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ABSTRACT
This paper proposes an efficient way to compute the L2-gain
of discrete-time switched linear systems. Using the notion of
generating functions, generalized versions of L2-gains under
arbitrary switching are studied. An efficient numerical algo-
rithm is formulated by which these generalized L2-gains can
be estimated. The proposed method mitigates the problem
of conservative bounds. Numerical examples are provided
to illustrate the algorithm.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—dynamic programming,
control theory

General Terms
Algorithms, performance, theory

Keywords
L2-gains, switched linear systems, input-to-state stability,
generating functions

1. INTRODUCTION
Switched linear systems form an important class of hybrid

systems and are being used to model a diverse range of en-
gineering systems [11]. Stability aspects of switched linear
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systems have received a lot of attention in the past decade.
The survey papers [15, 12] provide a review of the results on
this subject.

Estimating the input-to-state (or output) gains for switched
linear systems has long been recognized as an open prob-
lem [5, 6]. Recent research in this area has focused on ob-
taining bounds for the L2-gains of the switched linear sys-
tems under various switching conditions. The analysis of
L2-gain under slow switching was reported in [4], while [16]
used an average dwell time condition. Using common stor-
age functions, it was proved in [7, 8] that the solutions to
the L2-gain problem of continuous-time switched linear sys-
tems can be characterized using a finite parametrization. A
multiple Lyapunov function approach was used to study L2-
gains of general switched systems in [18]. The paper [13]
addressed the L2-gain problem by characterizing the most
destabilizing switching law, leading to a sufficient condition
for bounding the L2-gain of first order SISO systems. More
recently, the variation of L2-gain of discrete-time switched
linear systems with dwell time was studied in [1, 2]. LMI
based sufficiency conditions were proposed to bound the L2-
gains under dwell time constraints (extensible to arbitrary
switching). Less conservative LMI conditions are proposed
in [10], though the worst case complexity increases rapidly
with the number of subsystems.

The present paper focuses on estimating the L2-gain nu-
merically using an efficient algorithm. Most of the existing
results tend to be either conservative or computationally
expensive to verify. Using the newly introduced notion of
generating functions [14, 9], we can derive necessary and
sufficient conditions to characterize the input-to-state L2-
gains of discrete-time switched linear systems under arbi-
trary switching. Thus an efficient iterative algorithm (based
on [17]) for computing the generating functions enables us to
compute bounds on the input-to-state L2-gains. By having
a necessary and sufficient condition, the input-to-state L2-
gains can be estimated to a desired precision while avoiding
conservative bounds. An added advantage of this approach
is that it enables us to study a more general version of the
L2-gain where the input and the state energy are weighted
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by an exponential discount factor. This allows us to charac-
terize both the trajectory growth rates and energy amplifi-
cation using a single metric.
The paper is organized as follows. We describe the prob-

lem under consideration and present some preliminary re-
sults in Section 2. The notion and properties of controlled
generating functions are described briefly in Section 3. Sec-
tion 4 contains the main results of this paper where we for-
mulate an iterative algorithm for the computation of the
generalized L2-gains. A relaxed version of the algorithm
that enables faster computations at the cost of slight in-
accuracy is also discussed. Some numerical examples are
included in Section 5 for illustrating the algorithm. Finally
concluding remarks are made in Section 6.

2. PRELIMINARIES
Throughout the paper we consider discrete-time controlled

switched linear systems (SLSs) with dynamics given by

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t = 0, 1, . . . . (1)

Here (Ai ∈ R
n×n, Bi ∈ R

n×m) are the state and input ma-
trices indexed by i ∈ M := {1, . . . ,M}. σ(t) ∈ M repre-
sents the switching law that determines the unique dynam-
ics observed at any time t. The state and the input control
input are denoted by x(t) and u(t) respectively.For simplic-
ity, we often use u to denote the control input sequence
{u(t)}t=0,1,..., and σ the switching sequence {σ(t)}t=0,1,....
We also assume that at least one of the Bi is nonzero.
Denote by x(t; σ, z, u) the state trajectory of the controlled

SLS (1) starting from the initial state x(0) = z under the
switching sequence σ and the control input u. For a fixed σ,
system (1) becomes a linear time-varying system, whose so-
lution x(t;σ, z, u) is jointly linear in z and u. The reachable
set R is defined as the set of all states that can be reached
within a finite time starting from a zero initial state under
arbitrary control laws. In the present paper we assume that
the reachable set of SLS (1) is a subspace over Rn which in
general might not always be the case [3].
The dynamics of the corresponding autonomous SLS are

given by

x(t+ 1) = Aσ(t)x(t), t = 0, 1, . . . . (2)

Denote by x(t;σ, z) the solution to (2) starting from x(0) = z
under the switching sequence σ. Then x(t; σ, z) is exactly
the solution x(t;σ, z, u) to the controlled SLS (1) with u = 0.

2.1 Generalized L2-Gain
We are concerned with the estimation of the following

generalized input-to-state gains (introduced in [14]).

[κ(λ)]2 := sup
σ

sup
0 �=u∈Uc

∑∞
t=0 λ

t‖x(t+ 1;σ, 0, u)‖2∑∞
t=0 λ

t‖u(t)‖2 , (3)

where λ ∈ R+ := [0,∞) is a discount factor, and Uc is the
space of all u with finite duration (identically zero after a
finite time). The classical definition of L2-gain (denoted by
κ) is obtained by setting λ = 1 in (3).
The above definition of the generalized L2-gain captures

both the worst-case energy amplification and the worst-case
trajectory growth rates. A finite generalized L2-gain not
only implies convergence of the state trajectories but also
bounds their rate of decay. In this sense, the generalized

L2-gain can be used as a single metric representing informa-
tion of two important factors in SLS stability. Furthermore
the generalized L2-gain of a SLS can also be viewed as the
classical L2-gain of a scaled version of the SLS. To see this
consider the following SLS obtained by scaling (1):

x̃(k + 1) = Ãσ(k)x̃(k) + B̃σ(k)ũ(k),

where Ãi =
√
λ · Ai, B̃i =

√
λ · Bi, with the same initial

condition x̃(0) = z. Applying the transformed control in-

put law ũ(k) =
√
λk · u(k) results in a transformed state

trajectory x̃(k) =
√
λk · x(k). Writing the definition of the

classical gain for the scaled SLS, we immediately obtain the
generalized L2-gain of the original SLS.

2.2 Properties
We report some relevant properties of the generalized L2-

gain. The proofs can be found in [14].

Proposition 1. The L2-gain κ(λ) as a function of λ ∈
R+ has the following properties:

1. At λ = 0, κ(0) = maxi∈M σmax(Bi), where σmax(Bi)
denotes the largest singular value of Bi;

2. κ(λ) is a lower semi-continuous function in λ ∈ R+.

3. κ(λ) is a non-decreasing function in λ.

3. GENERATING FUNCTIONS
In [14], the concept of controlled generating functions is

introduced and some of their useful properties are derived.
For each λ, γ ∈ R+, the strong generating function Gλ,γ :
R

n → R+ ∪ {∞} of the SLS (1) is defined as

Gλ,γ(z)

:= sup
σ,u∈Uc

[ ∞∑
t=0

λt‖x(t;σ, z, u)‖2−γ2λ

∞∑
t=0

λt‖u(t)‖2
]

(4)

= ‖z‖2+λ· sup
σ,u∈Uc

∞∑
t=0

λt[‖x(t+ 1;σ, z, u)‖2−γ2‖u(t)‖2
]
(5)

for λ, γ ∈ R+ and z ∈ R
n. This definition allows the choice

of the hybrid control law (σ, u) to excite the largest state
energy with limited input energy. A finite horizon version
can also be defined as follows,

Gλ,γ,k(z)

:= sup
σ,u∈Uk

[
k∑

t=0

λt‖x(t;σ, z, u)‖2−γ2λ

k−1∑
t=0

λt‖u(t)‖2
]

(6)

=‖z‖2+λ · sup
σ,u∈Uk

k−1∑
t=0

λt [‖x(t+ 1;σ, z, u)‖2−γ2‖u(t)‖2
]
.

(7)

The properties of strong generating functions have been in-
vestigated and reported in [14]. We present some relevant
ones here without proofs.

Proposition 2. For any λ, γ ∈ R+, the strong generat-
ing function Gλ,γ(·) and its k-horizon version Gλ,γ,k(·) for
any k ∈ N have the following properties
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1. (Homogeneity): Gλ,γ(·) and Gλ,γ,k(·) are both ho-
mogeneous of degree two, i.e., for any nonzero α ∈ R,
Gλ,γ(αz) = α2 Gλ,γ(z) and Gλ,γ,k(αz) = α2 Gλ,γ,k(z),
∀ z ∈ R

n. Thus, Gλ,γ(0) ∈ {0,∞}.

2. (Bellman Equation): For all z ∈ R
n,

Gλ,γ,k+1(z) = ‖z‖2 + λ· sup
i∈M,v∈Rm

[
− γ2‖v‖2 +

Gλ,γ,k(Aiz +Biv)
]
,

Gλ,γ(z) = ‖z‖2 + λ· sup
i∈M,v∈Rm

[
− γ2‖v‖2 +

Gλ,γ(Aiz +Biv)
]
. (8)

3. (Monotonicity): For any z ∈ R
n, Gλ,γ(z) and Gλ,γ,k(z)

are non-increasing in γ ∈ R+ (for fixed λ); and non-
decreasing in λ ∈ R+ (for fixed γ).

4. (Convergence) Gλ,γ,k(z) ↑ Gλ,γ(z) as k → ∞.

The idea of defining trajectory dependent power series
called generating functions is adopted from [9], where expo-
nential stability of autonomous SLS was characterized using
autonomous generating functions Gλ : Rn → R+ ∪ {∞} de-
fined as

Gλ(z) := sup
σ

∞∑
t=0

λt‖x(t; σ, z)‖2, ∀z ∈ R
n. (9)

3.1 Radius of Convergence
The monotonicity of Gλ,γ(z) enables us to define a radius

of convergence for the generating function. For γ ∈ R+, the
radius of convergence of the generating function Gλ,γ(z) (on
R

n) is defined as

λ∗(γ) := sup{λ |Gλ,γ(z) < ∞, ∀z ∈ R
n}.

More generally, for the reachable subspace R of Rn the ra-
dius of convergence of Gλ,γ(z) on R is defined as

λ∗
R(γ) := sup{λ |Gλ,γ(z) < ∞, ∀z ∈ R}.

Note that R is always invariant under the subsystem dy-
namics and is assumed to be a subspace. This assumption
on the reachable set is not too restrictive since reachabil-
ity is a generic property—any randomly generated SLS is
reachable with probability one.

Proposition 3. The radius of convergence λ∗
R(γ) of the

generating function on the reachable subspace R as a func-
tion of γ ∈ R+ has the following properties.

1. λ∗
R(γ) ≡ 0 for 0 ≤ γ < maxi∈M σmax(Bi);

2. λ∗
R(γ) is a non-decreasing function of γ for

γ ≥ maxi∈M σmax(Bi);

We now show how the L2-gain can be characterized by the
radius of convergence of Gλ,γ(z) on R. As we will observe,
this result provides a necessary and sufficient condition for
the L2-gain to lie below a given value based on the conver-
gence of the generating function. Ultimately we can utilize
this result for bounding the L2-gain provided the generat-
ing function can be efficiently tested for convergence. This
result and its proof have been reported in [14].

Proposition 4. (L2-gain characterization) For λ > 0
and γ ∈ R+, the following statements are equivalent:

1. κ(λ) ≤ γ, where κ(λ) is the generalized L2-gain defined
in (3);

2. λ ≤ λ∗
R(γ), where R is the reachable subspace of the

SLS (1) from the origin.

3. Gλ,γ(·) < ∞

In other words, the generalized L2-gain κ(λ) and the radius
of convergence λ∗

R(γ) are (generalized) inverse functions of
each other. This property implies that the strong generating
functionGλ,γ(·) is finite if and only if the value of γ is greater
than generalized L2-gain κ(λ). Based on the convergence of
the strong generating function, it is thus possible to bound
κ(λ) in terms of γ. Since the condition is both necessary
and sufficient, one can use a bisection type algorithm to
accurately estimate the κ(λ).

For systems whose reachable set is not a subspace, it is
still possible to define a (restricted) generating function and
a corresponding radius of convergence by restricting the SLS
to a subspace invariant under the subsystem dynamics. Such
a subspace would always be contained within the reachable
set. The generalized L2-gain of the restricted SLS would
be the worst case weighted energy gain among all the state
trajectories starting in the invariant subspace. Using (re-
stricted) generating functions, it is possible to estimate the
generalized L2-gain for the restricted system using similar
principles as discussed above.

4. NUMERICAL COMPUTATION
In this section we present methods to compute the gen-

erating functions numerically. A numerical method to com-
pute the generating function enables us to use Proposition 4
to estimate the generalized L2-gains. We first prove that
any finite horizon generating functions can be represented
by a piecewise quadratic function and utilize this structure
to formulate an iterative algorithm for efficient computation.

We begin by observing that the generating function (or k-
horizon generating function) can be thought of as an infinite
(or finite) horizon performance index that needs to be maxi-
mized over all possible switching and control laws. Since the
generating function has quadratic terms, this optimization
is equivalent to the discrete-time switched linear quadratic
regulator (DSLQR) problem. One obvious way of achiev-
ing the maximum is through Dynamic Programming (DP).
The Bellman equation in Proposition 2 gives the value itera-
tion procedure for computing the strong generating function
through DP. However the lack of an analytic closed form for
the generating function necessitates numerical methods for
finding the supremum at each step. This introduces inac-
curacies and limits the computational efficiency of this pro-
cedure. Thus a more efficient method for computing the
strong generating function is needed.

It has been shown in [17] that the finite horizon value
function of a DSLQR problem is piecewise quadratic and
can be completely characterized by a finite number of posi-
tive semidefinite (p.s.d) matrices. An efficient algorithm for
computing the value function based on this characterization
was also discussed. We now restate the relevant results here
in notation consistent with our framework.

Denote by A the set (convex cone) of all n×n symmetric
positive definite matrices. For the SLS given in (1), the
Riccatti Mapping ρλ,γ,i(P ) : A → A of subsystem i ∈ M,
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with λ > 0 and sufficiently large γ > 0, is defined as

ρλ,γ,i(P ) := I + λ ·AT
i PAi

+ λ ·AT
i PBi

(
γ2I −BT

i PBi

)−1

BT
i PAi. (10)

For any subset H of A, the Switched Riccatti Mapping
ρλ,γ,M(H) is defined by

ρλ,γ,M(H) = {ρλ,γ,i(P ) : for some i ∈ M and P ∈ H} .

Starting with the initial condition H0 = {I}, we generate a
sequence of sets through the iteration Hk+1 = ρλ,γ,M(Hk).
These sets are called the Switched Riccatti Sets (SRSs) and
have the property of completely characterizing Gλ,γ,k(·) as
follows.

Proposition 5. For all k ∈ N ∪ {0},

Gλ,γ,k(z) = max
P∈Hk

zTPz. (11)

Proof. The proposition can be proved by induction. For
k = 0 the statement (11) holds as

Gλ,γ,0 = ‖z‖2 = max
P∈{I}

zTPz.

If (11) holds for some k ≥ 0, then from the Bellman’s equa-
tion in Proposition 2,

Gλ,γ,k+1(z) = ‖z‖2+λ sup
i∈M,v∈Rn

[
−γ2‖v‖2+Gλ,γ,k(Aiz +Biv)

]
,

= zT z + λ sup
i∈M,v∈Rn,P∈Hk

[
−γ2vT v

+ (Aiz +Biv)
TP (Aiz +Biv)

]
,

= sup
i∈M,P∈Hk,v∈Rn

[
zT

(
I + λ ·AT

i PAi

)
z

+ λ · vT
(
−γ2I +BT

i PBi

)
v

+ 2λ · vTBT
i PAiz

]
.

The expression inside the brackets is quadratic in v. The
supremum can be found (provided γ is sufficiently large) as,

Gλ,γ,k+1 = sup
i∈M,P∈Hk

zT
(
I + λ ·AT

i PAi

+ λ ·AT
i PBi

[
γ2I−BT

i PBi

]−1

BT
i PAi

)
z,

= max
i∈M,P∈Hk+1

zTPz,

= max
P∈Hk+1

zTPz.

This proves the theorem.

Remark 1. Proposition 5 states that the finite horizon
generating functions can be exactly represented by a finite
number of positive definite matrices thus removing the need
for gridding the state space during computation. Also by
Proposition 2, the strong generating function can be com-
puted as a pointwise limit of piecewise quadratic functions.

Remark 2. Finite parametrization of a common storage
function was derived in [8] for bounding the L2-gain of a

continuous-time SLS. Our contribution is to explicitly de-
rive the relation for discrete-time systems and (as we will
demonstrate in the Section 4.1) generate an effective itera-
tive algorithm to compute bounds on the L2-gain.

Estimating generalized L2-gains from the strong generat-
ing function involves checking the convergence of the gener-
ating functions. To do this, it might be essential to com-
pute the finite horizon generating function Gλ,γ,k over a
large time horizon k. This might be impracticable as the
number of matrices in Hk required to represent Gλ,γ,k in-
creases exponentially with k. Applying the Switched Riccati
Mapping to this exponentially increasing family of matri-
ces forms the major computational bottleneck in computing
generating functions and thus L2-gains. A more efficient
way of managing both memory requirements and computa-
tional time is to prune redundant matrices which do not lead
to a supremum at each step, as detailed in [17]. This idea
is introduced in the context of generating functions in the
next section.

4.1 Algorithm for Computing Gλ,γ(z)

We now present an algorithm for computing the strong
generating functions using the characterization presented in
Proposition 5. The algorithm is a specialization of the gen-
eral one in [17] to the strong generating functions with par-
alle development. The key idea of the algorithm is the re-
moval of all those matrices which do not contribute to the
maximum in (11) for any z ∈ R

n. To this end we intro-
duce the idea of algebraic redundant matrices in the present
context.

Definition 1. A matrix P̂ ∈ H ⊂ A is called redundant
w.r.t H if for any z ∈ R

n, there exists a matrix P ∈ H such
that P �= P̂ and zTPz ≥ zT P̂ z.

If a matrix P̂ is redundant w.r.t a SRS Hk, then the gen-
erating function Gλ,γ,k can be represented exactly using the

set Hk \ {P̂}. This implies P̂ can be removed without caus-
ing any error. Hence to maintain ease of computation, we
should remove as many redundant matrices as possible at
each step of computing the SRSs. However, testing redun-
dancy is in itself a challenging problem. From a geometric
viewpoint, any matrix P̂ ∈ Hk ⊂ A represents a unique el-
lipsoid {z ∈ R

n : zT P̂ z ≤ 1}. A matrix P̂ is redundant w.r.t
Hk if and only if its corresponding ellipsoid completely cov-
ers the intersection of the ellipsoids for matrices in Hk \{P̂}.
This leads to an easily verifiable sufficient condition given in
the following lemma.

Lemma 1. P̂ ∈ Hk is redundant w.r.t Hk if there exist

non-negative constants {αi}|Hk|−1
i=1 such that

∑|Hk|−1
i=1 αiPi �

P̂ , where {Pi}|Hk|−1
i=1 is an enumeration of Hk \ {P̂}.

Proof. The proof follows from the fact that
∑|Hk|−1

i=1 αiPi

represents an ellipsoid containing the intersection of all the

ellipsoids represented by matrices {Pi}|Hk|−1
i=1 .

The condition stated in Lemma 1 can be tested using con-
vex optimization techniques. Most redundant matrices can
be eliminated this way leading to less computation time. Al-
gorithm 1 summarizes the idea of pruning based on Lemma 1.

Algorithm 1. 1. Initialize k := 0, H0 = {I};
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2. Initialize Hk+1 = ∅

3. repeat for every i ∈ M

• repeat for all P̂ ∈ Hk

• Compute Pi = ρλ,γ,i(P̂ ).

• Hk+1 = Hk+1 ∪ Pi.

• end repeat

4. end repeat

5. If any P ∈ Hk+1 satisfies the condition of Lemma 1
w.r.t Hk+1, then Hk+1 = Hk+1 \ {P};

6. Set Gλ,γ,k+1(z) = maxP∈Hk+1 z
TPz;

7. k := k + 1;

8. Iterate till Gλ,γ,k(·) converges within tolerance (or ap-
pears to diverge);

It is to be noted that the sets Hk returned in Algorithm 1
contain only the non-redundant matrices from the actual
SRS generated by the Riccatti equation. However, they are
functionally equivalent to the SRS as they both define the
same generating function and hence we denote these sets by
the same notation.
Algorithm 1 alleviates the computational burden incurred

in applying the Switched Riccati Mapping for an exponen-
tially growing number of matrices at the cost of introducing
a Linear Matrix Inequality(LMI) computation(which has a
complexity polynomial in the state space dimension) for re-
dundancy check at each step. The algorithm proves most
efficient for SLS comprising of a large number of subsys-
tems with a small state-space dimension where the number
of redundant matrices is typically large enough to offset the
redundancy check complexity. Additionally, it is also pos-
sible to prune redundant matrices only when the Switched
Riccati Set becomes large enough to warrant it, leading to
more efficient computation.
The above idea of redundancy can be further relaxed to

reduce computational complexity (number of matrices re-
quired to describe the generating function) at the expense
of accuracy. We describe such an relaxation algorithm in
the next section.

4.2 Relaxation Algorithm for
Approximate Computations

We begin by modifying the definition of redundancy to
allow for slight errors in characterizing the strong generating
functions.

Definition 2. A matrix P̂ ∈ Hk is called ε-redundant with
respect to Hk if ∀z ∈ R

n∃P ∈ Hk \ P̂ such that zTPz ≥
zT P̂ z − ε‖z‖2.

By the same reasoning as in Lemma 1, a sufficient condition
for ε-redundancy can be given as follows.

Lemma 2. P̂ ∈ Hk is ε-redundant w.r.t Hk if there exist

non-negative constants {αi}|Hk|−1
i=1 such that

∑|Hk|−1
i=1 αiPi +

ε · I � P̂ , where {Pi}|Hk|−1
i=1 is an enumeration of Hk \ {P̂}

and I is an Identity matrix of appropriate dimension.

If we denote by Hε the set formed by removing all the ε-
redundant matrices from a set H, the following relationship
follows from definition 2.

max
P∈H

zTPz − ε‖z‖2 ≤ max
P∈Hε

zTPz ≤ max
P∈H

zTPz. (12)

Hence pruning the ε-redundant matrices from a SRS Hk

introduces an error of at most ε‖z‖2 in the representation of
the generating function.

Lemma 2 can be incorporated into Algorithm 1 to com-
pute relaxed subsets Hε

k of the SRS’s Hk iteratively. The
sets Hε

k can be used to define approximations of the strong
generating functions as follows,

Gε
λ,γ,k(z) := max

P∈Hε
k

zTPz. (13)

Here, Gε
λ,γ,k is an under approximation of the finite hori-

zon generating function Gλ,γ,k (as Hε
k ⊆ Hk). Since errors

will be introduced in the representation of the generating
functions at each iteration, it is desired that the cumulative
effects of these errors are bounded. This will ensure that the
numerical value of the infinite horizon generating function
will be close to the actual value. The following proposition
gives a bound on the error incurred.

Proposition 6. For all k ≥ 0 and z ∈ R
n, the following

condition holds:

Gε
λ,γ,k(z) ≥ Gλ,γ,k(z)− ε

k∑
t=0

λt‖x(t;σ∗
k,z, z, u

∗
k,z)‖2, (14)

where u∗
k,z ∈ Uk and

(
σ∗
k,z, u

∗
k,z

)
is the hybrid control law

achieving the maximum in the definition of Gλ,γ,k(z).

Proof. The proof is by induction. For k = 0, Gε
λ,γ,k(z) =

Gλ,γ,k(z) = ‖z‖2. Assume the statement is true for some
k ≥ 0. We shall show it is true for k + 1 as well.

Define G̃ε
λ,γ,k+1(z) as follows.

G̃ε
λ,γ,k+1(z) = ‖z‖2+ λmax

i,v

{
−γ2‖v‖2 +Gε

λ,γ,k(Aiz +Biu)
}
.

(15)

As in Theorem 5, it can be proved that
G̃ε

λ,γ,k+1(z) = maxP∈ρλ,γ,M (Hε
k
) z

TPz. It follows from (12)
that

G̃ε
λ,γ,k+1(z)− ε‖z‖2 ≤ Gε

λ,γ,k+1(z) ≤ G̃ε
λ,γ,k+1(z). (16)

From (15) and the induction hypothesis (14) we have,

G̃ε
λ,γ,k+1(z) ≥ ‖z‖2+λmax

i,v

{
−γ2‖v‖2+Gλ,γ,k(Aiz+Biv)

− ε

k∑
t=0

λt‖x(t;σ∗
k,Aiz+Biv, Aiz +Biv, u

∗
k,Aiz+Biv)‖

2}.
(17)

Partition the optimal switching sequence σ∗
k+1,z = (σ, σ′)

and u∗
k+1,z = (u, u′) with u′ ∈ Uk and σ ∈ M. Then

x(1;σ∗
k+1,z, z, u

∗
k+1,z) = Aσz +Bσu. Therefore, by the Bell-

man’s principle the k-horizon trajectory starting from Aσz+
Bσu will coincide with the last k steps of the k+1-trajectory
starting from z. This implies

σ′ = σ∗
k,Aσz+Bσu, u′ = u∗

k,Aσz+Bσu, and

x(t+ 1;σ∗
k+1,z, z, u

∗
k+1,z) = x(t;σ′, Aσz +Bσu, u

′).
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Also, Gλ,γ,k+1(z) = ‖z‖2+λ
{
−γ2‖u‖2 +Gλ,γ,k(Aσz +Bσu)

}
from the optimality of the trajectory (Bellman’s Equation).
Choosing i = σ and v = u, we have

G̃ε
λ,γ,k+1(z) ≥ ‖z‖2 + λ

{
−γ2‖u‖2 +Gλ,γ,k(Aσz +Bσu)

− ε
k∑

t=0

λt‖x(t; σ′, Aσz +Bσu, u
′)‖2

}
,

≥ Gλ,γ,k+1(z)− ε

k+1∑
t=1

‖x(t;σ∗
k+1,z, z, u

∗
k+1,z)‖2.

Combining with (16), we have

Gε
λ,γ,k+1(z) ≥ Gλ,γ,k+1(z)− ε

k+1∑
t=0

‖x(t;σ∗
k+1,z, z, u

∗
k+1,z)‖2.

Thus the statement holds for k + 1 as well.

Thus the error from successive approximations is bounded
by a fraction of the state energy of the SLS. If Gλ,γ(z) < ∞,
then the state energy will also be bounded and hence relax-
ation can be used to compute the infinite horizon generating
function to any desired accuracy by choosing a sufficiently
small tolerance ε.

5. NUMERICAL EXAMPLES

Example 1. We consider the SLS with the following sub-
systems.

A1 =

[
1
2

2
5

1
3

1
3

]
, B1=

[
1
1
2

]
; A2 =

[
3
5

1
3

1
2

1
4

]
, B2=

[
0
1

]
;

A3 =

[
1
3

1
2

1
3

1
4

]
, B3=

[
1
2
1

]
; A4 =

[
1
6

1
5

1
4

1
2

]
, B4=

[
1
1

]
.

The dynamics were selected randomly from a set of proper
fractions to ensure stability under arbitrary switching and
reachability. Algorithm 1 is used to compute the generating
function Gλ,γ,k(·) for λ = 1.1 and γ = 8. The computa-
tions indicate that the matrices required to represent the
generating function Gλ,γ,k do not change significantly after
k = 50 iterations. Hence convergence can be inferred. Also
the number of matrices required to describe the generating
function remains constant at 5 instead of growing exponen-
tially. Due to the small number of matrices involved, no
relaxation was required to manage complexity. The follow-
ing 5 matrices were sufficient to characterize the generating
function.

Gλγ,k = max{zTP1z, z
TP2z, z

TP3z, z
TP4z, z

TP5z},

where

P1 =

[
5.6223 2.4604
2.4604 2.3101

]
, P2 =

[
1.7701 1.2813
1.2813 3.1464

]
,

P3 =

[
4.2323 2.7597
2.7597 3.3596

]
, P4 =

[
5.7712 2.5317
2.5317 2.3610

]
,

P5 =

[
2.7774 2.1657
2.1657 3.6759

]
.

Figure 1 depicts the level curves of Gλ,γ,k(·) = 1 at var-
ious k. Convergence of Gλ,γ,k(·) as k → ∞ is observed.
By Proposition 4, we conclude that the strong generating
function Gλ,γ(·) is finite everywhere for λ = 1.1 and γ = 8.
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Figure 1: Level curves Gλ,γ,k(·) = 1 on the unit circle
for λ = 1.1, γ = 8 with k varying
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Figure 2: Plot of κ(λ) vs λ for Example 1

By repeating the computations for different values of λ
and γ, we can compute the generalized L2-gain κ(λ) as a
function of the discount factor λ. See Figure 2 for such a
plot. The shaded region represents the region of convergence
of the generating function Gλ,γ(·). From Proposition 4, the
boundary curve represents the graphs of both the generalize
L2 gain κ(λ) as a function of λ, and the radius of convergence
of the generating function λ∗(γ) as a function of γ. At λ = 1,
Figure 2 shows that the generalized L2-gain of the given SLS
is less than 5.8. A finer estimate can be obtained using a
bisection type algorithm.

Example 2. The following example illustrates the impor-
tance of having a necessary and sufficient condition in the
computation of the L2-gain. For the 2-dimensional SLS de-
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fined by the following matrices

A1 =

[
0.9 0
0 1

]
, B1 =

[
1
0

]
;

A2 =

[
0.5 0.6

−0.7 −1.2

]
, B2 =

[
0
1

]
,

approaches based on sufficient conditions (such as the one
in [2]) usually fail or give a conservative result in estimat-
ing the L2-gain. (The problem arises due to the lack of a
common quadratic Lyapunov function ensuring asymptotic
stability of the SLS in question). Using the convergence of
the generating function however, we are able to estimate the
(classical) L2-gain of the SLS as 13.6 (Gλ=1,γ=13.6(·) < ∞).
This bound can further be improved using a bisection ap-
proach.

To demonstrate the effectiveness of the algorithm, it was
tested on randomly generated SLS’s with 3 stable single in-
put subsystems of in a three dimensional state space. Gen-
erating functions were computed upto the horizon of k = 75
with λ = 0.75, γ = 15. The computations were run till a sig-
nificant number (250 in total) of SLS’s were found that ex-
hibited convergent behavior for the above parameters. Fig-
ure 3 depicts the number of matrices required to completely
characterize the generating function. A maximum of 19 ma-
trices were required to do so while a majority of the generat-
ing functions could be exactly represented using 6 matrices.
It must be noted that these results represent only a fraction
of the SLS’s with three-dimensional state space as conver-
gence for a given λ and γ is not guaranteed for a randomly
generated SLS’s. Studying a larger sample size is in general
computationally prohibitive. Running on an Intel Core2Duo
desktop and using SeDuMi for LMI programming, computa-
tion took 3-15 minutes for k = 75 iterations of the generat-
ing functions for a single randomly generated SLS. Conver-
gence was usually inferred within 30 iterations though more
(≈ 100) iterations were required when the value of λ is closer
to the radius of convergence.

Example 3. We consider the following three-dimensional
example:

A1 =

⎡
⎣ 0.5 0 −0.7

0 0.3 0
0 −0.4 −0.6

⎤
⎦ , B1 =

⎡
⎣0.40.9
0.1

⎤
⎦ ;

A2 =

⎡
⎣ 0.5 0 0

0.4 0.2 0.3
0 0 0.3

⎤
⎦ , B2 =

⎡
⎣0.40.8

0

⎤
⎦ ;

A3 =

⎡
⎣ 0 −1 0

0.9 0.2 0.3
−0.2 0.3 −0.5

⎤
⎦ , B3 =

⎡
⎣0.10.2
0.1

⎤
⎦ .

Using algorithm 1, we compute the generating functionGλ,γ,k

for λ = 1.1, γ = 35 and k = 200. The unit ball of the gener-
ating function is shown in figure 4. The generating function
is completely characterized by 6-matrices instead of the the-
oretical 3200 matrices.

Example 4. To demonstrate the effect of relaxation, the
following SLS is considered. This system was chosen from

Figure 4: Unit ball of Gλ,γ,k(z) for Example 3

the randomly generated systems used in studying the effec-
tiveness of algorithm 1 mentioned earlier.

A1 =

⎡
⎣0.1515 0.2351 0.3763
0.2696 0.3257 0.1295
0.0822 0.2374 0.2100

⎤
⎦ , B1 =

⎡
⎣0.99810.1132
0.3316

⎤
⎦ ;

A2 =

⎡
⎣0.1719 0.1846 0.1186
0.2420 0.2792 0.3645
0.0066 0.3453 0.1936

⎤
⎦ , B2 =

⎡
⎣0.65110.2015
0.7880

⎤
⎦ ;

A3 =

⎡
⎣0.3249 0.0105 0.1955
0.0499 0.1833 0.3756
0.2664 0.0009 0.4905

⎤
⎦ , B3 =

⎡
⎣0.28720.0415
0.6339

⎤
⎦ .

For λ = 0.75, γ = 15 and time horizon k = 75, the gen-
erating functions were computed using algorithm 1 and its
relaxed version. After k = 75 iterations, the generating
function had exactly 19 non-redundant matrices. Figure 5
shows the unit ball {z : Gλ=0.75,γ=15,k=75(z) = 1} obtained
from the computation. Using a relaxation parameter of
ε = 10−3 decreased the number of non-redundant matrices
to 14, while using a ε = 10−2 cut the number of matrices to
9. In both the relaxed versions, the maximum error incurred
due to the approximation was less than 10−3 for all initial
conditions on the unit ball in R

3. We infer that the com-
putational savings can be significant in higher dimensional
systems with a large number of subsystems. The variation of
the generalized L2-gains as a function of the discount factor
λ can be seen in Figure 6.

6. CONCLUSION
We were able to derive an efficient algorithm for the esti-

mation of L2-gains for discrete-time switched linear systems
through the computation of the corresponding generating
functions. The proposed algorithm can be further relaxed
to trade off accuracy with computational complexity. Future
directions include deriving tighter bounds on the relaxation
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Figure 3: Distribution of non-redundant matrices for random systems

Figure 5: Unit ball of Gλ,γ,k for Example 4

error and investigating L2-gains under input and switching
constraints.
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