ is a time-
stepping numerical scheme whose convergence will be established by borrowing from the results
in the recent paper [23] that pertains to a differential variational inequality, the latter being a
generalization of the LCS. For uniqueness, we will impose a certain semiobservability condition
on the initial state, the latter property being recently introduced in [19] and subsequently refined
in [17] for the study of observability of the LCS. Underlying both issues is a semicopositivity
restriction of the LCS and its related reformulations in an integral form that resembles the
‘convolution complementarity problem’ introduced most recently by Stewart [24].

The remainder of the paper is organized as follows. In Section 2, we review some basic matrix
classes in LCP theory and formally define the LCS and the DCP. Section 3 shows solution
uniqueness of a DCP with a strictly semicopositive (SSC) defining matrix under non-negative
excitation. We next introduce in Section 4 some matrix properties defined in terms of integrals,
discuss their equivalences, and establish a key uniqueness result, Proposition 6, which is the
cornerstone for solution existence and uniqueness of a special class of the LCS treated in the last
section.

2. PRELIMINARY DISCUSSION

We begin by summarizing some well-known results for the standard LCP in finite dimensions;
see Reference [12] for the review below. Given a vector q 2 Rn and matrix M 2 Rn�n; the LCP
ðq;MÞ is to find a vector z 2 Rn such that

04z ? qþMz50

where the notation ? means perpendicularity. In this paper, we are particularly interested in the
class of SSC matrices M which are defined by the following implication:

½z50 and z 8Mz40� ) z ¼ 0 ð1Þ

where the notation 8 means the Hadamard product; i.e. a 8 b is the vector whose components are
the componentwise products of the two vectors a and b: The class of SSC matrices is very broad
and includes the class of P-matrices, which are characterized by the following implication:

½z 8Mz40� ) z ¼ 0 ð2Þ

The fundamental role of the class of P-matrices in LCP theory is the following universal
existence and uniqueness result: the LCP ðq;MÞ has a unique solution for all vectors q 2 Rn if
and only if M is a P-matrix. There is a similar characterization of the class of SSC matrices.
Namely, the LCP ðq;MÞ has a unique solution for all non-negative vectors q 2 Rn if and only if
M is SSC. Clearly, a matrix M is SSC if and only if a constant s > 0 exists such that

max
14i4n

ziðMzÞi5skzk2 8z 2 Rn
þ ð3Þ

Another characterization of an SSC matrix is in terms of a completely S-property. Specifically,
M 2 Rn�n is an S-matrix if a vector z50 exists such that Mz > 0: In terms of the LCP, it is easy
to see that M is an S-matrix if and only if the LCP ðq;MÞ is feasible (i.e. a vector z50 exists
satisfying qþMz50) for all q 2 Rn: It is known that M is an SSC matrix if and only if it is
completely S, i.e.M and all its principal submatrices are S-matrices. Moreover, ifM is SSC, then
so is its transpose.
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For a given T > 0; which is fixed throughout the paper, let ACn
½0;T � denote the class of

absolutely continuous functions x : ½0;T � ! Rn and let Imþ½0;T � denote the class of integrable
functions u : ½0;T � ! Rm

þ; i.e. u50 almost everywhere on ½0;T � and
R T
0
kuðtÞk dt51: Being

absolutely continuous, a function x 2 ACn
½0;T � has a derivative ’xðtÞ for almost all t 2 ½0;T �: Let

ACn
1þ½0;T � be the subclass of functions x 2 ACn

½0;T � with ’xðtÞ50 for almost all t 2 ½0;T �:
Defined by a tuple of matrices ðA;B;C;DÞ; where A 2 Rn�n; B 2 Rn�m; C 2 Rm�n and D 2
Rm�m; and an initial state x0 2 Rn; the LCS ðA;B;C;D; x0Þ is to find functions x 2 ACn

½0;T �
and u 2 Imþ½0;T � such that for almost all t 2 ½0;T �;

’xðtÞ ¼ AxðtÞ þ BuðtÞ

04uðtÞ ? CxðtÞ þDuðtÞ50

xð0Þ ¼ x0

Note that in this definition, we restrict the solution class of the state x to be ACn
½0;T � and that

of the algebraic variable u to be Imþ½0;T �: Such a pair ðx; uÞ is called a weak solution of the LCS.
In contrast, Mandelbaum [12] defined the DCP as follows. Let Dn denote the space of
n-dimensional right-continuous-left-limit functions on ½0;1Þ and Dn

^ � fv 2 Dn : vð0Þ ¼ 0;
vðtÞ is non-decreasing in t50g: For a given function q 2 Dn with qð0Þ50; the (continuous-
time) DCP ðq;MÞ is to find v 2 Dn

^ such that qðtÞ þMvðtÞ50 for all t50 and
Pn

i¼1

R1
0 ðqðtÞþ

MvðtÞÞi dviðtÞ ¼ 0: It is shown in [12] that:

* the DCP ðq;MÞ has a solution for all q 2 Dn with qð0Þ50 if and only if M is SSC;
* the DCP ðq;MÞ has a unique solution for all q 2 Dn with qð0Þ50 if and only if the only

function v 2 Dn that is locally of bounded variation with vð0Þ ¼ 0 and satisfiesZ
B

ðMvÞi dvi40 8B 2 B 8i

is the zero function, where B is the Borel s-field in Rþ:

While the condition in the last result is more like the P-property (2) than the SSC condition (1)
(because there is no sign restriction on the function v), it motivates the definition of several matrix
properties in terms of integrals, which we will introduce in Section 4. Incidentally, Mandelbaum
has noted that every matrix satisfying the condition in the second result must be a P-matrix, but
there are 2� 2 P-matrices that fail this condition. Bernard and El Kharroubi [25] also
constructed a non-uniqueness example where the defining matrix is a non-negative P-matrix.

Subsequently, it will be useful for us to speak of the restricted-time DCPðq;M;btÞ for a given q
in ACn

½0;T � and a scalar bt 2 ð0;T � as the problem of finding a function v 2 ACn
1þ½0;T � with

vð0Þ ¼ 0 such that qðtÞ þMvðtÞ50 for all t 2 ½0;bt � and Rbt0 ’vðtÞTðqðtÞ þMvðtÞÞ dt ¼ 0: Note that
since both ’vðtÞ and qðtÞ þMvðtÞ are non-negative on ½0;T �; the former almost everywhere, we
have Z bt

0

’vðtÞTðqðtÞ þMvðtÞÞ dt ¼ 0 ,

Z bt
0

’vðtÞ 8 ðqðtÞ þMvðtÞÞ dt ¼ 0

Besides the obvious difference in the finite upper time bt; the DCP ðq;M;btÞ differs from
Mandelbaum’s DCP ðq;MÞ in that the former restricts both the input function q and the
solution trajectory v to be absolutely continuous; this restriction is consistent with the definition
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of a solution to the LCS which we require to be absolutely continuous. The connection between
the restricted-time DCPðq;M;btÞ and the LCS will be revealed in Lemma 8.

3. THE DCP WITH NON-NEGATIVE EXCITATION

In this section, we consider a related but modified continuous-time DCP that is closely related to
the well-posedness of a class of LCSs with index one. This problem, denoted DCPþðq;MÞ; is
defined as follows: for a continuous function q : ½0;1Þ ! Rn

þ; find a function v 2 ACn
1þ½0;1Þ

with vð0Þ ¼ 0 such that qðtÞ þMvðtÞ50 for all t 2 ½0;1Þ and

04’vðtÞ ? qðtÞ þMvðtÞ50

for almost all t 2 ½0;1Þ: Clearly, with ’vðtÞ and qðtÞ þMvðtÞ being non-negative, the latter
complementarity condition is equivalent to the following integral forms:Z 1

0

’vðtÞTðqðtÞ þMvðtÞÞ dt ¼ 0

and Z 1
0

’vðtÞ 8 ðqðtÞ þMvðtÞÞ dt ¼ 0

It turns out that the class of SSC matrices characterizes the existence and uniqueness of the zero
solution to the DCPþðq;MÞ for a class of non-negative continuous functions q that includes all
the non-negative affine functions. It should be noted that property (A) stated below for such a
function q implies that each element of q is locally of bounded variation when it reaches the zero
value. However, such a function is not necessarily absolutely continuous [26, Exercise 5.11].

Proposition 1
An n� n matrix M is SSC if and only if for any continuous function q : ½0;1Þ ! Rn

þ satisfying
the following property for all i ¼ 1; . . . ; n:

(A) if qiðt* Þ ¼ 0 for some t
*
50; then ei > 0 exists such that qiðtÞ is non-decreasing for all

t 2 ½t
*
; t

*
þ ei�.

vðtÞ � 0 is the unique solution to the DCPþðq;MÞ on ½0;1Þ:

Proof
If M is not SSC, then there exists a non-zero vector bv50 such that bviðMbv Þi40 for all i ¼
1; . . . ; n: Let qðtÞ � maxð0;�ðMbv ÞÞt and vðtÞ � tbv for all t50: It is easy to show that vðtÞ is a non-
zero solution of the DCPþðq;MÞ: This establishes the ‘if’ statement.

For the ‘only if’ statement, it suffices to show the uniqueness of the solution. We prove this by
induction on n: Let M be an SSC matrix of order n; let qðtÞ be a non-negative continuous
function satisfying property (A), and let vðtÞ be a solution of the DCPþðq;MÞ:When n ¼ 1;M is
a positive scalar m and vðtÞ is a real-valued function. Thus for any t 2 ½0;1Þ;

0 ¼

Z t

0

’vðtÞðqðtÞ þMvðtÞÞ dt ¼
Z t

0

’vðtÞqðtÞ dtþ
m

2
v2ðtÞ5

m

2
v2ðtÞ

This implies that vðtÞ � 0 everywhere. To prove the uniqueness for general n; we first show that
(a) an e > 0 exists such that vðtÞ � 0 for all t 2 ½0; e�:
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For notational convenience, let wðtÞ :¼ qðtÞ þMvðtÞ: Clearly, wðtÞ is non-negative and
continuous for all t50: Consider two cases:

Case 1: qið0Þ > 0 for some index i: In this case, we have wið0Þ ¼ qið0Þ > 0: Hence by continuity,
an e > 0 exists such that wiðtÞ > 0 on ½0; e�: Therefore, ’viðtÞ ¼ 0 for almost all t 2 ½0; e�; which
implies, since við0Þ ¼ 0; that viðtÞ ¼ 0 on ½0; e�: Letting y ¼ f1; . . . ; ng\fig; we deduce that the
n-dimensional DCPþðq;MÞ is reduced to the ðn� 1Þ-dimensional DCPþðqy;MyyÞ on the interval
½0; e�:

04’vyðtÞ ? qyðtÞ þMyyvyðtÞ50

Since Myy remains SSC and qyðtÞ is non-negative and continues to satisfy condition (A), the
induction hypothesis yields vyðtÞ ¼ 0; and thus vðtÞ � 0; on ½0; e�:

Case 2: qð0Þ ¼ 0: By (A), there exists e > 0 such that qðtÞ is non-decreasing on ½0; e�: Suppose
that this e fails the claim (a). Then wðtÞ!0 for all t 2 ð0; e�: Indeed, if wðt0Þ ¼ 0 for some t0 in the
latter interval, then Mvðt0Þ40; which yields vðt0Þ ¼ 0 by the SSC property of M: In turn, since
v is non-decreasing, we deduce that v � 0 on ½0; t0�: Therefore, for any t

*
2 ð0; eÞ; there exist an

index i and two scalars t1 and t2 such that 04t15t
*
5t24e and wiðtÞ > 0 on ½t1; t2� � ½0; e�:

Hence, ’viðtÞ � 0 on ½t1; t2� and the DCPþðq;MÞ on the same interval becomes

04’vyðtÞ ? wyðt1Þ þ ½qðtÞ � qðt1Þ�y þMyy

Z t

t1

’vyðtÞ dt50

where y ¼ f1; . . . ; ng\fig: By letting uðsÞ ¼
R sþt1
t1

’vyðtÞ dt and eqðsÞ ¼ wyðt1Þ þ ½qðsþ t1Þ � qðt1Þ�y for
s 2 ½0; t2 � t1�; the original DCPþðq;MÞ is reduced to the ðn� 1Þ-dimensional DCPþðeq;MyyÞ on
the interval ½0; t2 � t1�:

04’uðsÞ ? eqðsÞ þMyyuðsÞ50

Noticing that the latter DCP of reduced dimension continues to satisfy all the properties of the
original DCP, we deduce by induction hypothesis that uðsÞ � 0 on ½0; t2 � t1�; thus vðtÞ � vðt1Þ on
½t1; t2�:Moreover, for any sufficiently small t0 > 0; a covering argument on the compact interval
½t0; e� shows that vðtÞ � vðt0Þ for all t 2 ½t0; e�: Hence, vðeÞ ¼ vðt0Þ: By the continuity of vðtÞ; it
follows that vðeÞ ¼ limt0#0 vðt0Þ ¼ 0: Hence vðtÞ � 0 on ½0; e�: This is a contraction; thus (a) holds.

To show that v � 0 on ½0;1Þ; let t
*
� supft50 : v � 0 on ½0; t�g5e: If t

*
51; then shifting

time as done in the above proof and applying (a), we easily obtain a contradiction. &

An important consequence of the above proposition is related to the solution uniqueness for a
class of LCSs with D ¼ 0: We let In denote the identity matrix of order n:

Corollary 2
If CB is SSC and x0 is feasible, i.e. Cx050; then ðxðt;x0Þ; uðt;x0ÞÞ � ðeltx0; 0Þ is the unique
solution pair to the LCSðlIn;B;C;DÞ on ½0;1Þ for all scalars l:

Proof
It is observed in [3] that for any real r; if ðxðt; x0Þ; uðt;x0ÞÞ is a weak solution pair of the
LCSðA;B;C;DÞ for a feasible initial condition x0; then ðertxðt;x0Þ; ertuðt;x0ÞÞ is a weak solution
pair of the LCSðAþ rIn;B;C;DÞ: Therefore, the LCSðlIn;B;C; 0Þ has a unique weak solution if
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and only if the LCSð0;B;C; 0Þ does. The latter LCS is

’x ¼ Bu; 04u ? Cx50

whose integral form is

04uðtÞ ? Cx0 þ CB

Z t

0

uðtÞ dt50

Since Cx050 and CB is SSC, by Proposition 1, the unique weak solution pair to the LCSð0;
B;C; 0Þ on ½0;1Þ is given by the constant ðx0; 0Þ: &

4. MATRIX CLASSES

Motivated by the integral form of the complementarity condition in both DCPs, we introduce
three properties of a matrix M 2 Rn�n by casting expression (3) in an integral form, which we
call SSC of types I–III, respectively:

I scalars s > 0 and %t 2 ð0;T � exist such that for all v 2 ACn
1þ½0;T � with vð0Þ ¼ 0; the

following condition holds for all t 2 ½0; %t�:

max
14i4n

Z t

0

’viðtÞðMvðtÞÞi dt
� �

5skvðtÞk2

II for each v 2 ACn
1þ½0;T � with vð0Þ ¼ 0; scalars sv > 0 and tv 2 ð0;T � exist such that for all

t 2 ½0; tv�; the following condition holds:

max
14i4n

Z t

0

’viðtÞðMvðtÞÞi dt
� �

5svkvðtÞk2

III for each v 2 ACn
1þ½0;T � with vð0Þ ¼ 0; a scalar tv 2 ð0;T � exists such that for any t 2 ½0; tv�;Z t

0

’vðtÞ 8MvðtÞ dt40 ) v ¼ 0 on ½0; t�

The above three conditions are all ‘short-time’ in nature in the sense that they pertain to the
existence of times, %t in type I and tv in II and III, for which the conditions are valid. Note
the distinctive roles of these times %t and tv; the former is independent of the functions v; whereas
the latter depends on the particular function v: To be consistent with these matrix types, we call
a matrix M satisfying the vector condition (3) SSC of type 0: We state two obvious facts about
the four types of SSC conditions.

* If a matrix is SSC of any of the above types, then all its principal submatrices are of the
same type; hence these matrix properties are complete.

* Clearly, type I) II) III) 0: To see the last implication, suppose III holds. Let v0 be
an arbitrary non-negative vector satisfying v0 8Mv040: Define the function vðtÞ � tv0;
which clearly belongs to ACn

1þ½0;T � because v050: SinceZ t

0

’vðtÞ 8MvðtÞ dt ¼
t2

2
½v0 8Mv0�40

condition III yields v0 ¼ 0:
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We next identify several classes of matrices that fall into type I. Such matrices include the
symmetric positive definite ones.

Proposition 3
A matrix M 2 Rn�n of any one of the following classes is SSC of type I:

(a) M is non-negative with positive diagonal entries;
(b) M is symmetric and strictly copositive;
(c) M is symmetric positive definite;
(d) M is symmetric and SSC of type 0:

Moreover, if M is SSC of type I, so is DME; where D and E are any diagonal matrices with
positive diagonal entries.

Proof
We show (a) first. Letting mij denote the ij-entry of M; we see that for all v 2 ACn

1þ½0;T � with
vð0Þ ¼ 0 and some T > 0

max
14i4n

Z t

0

’viðtÞðMvðtÞÞi dt
� �

5
1

n

Z t

0

’vTðtÞMvðtÞ dt5
1

2n

Xn
i¼1

miiv
2
i ðtÞ5

miniðmiiÞ

2n
kvðtÞk2

holds for all t 2 ½0;T �; where we use the non-negativity of mij ; ’vðtÞ and vðtÞ as well as the fact that
the diagonal entry mii > 0 for all i ¼ 1; . . . ; n: This implies that M belongs to the class of type I
matrices.

In case (b), we have again, for all v 2 ACn
1þ½0;T � with vð0Þ ¼ 0 and some T > 0;

max
14i4n

Z t

0

’viðtÞðMvðtÞÞi dt
� �

5
1

n

Z t

0

’vTðtÞMvðtÞ dt

holds for all t 2 ½0;T �: Due to the symmetry of M and the product rule for the absolutely
continuous functions viðtÞ and vjðtÞ [27, Exercise 3.35]Z t

0

½’viðtÞvjðtÞ þ ’vjðtÞviðtÞ� dt ¼ viðtÞvjðtÞ

we further have Z t

0

’vTðtÞMvðtÞ dt ¼
1

2
vTðtÞMvðtÞ

Since M is strictly copositive, i.e. zTMz > 0 for all 0=z 2 Rn
þ; a positive scalar m exists such that

zTMz5mkzk2 for all z 2 Rn
þ: Therefore, we have, for all t 2 ½0;T �;

max
14i4n

Z t

0

’viðtÞðMvðtÞÞi dt
� �

5
m
2n
kvðtÞk2

This shows that M is of type I.
To show the desired result under condition (c), we note that a positive definite matrix must be

strictly copositive. If it is also symmetric, then it satisfies condition (b). Thus, it is of type I.
Furthermore, if M is SSC and symmetric, then it is strictly copositive [1, Proposition 3.9.14].
Hence, the desired result holds under condition (d).
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To show the last statement, it suffices to prove that ifM of type I, so are DM andMD for any
diagonal matrix D ¼ diagðl1; . . . ; lnÞ with li > 0: We show that DM is of type I first. LeteM ¼ DM and thus M ¼ D�1 eM: Since M is of type I, positive scalars T and s exist such for all
v 2 ACn

1þ½0;T � with vð0Þ ¼ 0;

max
14i4n

Z t

0

’viðtÞðD�1 eMvðtÞÞi dt
� �

¼ max
14i4n

l�1i

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

5skvðtÞk2

On the other hand, for all v 2 ACn
1þ½0;T � with vð0Þ ¼ 0 and t 2 ½0;T �;

max
14i4n

l�1i

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

4 max
14i4n

ðl�1i Þ max
14i4n

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

where we make use of the positivity of li: Consequently,

max
14i4n

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

5
s

maxiðl
�1
i Þ
kvðtÞk2

Hence, DM is of type I. Similarly, for eM ¼MD; we have, for all v 2 ACn
1þ½0;T � with vð0Þ ¼ 0

and t 2 ½0;T �;

max
14i4n

Z t

0

ðli ’viðtÞÞð eMvðtÞÞi dt
� �

5skDvðtÞk25smin
i
ðl2i ÞkvðtÞk

2

Noticing that

max
14i4n

Z t

0

ðli ’viðtÞÞð eMvðtÞÞi dt
� �

4 max
14i4n

ðliÞ max
14i4n

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

we obtain

max
14i4n

Z t

0

’viðtÞð eMvðtÞÞi dt
� �

5
smini ðl

2
i Þ

maxi ðliÞ
kvðtÞk2

which leads to the desired result. &

It turns out that all the four SSC types 0; I–III are equivalent for matrices of order 2, and are
further equivalent to the ‘short-time uniqueness’ of AC solutions of the DCP with non-negative
AC input functions. To prepare for the proof, we note that all the 2� 2 SSC matrices can be
expressed in one of the following two forms by suitable scaling and variable permutation:

1 a

b 1

" #
; b50;

1 �a

�b 1

" #
; a > 0; b > 0; 05ab51

Proposition 4
The following implications hold for any SSC matrix M 2 R2�2:

M is of type I , M is of type II , M is of type III , M is of type 0

Proof
To prove this statement, it suffices to show every 2� 2 SSC matrix of type 0 must be of type I.
Assume the contrary. Then there exists a sequence of positive scalars fskg converging to zero
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such that for each k; a vkðtÞ 2 AC2
1þ½0;T � with vkð0Þ ¼ 0 exists satisfying

max
i¼1;2

Z tk

0

’vki ðtÞðMvkðtÞÞi dt
� �

5skkvkðtkÞk2

for some tk > 0: It is clear that vkðtkÞ=0 for all k:Without loss of generality, we may assume that
the limit

lim
k!1

vkðtkÞ

kvkðtkÞk
¼ vn

exists, which must be non-negative and satisfies ðvn1Þ
2
þ ðvn2Þ

2
¼ 1: Consider the first case where

M ¼
1 a

b 1

" #
; b50

Since Z tk

0

’vk1ðtÞ½v
k
1ðtÞ þ avk2ðtÞ� dt5skkvkðtkÞk22;

Z tk

0

’vk2ðtÞ½bv
k
1ðtÞ þ vk2ðtÞ� dt5skkvkðtkÞk22

we have, from the second inequality and the non-negativity of b; ’vk; vk;Z tk

0

’vk2ðtÞv
k
2ðtÞ dt ¼

1

2
ðvk2ðtkÞÞ

24
Z tk

0

’vk2ðtÞ½bv
k
1ðtÞ þ vk2ðtÞ� dt5skkvkðtkÞk22

Hence, letting k!1; we get vn2 ¼ 0 which further implies vn1 ¼ 1: For a50; similarly we have
vn1 ¼ 0; which is a contradiction. If a50; we have, by integration by parts,Z tk

0

’vk1ðtÞ½v
k
1ðtÞ þ avk2ðtÞ� dt ¼

1

2
ðvk1ðtkÞÞ

2
þ avk1ðtkÞv

k
2ðtkÞ � a

Z tk

0

vk1ðtÞ’v
k
2ðtÞ dt

5
1

2
ðvk1ðtkÞÞ

2
þ avk1ðtkÞv

k
2ðtkÞ

Hence, using the first inequality and letting k!1; we get 1
2
ðvn1Þ

2
þ avn1v

n
240: But this

contradicts ðvn1 ; v
n
2Þ ¼ ð1; 0Þ: This shows that M must be of type I.

Consider the next case where

M ¼
1 �a

�b 1

" #
; a > 0; b > 0; 05ab51

In this case, we have Z tk

0

’vk1ðtÞv
k
1ðtÞ dt� skkvkðtkÞk225a

Z tk

0

’vk1ðtÞv
k
2ðtÞ dt

and Z tk

0

’vk2ðtÞv
k
2ðtÞ dt� skkvkðtkÞk225b

Z tk

0

’vk2ðtÞv
k
1ðtÞ dt

Hence,

1

2a
½vk1ðtkÞ�

2 þ
1

2b
½vk2ðtkÞ�

2 �
1

a
þ

1

b

� �
skkvkðtkÞk225vk1ðtkÞv

k
2ðtkÞ
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Letting k!1; we obtain

1

2a
ðvn1Þ

2
þ

1

2b
ðvn2Þ

24vn1v
n

2

It is clear that vn1 and vn2 must be both positive to satisfy the inequality. Moreover,

1

2a
ðvn1Þ

2
þ

1

2b
ðvn2Þ

252

ffiffiffiffiffiffiffiffi
1

4ab

s
vn1v

n

25

ffiffiffiffiffiffi
1

ab

s
vn1v

n

2 > vn1v
n

2

This is a contradiction. &

Next we establish the relation between the matrix classes discussed above and the solution of
the restricted-time DCPðq;M;btÞ defined in Section 2.

Proposition 5
The following statements hold:

(a) If M is of type I, then scalars %s > 0 and %t 2 ð0;T � exist such that for any q 2 ACn
½0;T �;

any solution v of the DCPðq;M; %tÞ satisfies

sup
t2½0;%t�
kvðtÞk ¼ kvð%tÞk4 %s sup

t2½0;%t�
kmaxð0;�qðtÞÞk

(b) If M is of type III, then for any non-negative q 2 ACn
½0;T �; any solution v of the DCP

ðq;M; tq;vÞ for some tq;v > 0 must satisfy v ¼ 0 on ½0; t0q;v� for some t0q;v 2 ð0; tq;v�:

Proof
To prove statement (a), let M be of type I and let s and %t be two positive scalars associated with
this type. For any solution v of the DCP ðq;M; %tÞ; where q 2 ACn

½0;T �; we have

0 ¼

Z %t

0

’vðtÞ 8 ðqðtÞ þMvðtÞÞ dt

which yields

skvð%tÞk24 max
14i4n

Z %t

0

’viðtÞðMvðtÞÞi dt ¼ max
14i4n

Z %t

0

’viðtÞð�qiðtÞÞ dt

4 max
14i4n

Z %t

0

’viðtÞ dt

" #
sup
t2½0;%t�
kmaxð0;�qðtÞÞk because ’v50 almost everywhere

4 kvð%tÞk sup
t2½0;%t�
kmaxð0;�qðtÞÞk because vð0Þ ¼ 0

Hence,

sup
t2½0;%t�
kvðtÞk ¼ kvð%tÞk4s�1 sup

t2½0;%t�
kmaxð0;�qðtÞÞk

where the equality holds because vð%tÞ5vðtÞ50 for all t 2 ½0; %t�:
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To prove statement (b), consider a matrix M of type III, and let ðq; v; tq;vÞ be as given. Let
tv > 0 be the time prescribed by the matrix M: Let t0q;v � minðtq;v; tvÞ: We have,Z t0q;v

0

’vðtÞ 8MvðtÞ dt4
Z t0q;v

0

’vðtÞ 8 ðqðtÞ þMvðtÞÞ dt4
Z tq;v

0

’vðtÞ 8 ðqðtÞ þMvðtÞÞ dt ¼ 0

where the two inequalities hold because the functions within the integrals are non-negative.
By the type III condition, it follows that v ¼ 0 on ½0; t0q;v�: This completes the proof of
statement (b). &

The result below is the key to the solution uniqueness for the LCS to be studied in the next
section.

Proposition 6
Let M 2 Rm�m and e > 0 be given. Let f : ½0; e� ! Rm

þ be a non-negative absolutely continuous
function and F : ½0; e� � Im½0; e� ! Rm be such that Fð� ; uÞ is an absolutely continuous function
in the first argument for every u 2 Im½0; e� and that for some scalar m > 0; kFðt; uÞk4
mtk
R t
0
uðtÞ dtk for all t 2 ½0; e� and all u 2 Imþ½0; e�: The following two statements hold:

(a) If M is SSC of type II, then for every integrable function uðtÞ satisfying

04uðtÞ ? f ðtÞ þ Fðt; uÞ þM

Z t

0

uðtÞ dt50; for almost all t 2 ½0; e� ð4Þ

there exists eu 2 ð0; e� such that u ¼ 0 almost everywhere on ½0; eu�:
(b) If M is SSC of type I, then there exists e0 2 ð0; e� such that for every integrable function

uðtÞ satisfying (4), it holds that u ¼ 0 almost everywhere on ½0; e0�:

Proof
Let uðtÞ be an arbitrary integrable function satisfying (4). Define vðtÞ �

R t
0 uðtÞ dt; which belongs

to ACm
1þ½0; e�: Since Z t

0

uiðsÞ½f ðsÞ þMvðsÞ þ Fðs; uÞ�i ds ¼ 0

for all t 2 ½0; e� and all i ¼ 1; . . . ;m; we have, by the non-negativity of f ðtÞ; vðtÞ and ’vðtÞ;

05 �
Z t

0

’viðtÞfiðtÞ dt ¼
Z t

0

f’viðtÞðMvðtÞÞi þ ’viðtÞFðt; uÞig dt

5
Z t

0

f’viðtÞðMvðtÞÞi � ’viðtÞjFðt; uÞijg dt

5
Z t

0

’viðtÞðMvðtÞÞi dt�
Z t

0

’vðtÞ dt
���� �������� ����ðmtkvðtÞkÞ

5
Z t

0

’viðtÞðMvðtÞÞi dt� mtkvðtÞk2

for all t 2 ½0; e� and all i ¼ 1; . . . ;m: If M is of type II, then sv > 0 and ev > 0 exist such that

05 max
14i4m

Z t

0

’viðtÞðMvðtÞÞi dt
� �

� mtkvðtÞk25ðsv � mtÞkvðtÞk2 8t 2 ½0; ev�
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Thus for all t > 0 sufficiently small, vðtÞ ¼ 0 which further implies uðtÞ ¼ 0 for almost all such t
by the non-negativity and integrability of uðtÞ: It M of type I, then sv and ev are both
independent of v; hence, assertion (b) holds. &

5. A CLASS OF LCSs

We consider the LCS ðA;B;C; 0;x0Þ; i.e. the system

’xðtÞ ¼AxðtÞ þ BuðtÞ

04 uðtÞ ? CxðtÞ50

xð0Þ ¼x0 ð5Þ

where the initial solution x0 satisfies Cx050: Since we are interested in solutions with absolutely
continuous x-trajectories, it follows that any solution to the above LCS must satisfy CxðtÞ50
for all t of interest. Our goal in this section is to establish the existence of a weak solution to (5)
under an SSC property of the matrix CB 2 Rm�m and the uniqueness under matrix class
properties introduced in Section 4.

5.1. Existence of weak solutions

To show the existence of a weak solution of the LCS (5), we employ a time-stepping scheme and
establish the (subsequential) convergence of the discrete-time trajectories as the time step tends
to zero. Specifically, consider the following time-stepping scheme for the LCS (5):

xh;iþ1 ¼ xh;i þ h½Axh;iþ1 þ Buh;iþ1� ð6Þ

04uh;iþ1 ? Cxh;iþ150 ð7Þ

where h > 0 is the time step and xh;0 ¼ xð0Þ is the initial condition. A straightforward
computation shows that

xh;iþ1 ¼ ðI � hAÞ�1xh;i þ hðI � hAÞ�1Buh;iþ1 ð8Þ

for all h > 0 sufficiently small, therefore, the complementarity condition becomes:

04uh;iþ1 ? CðI � hAÞ�1xh;i þ hCðI � hAÞ�1Buh;iþ150 ð9Þ

Suppose that CB is SSC (of type 0). It follows that CðI � hAÞ�1B is also SSC for all h > 0
sufficiently small. Thus by LCP theory, the LCP (9) has a solution uh;iþ1 for all h > 0 sufficiently
small. In general, there are possibly multiple such solutions, each of which induces a vector xh;iþ1

by (8) that satisfies Cxh;iþ150: Repeating this argument, we deduce the existence of two
sequences of iterates fxh;ig1i¼0 � C�1ðRm

þÞ and fu
h;ig1i¼1 � Rm

þ; from which we construct piecewise
functions bxhðtÞ and buhðtÞ as follows. Let bxhð�Þ be the continuous piecewise linear interpolant of
the family fxh;ig; i.e. for i ¼ 0; 1; . . . ;Nh � T=h;

bxhðtÞ � xh;i þ
t� th;i

h
ðxh;iþ1 � xh;iÞ 8t 2 ½th;i; th;iþ1�

let buhð�Þ be the (possibly discontinuous) piecewise constant interpolant of the family fuh;ig; i.e.buhðtÞ � uh;iþ1 for t 2 ðth;i; th;iþ1�: It is clear that CbxhðtÞ50 for all h > 0 sufficiently small and all
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t 2 ½0;T �: The result below asserts the convergence of these discrete-time trajectories ðbxh; buhÞ to a
weak solution of the LCS (5). (A note about the proof: while there is a detailed investigation of
the convergence of time-stepping schemes such as (6)–(7) in [23], the results therein are not
directly applicable here because the imposed SSC assumption is weaker than the assumptions
used in the reference; nevertheless, the basic line of proof is available and we only need to verify
certain key assumptions established in the reference.)

Theorem 7
Suppose that CB is SSC. The following statements hold:

(a) A scalar %h > 0 exists such that the iterates fxh;ig and fuh;ig; and thus the pair ðbxh; buhÞ; are all
well defined for all h 2 ð0; %h�:

(b) There is a sequence fhng # 0 such that the following two limits exist: bxhn ! bx uniformly on
½0;T � and buhn ! bu weakly in L2ð0;TÞ:

(c) All limits ðbx; buÞ obtained in (b) are weak solutions of (5).

Proof
According to [23, Lemma 7.2 and Theorem 7.1], it suffices to show that there are positive
constants h1; ru; and cx such that for all h 2 ð0; h1Þ and all non-negative integers i with
ði þ 1Þh4T ;

kuh;iþ1k4ruð1þ 2kxh;ikÞ ð10Þ

kxh;iþ1 � xh;ik4hcxð1þ kx
h;ikÞ ð11Þ

We show this using the characterization (3) of strict semicopositivity. First, a scalar h0 > 0 exists
such that for all h 2 ð0; h0�

max
14i4m

ui½CðI � hAÞ�1Bu�i5skuk2 8u 2 Rm
þ

From (9) and the above bound, we deduce

kuh;iþ1k24
�1

sh
ðuh;iþ1ÞTCðI � hAÞ�1xh;i

¼
�1

sh
ðuh;iþ1ÞTCxh;i þ

1

sh
ðuh;iþ1ÞTC½I � ðI � hAÞ�1�xh;i

4
�1

s
ðuh;iþ1ÞTCðI � hAÞ�1Axh;i because uh;iþ150 and Cxh;i50

Consequently, (10) holds for some constant ru independent of h: From (6), we obtain

kxh;iþ1 � xh;ik4hkðI � hAÞ�1k½kBuh;iþ1k þ kAxh;ik�

Thus, (11) follows from (10). &

We are aware of the similarity between the above theorem and the approximation result for
LCSs in [28]. However, there exist several major differences: the LCS considered in [28]
possesses either a semidefinite D or the passivity property for the matrix tuple ðA;B;C;DÞ and
admits a discontinuous state trajectory xðtÞ; on the other hand, the LCS treated in Theorem 7
has a zero D and an absolutely continuous state trajectory xðtÞ is considered.
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5.2. Solution boundedness and uniqueness

In this subsection, we establish two properties of a solution trajectory of the LCS (5); the first
property is that any such trajectory must be bounded by a time-dependent multiplicative
function times the norm of the initial condition; the second property is ‘short-time uniqueness’
of any solution trajectory under a restriction on the initial condition. The following lemma
provides the key for both properties.

Lemma 8
If ðxðtÞ; uðtÞÞ is any solution trajectory of the LCS (5), then u must satisfy

04uðtÞ ? CeAtx0 þ CB

Z t

0

uðtÞ dtþ Fðt; uÞ50 ð12Þ

for almost all t 2 ½0;T �; where Fðt; uÞ is absolutely continuous in t for fixed u 2 Im½0;T � and
satisfies the following condition: there exist positive constants ðm; e0Þ; which depend only on the
triple ðA;B;CÞ; such that kFðt; uÞk4mtk

R t
0 uðtÞ dtk for all t 2 ½0; e

0� and all u 2 Imþ½0; e
0�:

Proof
Since xðtÞ is absolutely continuous on ½0;T �; it is differentiable at almost all t 2 ½0;T �:Hence so is
e�AtxðtÞ: We have

dðe�AtxðtÞÞ

dt
¼ � Ae�AtxðtÞ þ e�At ’xðtÞ ¼ �Ae�AtxðtÞ þ e�At½AxðtÞ þ BuðtÞ�

¼ e�AtBuðtÞ

Hence,

e�AtxðtÞ � x0 ¼

Z t

0

dðe�AtxðtÞÞ
dt

dt ¼
Z t

0

e�AtBuðtÞ dt

Consequently, we have

xðtÞ ¼ eAtx0 þ

Z t

0

eAðt�tÞBuðtÞ dt ð13Þ

Based on this, we further have

CxðtÞ ¼CeAtx0 þ CeAt
Z t

0

e�AtBuðtÞ dt

¼CeAtx0 þ C½I þ ðeAt � IÞ�

Z t

0

½I þ ðe�At � IÞ�BuðtÞ dt

¼CeAtx0 þ CB

Z t

0

uðtÞ dtþ Fðt; uÞ

where

Fðt; uÞ ¼ CðeAt � IÞ

Z t

0

e�AtBuðtÞ dtþ C

Z t

0

ðe�At � IÞBuðtÞ dt

It is obvious that Fðt; uÞ is absolutely continuous in t for fixed u 2 Im½0;T �: Note that there exist
e0 > 0; c1 > 0; and c2 > 0 such that keAt � Ik4c1t and maxi;j j½ðe

�At � IÞB�ijj4c2t for all t 2 ½0; e0�:
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Letting c3 � maxi;j ðmaxt2½0;e0 � jðe
�AtBÞijjÞ and recalling that B is of order n�m; we deduce by

the non-negativity of uðtÞ that for all t 2 ½0; e0�;Z t

0

e�AtBuðtÞ dt
���� �������� ����4c3

ffiffiffi
n
p

Z t

0

uðtÞ dt
���� �������� ���� ð14Þ

and Z t

0

ðe�At � IÞBuðtÞ dt
���� �������� ����4c2

ffiffiffi
n
p

t

Z t

0

uðtÞ dt
���� �������� ����

Therefore, for some constant m > 0 dependent only on the matrices ðA;B;CÞ and not on the
solution u; we have all t 2 ½0; e0�;

kFðt; uÞk4 cttkCk

Z t

0

e�AtBuðtÞ dt
���� �������� ����þ kCk Z t

0

ðe�At � IÞBuðtÞ dt
���� �������� ����

4mt
Z t

0

uðtÞ dt
���� �������� ����

This establishes the desired property of Fðt; uÞ: Note that e0 is also independent of the solution u:
&

Without the term Fðt; uÞ; expression (12) is precisely the DCP ðq;CB; tÞ; where qðtÞ ¼ CeAtx0:
Thus, Lemma 8 clearly brings out the connection between the LCS and DCP; specifically, the
DCP is like an integral form of the LCS, albeit including an auxiliary term. Due to the latter
term, the existence of a solution to the LCS (established in Theorem 7) does not follow from
Mandelbaum’s result mentioned in Section 2.

To present the main boundedness and uniqueness properties of the solutions of the LCS (5),
we review some basic notions. An ordered tuple a � ða1; . . . ; akÞ of real numbers is said to be
lexicographically non-negative if either a ¼ 0 or its first non-zero component is positive. In this
case, we write ak0: The set of lexicographically non-negative k-tuples forms a convex, albeit not
closed, cone in Rk: A finite collection of n-dimensional vectors ðy1; y2; . . . ; ykÞ for some positive
integer k is said to be lexicographically non-negative, denoted ðy1; y2; . . . ; ykÞk0; if for each
j ¼ 1; . . . ; n; the k-dimensional tuple ðy1j ; . . . ; y

k
j Þ is lexicographically non-negative. Using this

notation, the semiobservability cone [19] associated with the pair ðC;AÞ is defined as

Y � fx 2 Rn : ðCx;CAx; . . . ;CAn�1xÞk0g

This cone has played a fundamental role in the study of the LCS and its conewise generalization
[18]. For our purpose here, the key property we will make use of the cone Y is the fact that
x0 2 Y if and only if CeAtx050 for all t50 sufficiently small; in particular, we must have
Cx050: Also of significance in the result below is the well-known unobservable subspace
associated with the same pair:

%OðC;AÞ � fx 2 Rn : CAix ¼ 0; i ¼ 0; . . . ; n� 1g ¼ Y \ ð�YÞ

It is clear that if x0 2 %OðC;AÞ; then we must have CeAtx0 ¼ 0 for all t50: The following
is the main result for the LCS (5). In the result, we write ðxðt;x0Þ; uðt; x0ÞÞ for a
solution trajectory to the LCS in order to stress the dependence of the trajectory on the initial
condition x0:
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Theorem 9
The following three statements hold for the LCS (5).

(a) If CB is SSC of type I, then there exist scalars e1 > 0; s2 > 0 and a function s1ðtÞ > 0 such
that for all initial states x0 satisfying Cx050 and all t 2 ½0; e1�; any solution ðxðt;x0Þ;
uðt;x0ÞÞ of the LCS (5) satisfies

kxðt;x0Þk4s1ðtÞkx0k and

Z t

0

uðt;x0Þ dt
���� �������� ����4s2kx0k

(b) If CB is SSC of type I, then there exists a scalar e2 > 0 such that for any x0 2 Y;
there is a unique solution pair ðxnðt;x0Þ; unðt;x0ÞÞ of the LCS (5) in the interval ½0; e2� that
is given by

xnðt; x0Þ ¼ eAtx0 8t 2 ½0; e2�

unðt;x0Þ ¼ 0 for almost all t 2 ½0; e2�

Moreover, if x0 2 %OðC;AÞ; then the latter conclusion holds for e2 ¼ T :
(c) If CB is SSC of type II, then for any x0 2 Y and any solution ðxðt;x0Þ; uðt;x0ÞÞ of the LCS

(5), there exists eu > 0 such that xðt;x0Þ ¼ eAtx0 for all t 2 ½0; eu� and uðt;x0Þ ¼ 0 for almost
all t 2 ½0; eu�:

Proof
The proof is based on the integral property (12) of a solution of the LCS. For part (c) and the
first assertion in part (b), it suffices to combine this integral representation of a solution with
Proposition 6, taking note of the above-mentioned properties of the elements in the cone Y:
There is no need for further proof of these two assertions. Based on the first assertion in part (b),
the second assertion can be proved as follows. Let x0 2 %OðC;AÞ � Y: Let e2 > 0 be as prescribed
in the first part of (b). Next consider the LCS starting at time t ¼ e2 with initial condition
xðe2;x0Þ which remains in %OðC;AÞ: Since the LCS is a time-invariant system and the scalar e2 is
independent of initial conditions and solution trajectories, we can extend the uniqueness of the
solution trajectory on hand to the interval ½e2; 2e2�: Continuing this argument will allow us to
reach the final time T :

It remains to prove (a). Note that (12) yieldsZ t

0

uðs; x0Þ 8 ½CeAsx0 þ CBvðs; x0Þ þ Fðs; uð*;x0ÞÞ� ds ¼ 0

for all t 2 ½0;T �; where vðt; x0Þ �
R t
0
uðt;x0Þ dt and Fðt; uð*; x0ÞÞ satisfies

kFðt; uð*;x0ÞÞk4mtkvðt; x0Þk

for all t 2 ½0; e0�; with the constants m and e0 being independent of the x0 and solution pairs.
Similar to the proof of Proposition 6, we deduce that for some index i and constants s0 2 ð0;sÞ
and e satisfying 05e5minð%t; m�1ðs� s0ÞÞ; where s and %t are two positive constants associated
with the matrix type I,

s0kvðt; x0Þk24ðs� mtÞkvðt;x0Þk24
Z t

0

’viðt;x0ÞðCeAtx0Þi dt
���� ���� 8t 2 ½0; e�
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Moreover, we have, for some constant k > 0 that depends only on ðA;B;CÞ;Z t

0

’viðt; x0ÞðCeAtx0Þi dt
���� ����4 Z t

0

’viðt; x0ÞjðCeAtx0Þij dt4
Z t

0

’viðt;x0ÞkCeAtx0k dt

4kkx0k
Z t

0

’viðt; x0Þ dt4kkx0k kvðt;x0Þk

Consequently, for some constant s2 > 0; we obtain

kvðt;x0Þk4s2kx0k 8t 2 ½0; e�

From (13), we deduce, for some constant c > 0;

kxðt; x0Þk4keAtk kx0k þ
Z t

0

e�AtBuðt; x0Þ dt
���� �������� ����� �

4keAtk½kx0k þ ckvðt;x0Þk�

from which the existence of the function s1ðtÞ follows readily. &

It should be pointed out that while the existence of a weak solution to the LCS (5) is established
for any finite time T > 0 (Theorem 7), the solution properties are valid only on short-time intervals
(Theorem 9). The difficulty in extending the latter properties to long time intervals is twofold. One,
while the integral formulation (12) of the LCS is valid for any time t > 0; the key bound kFðt; uÞ
k4mtkvðtÞk is valid only for a short time. Two, the condition x0 2 Y ensures that CeAtx050 for a
short time only; when some component of the vector CeAtx0 reaches zero at some time t > 0; a
possible jump in the algebraic variable uðt;x0Þ occurs and the LCS enters into a new mode. Without
a clear understanding about this mode transition, which is particularly challenging because the key
matrix D in the LCS ðA;B;C;DÞ is zero in this case, we cannot predict the trajectory behaviour
after the event time. Of course, a question remains as to what happens when x0 =2 Y; at this time, we
have no answer for this question. However, to illustrate the non-triviality of this question, we
present the following example, which is originally proposed in [25] and recently revisited in [22].

Example 10
Consider the index-one LCSðA;B;C; 0Þ with

A ¼
0 �1

0 0

" #
2 R4�4; B ¼

R

0

" #
2 R4�3 and C ¼ ½I3 0� 2 R3�4

where 1 ¼ ½1 1 1�T and R is the non-negative P-matrix given by

R ¼

1 3 0

0 1 3

3 0 1

2664
3775

It is clear that CB ¼ R is a P-matrix. However, if x0 ¼ ð0; 0; 0; 1Þ so that x0 =2 Y; then the LCS
can be cast as DCPð�1 t;RÞ: find an integrable uðtÞ such that

04uðtÞ ? �1 tþ R

Z t

0

uðtÞ dt50 for almost all t50

It is shown in [25] that the latter DCP admits multiple solutions and thus uniqueness fails.
Nevertheless, if the solution space is restricted to be piecewise Bohl distributions, then there is a
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unique Bohl-type solution since CB is a P-matrix. Moreover, since CB is a non-negative matrix
with positive diagonal entries, thus is SSC of type I, it follows ‘short-time’ solution uniqueness
holds for any x0 2 Y: &
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13. Çamlıbel MK, Heemels WPMH, Schumacher JM. On linear passive complementarity systems. European Journal of

Control 2002; 8:220–237.
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18. Çamlıbel MK, Pang JS, Shen J. Conewise linear systems: non-Zenoness and observability. SIAM Journal on Control
and Optimization 2006; 45(6):1769–1800.

19. Pang JS, Shen J. Strongly regular differential variational systems. IEEE Transactions on Automatic Control 2007,
in press.

20. Pang JS, Stewart D. Solution dependence on initial conditions in differential variational inequalities. Mathematical
Programming, Series B 2007, in press.

21. Shen J, Pang JS. Linear complementarity systems: Zeno states. SIAM Journal on Control and Optimization 2005;
44:1040–1066.

SEMICOPOSITIVE LINEAR COMPLEMENTARITY SYSTEMS 1385

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1367–1386

DOI: 10.1002/rnc



22. Stewart DE. Uniqueness for index-one differential variational inequalities. Manuscript, Department of
Mathematics, University of Iowa, Iowa City, October 2006.

23. Pang JS, Stewart DE. Differential variational inequalities. Mathematical Programming, Series A 2007, in press.
24. Stewart DE. Convolution complementarity problems with application to impact problems. IMA Journal of Applied

Mathematics 2006; 71:92–119.
25. Bernard A, El Kharroubi A. Régulations de processus dans le premier ‘orthant’ de Rn: Comptes Rendus Academie

Science Paris Series I Mathematique 1989; 309:371–375.
26. Royden HL. Real Analysis (2nd edn). Macmillan: New York, 1968.
27. Folland GB. Real Analysis: Modern Techniques and Their Applications (2nd edn). Wiley: New York, 1999.
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