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a b s t r a c t

This paper investigates semistability and its computation for discrete-time, switched linear systems
under both deterministic and random switching policies. The notion of semistability pertains to a
continuum of initial state dependent equilibria, and finds wide applications in multi-agent and
distributed network systems. It is shown in this paper that exponential semistability on a common
equilibrium space is equivalent to output exponential stability of a reduced switched linear system with
a suitably defined output, under arbitrary and random switchings. Besides, their convergence rates are
shown to be identical. A generating function based approach is proposed to compute convergence rates
of the reduced switched systems under these switching rules. The obtained semistability results are
applied to performance analysis of PageRank algorithms for distributed web-page systems subject to
topology switching. The iteration processes of these algorithms are formulated as switched linear
systems. Their equilibrium properties are studied, and convergence rates are characterized via the
semistability techniques and the generating function approach.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The notion of semistability extends the regular concept of
stability pertaining to a single, isolated equilibrium to a continuum
of equilibria of a dynamical system. Roughly speaking, the semi-
stability implies that any system trajectory converges to a (possibly
different) stable equilibrium dependent on its initial state. Semi-
stable dynamics have been found in mechanical systems [1,5],
network systems [7], biomedical systems [13,15], and chemical
kinetics [3,24]. Related semistability results in the literature
include [8–11]. In particular, Refs. [10,11] study semistability of
continuous-time, switched linear systems (SLSs) under arbitrary
switching in the Lyapunov framework. Different from this per-
spective, we investigate semistability of discrete-time SLSs and
characterize growth rates of system trajectories under different
switching rules in this paper. Particularly, inspired by various

applications in distributed network systems subject to switching
and with a continuum of equilibria, we consider the semistability
of the SLSs whose trajectories converge to a common equilibrium
space under two switching policies: (deterministic) arbitrary
switching and random switching, as well as its applications. The
contributions of the paper are summarized as follows.

1. Semistability analysis and computation: As a key result of the
paper, we show that the original semistability problem can be
converted into an equivalent, projection based, output stability
problem for a reduced SLS; the semistable growth rate of the
original SLS is equivalent to the exponential growth rate of the
reduced SLS (cf. Theorems 2.2 and 3.1). This result enables us to
apply (regular) stability tools for the SLSs to establish semistability
under various switching policies. While the main technique in
establishing this result is related to partial stability (of non-
switched LTI systems) [25], the switching dynamics of the SLS
render the semistability analysis nontrivial and call for new tools
to handle them (cf. Theorem 2.1 and [6, Theorem 1]).

To deal with the semistability analysis and computation under
different switching rules, we exploit the recently developed
generating function approach [6,18,19,21]. Informally speaking,
generating functions are certain power series with coefficients
determined from systems trajectories under switching rules; their
convergence radii characterize growth rates of system trajectories.
The generating function approach provides a unified and numeri-
cally effective framework to determine and compute stability
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quantities of the SLSs under several switching laws, e.g., arbitrary
switching, optimal switching, and random switching [6]. This
approach is used to evaluate semistability and compute conver-
gence rates under different switchings in this paper.

2. Applications: As a major motivation and application of
the semistability analysis, algorithm design and performance ana-
lysis of distributed network systems subject to topology switch-
ing is carried out in the current paper. Specifically, we consider
PageRank algorithms for switched networks of websites. Such an
algorithm is defined by an iteration processes treated as a discrete-
time linear system. Furthermore, network topology of this system is
often subject to switch, due to either graph topology variations or
web page connection changes. Hence, the iteration process becomes
a discrete-time SLS. For the PageRank application, we propose two
types of SLSs that characterize the iteration dynamics of PageRank
algorithms. The equilibria sets of these SLSs are studied. It is shown
that while such an equilibrium set may be discrete, the semistability
technique remains effective to compute convergence rates of these
SLSs under suitable choice of system parameters.

The paper is organized as follows. In Sections 2 and 3, we
introduce semistability and output stability notions under arbi-
trary switching and random switching, and we establish their
equivalence. Section 4 discusses the generating function approach
for computing convergence radii and system growth rates. The
application to PageRank algorithms is presented in Section 5.
Finally, the conclusion is drawn in Section 6. The preliminary
version of this paper is reported in [20] without detailed discus-
sions on the PageRank application presented in the current paper.

2. Semistability of switched linear systems: deterministic case

A discrete-time, autonomous switched linear system (SLS) on
Rn is

xðtþ1Þ ¼ AsðtÞxðtÞ; t ¼ 0;1;…; ð1Þ

where its state xðtÞARn evolves by switching among a finite family
of linear dynamics indexed by the index set M≕f1;…;Mg,
sðtÞAM for all t, or simply s, is the switching sequence, and
AiARn�n, iAM, are the subsystem matrices. Denoted by xðt; z;sÞ
the state trajectory of the SLS from the initial state xð0Þ ¼ z under
the switching sequence s. In this paper, the vector norm J � J is
the Euclidean norm on Rn, and the matrix norm is induced from it.

In this paper, we will focus on a semistable SLS whose state
trajectories converge to equilibria (dependent on initial states and
switching sequences). To characterize these equilibria, we present
some technical results first. Given a switching sequence s, define
the asymptotic index set associated with s:

Is≕fiAM : for any tAZþ ; there exists t0Zt such that sðt0Þ ¼ ig:
ð2Þ

Since the set M is finite, Is is nonempty for any s. Further, if
iAIs, then s has a constant index subsequence fi;…; i;…g. Let In
be the n�n identity matrix, and N ð�Þ denote the null space of a
matrix. Using this notion, we obtain a necessary condition for the
semistable convergence of the SLS.

Lemma 2.1. Given an initial state zARn and a switching sequence s.
Suppose that xðt; z;sÞ converges to pnARn as t-1. Then
pnA \ iAIsN ðAi� InÞ.

Proof. For any fixed iAIs, there exists a subsequence fsðtkÞg such
that fsðtkÞg ¼ fi;…; i;…g. Since xðt; z;sÞ converges to pn, so do
fxðtk; z;sÞg and fxðtkþ1; z;sÞg. In view of xðtkþ1; z;sÞ ¼
Aixðtk; z;sÞ for all tk and passing the limit, we have pn ¼ Aipn. This
shows pnAN ðAi� InÞ. □

An immediate consequence of the above lemma is that if any
state trajectory of the SLS is convergent under arbitrary switching,
i.e., for any nonzero zARn and any s, xðt; z;sÞ converges to some
nonzero pnðz;sÞ (dependent on z and s), then \ iAMN ðAi� InÞ
must be nontrivial. Define the common equilibrium subspace
Ee≕⋂iAMN ðAi� InÞ and let E?

e be its orthogonal complement in
Rn. Obviously, Ee is invariant under fAigiAM. The following stand-
ing assumption asserts that both Ee and E?

e are nontrivial
subspaces of Rn.

Assumption 2.1. The dimension and codimension of Ee are both
at least one.

It follows from the above assumption that there exists at least
one iAM such that Aia In.

Definition 2.1. The SLS (1) is exponentially semistable under
arbitrary switching if there exist constants ρZ0 and rA ½0;1Þ such
that for any zARn and under any switching sequence s, there
exists a (unique) xeðz;sÞAEe (dependent on z and s) such that
Jxðt; z;sÞ�xeðz;sÞJrρ rt Jz�xeðz;sÞJ ; 8 tAZþ . Here, r is called
the exponential growth rate of semistability.

It is known that the asymptotic and exponential stabilities of
the SLSs under arbitrary switching are equivalent [18]. Next, we
show that the same holds for semistability and exponential
semistability of the SLSs. We first introduce the following defini-
tion of semistability.

Definition 2.2. The SLS (1) is semistable under arbitrary switching
if there exists a class KL function αð�; �Þ such that any zARn and
under any switching sequence s, there exists xeðz;sÞAEe such that
Jxðt; z;sÞ�xeðz;sÞJrαðJz�xeðz;sÞJ ; tÞ, 8 tAZþ .

The following result connects the semistability and the expo-
nential semistability of switched linear systems.

Lemma 2.2. The SLS (1) is exponentially semistable under arbitrary
switching if and only if it is semistable under arbitrary switching.

Proof. The “only if” part is trivial and hence is omitted. To show
the other part, it follows from the standard argument, e.g.,
[16, Lemma 3.3], that under the assumption in Definition 2.2, the
SLS (1) is uniformly asymptotically semistable under arbitrary
switching. That is, for given δ40 and cA ð0;1Þ, there exists
Tδ;cAZþ (dependent on δ and c only) such that for any z and
any switching sequence s, Jz�xeðz;sÞJrδ ) Jxðt; z;sÞ�xeðz;sÞJ
rcδ; 8 tZTδ;c . This, together with the linear structure of the
system, shows the exponential semistability under arbitrary
switching; see [18,22,23] for details. □

To characterize the exponential semistability and convergence
rate of the SLS (1), we project the dynamics onto E?

e . Let OARn�ℓ

be the matrix whose columns constitute an orthonormal basis of
E?
e (this implies that E?

e is of dimension ℓ), and let P ¼ OOTARn�n

be the matrix representing the orthogonal projection onto E?
e .

Clearly, P is idempotent, i.e., P2 ¼ P. For a given trajectory x(t), let
xEe ðtÞ and xE ?

e
ðtÞ denote the (unique) orthogonal projections of x(t)

onto Ee and E?
e respectively, i.e., xE ?

e
ðtÞ ¼ PxðtÞ and xEe ðtÞ ¼

½In�P�xðtÞ. Define the output of the SLS (1) via the projection
matrix O:

yðtÞ ¼OTxðtÞ; t ¼ 0;1;2;… ð3Þ

Then, at any t, regardless of the current mode sðtÞ, JyðtÞJ is the
Euclidean distance of x(t) to the equilibrium subspace Ee. In the
following, denote by yðt; z;sÞ the output trajectory of the SLS (1)
starting from the initial condition z under the switching sequence s.
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Definition 2.3. The SLS (1) with the output (3) is output exponen-
tially stable under arbitrary switching if there exist constants κ40
and ~rA ½0;1Þ such that for any zARn, Jyðt; z;sÞJrκ ~rt JzJ ,
8 tAZþ under any s. Here, ~r is called the exponential growth rate
of output stability.

To simplify the subsequent development, we introduce a useful
coordinate transformation as follows. Recall that E?

e is of dimen-

sion ℓ. Let ~OARn�ðn�ℓÞ be the matrix whose columns constitute an
orthonormal basis of Ee, and define the orthogonal matrix
T≕½O ~O�TARn�n and the state transformation bxðtÞ ¼ TxðtÞ. In the
new coordinates, E?

e ¼Rℓ � f0g, Ee ¼ f0g � Rðn�ℓÞ, and the relevant

matrices can be written as bOT ¼OTT �1 ¼ ½Iℓ 0�,

bP ¼ bObOT ¼ Iℓ 0
0 0

� �
; bAi ¼ TAiT

�1 ¼
bAi;11 0bAi;21 In�ℓ

24 35;
for all iAM. Furthermore, bxðtÞ ¼ ½yTðtÞ; ~xTðtÞ�T, z¼ ½yTð0Þ; ~xTð0Þ�T,
xTE ?

e
ðtÞ ¼ ½yTðtÞ;0�, and xTEe ðtÞ ¼ ½0; ~xTðtÞ�, where yðtÞARℓ and ~xðtÞARðn�ℓÞ

satisfy

yðtþ1Þ ¼ bAsðtÞ;11yðtÞ; ð4Þ
and

~xðtÞ ¼ ~xð0Þþ ∑
t�1

τ ¼ 0

bAsðτÞ;21yðτÞ: ð5Þ

Note that (4) yields an SLS defined by subsystem matrices fbAi;11g
and is decoupled from (5). See Remark 2.1 for the geometry of the
above dynamics under exponential stability conditions.

Since the state transformation does not affect the semistability
and output stability as well as their growth rates, we consider the
switching dynamics (4) and (5) throughout the rest of this section
by dropping the notation b� in the equations.

2.1. The equivalence of semistability and output stability under
arbitrary switching

In this section, we show the equivalence of exponential
semistability and output exponential stability. To this end, we
introduce some notions and a technical result. We call the SLS
convergent (to the origin) under arbitrary switching if for any initial
state z, xðt; z;sÞ converges to the origin as t-1 under any
switching sequence s. The following result asserts the equivalence
of this convergence, asymptotic and exponential stabilities for a
general SLS under arbitrary switching.

Theorem 2.1. A switched linear system is convergent under arbitrary
switching if and only if it is exponentially stable under arbitrary
switching.

Proof. It suffices to prove the “only if”. Consider a SLS with the
matrices fAigmi ¼ 1. The following claim holds:

Claim: If there exists TnAN (independent of z and s) such that
for any z with JzJ ¼ 1 and under any switching sequence s, there
exists tnA ½0; Tn� such that Jxðtn; z;sÞJr0:5, then the SLS is
exponentially stable under arbitrary switching.

Let κ≕∑Tn

j ¼ 0ðmaxi JAi J Þj. The claim can be shown via induction
that under the given conditions, Jxðt; z;sÞJrκð0:5Þt=Tn �1 JzJ ,
8 tAZþ for any z and under any switching sequence s. This thus
yields the exponential stability.

Now suppose that the SLS is convergent but not exponentially
stable, under arbitrary switching. It follows from the above claim
that there exist an initial state sequence fzkg with Jzk J ¼ 1, an
increasing time sequence fTkg with limk-1 Tk ¼1, and a sequence
of switching sequences fskg such that for each k, Jxðt; zk;skÞJZ0:5

for all t ¼ 0;1;…; Tk. Using a similar argument as that of [18,
Theorem 3], we can construct an initial state z and a switching
sequence s such that Jxðt; z;sÞJZ0:5 for all t. This is contradictory
to the convergence of the SLS. □

By making use of this theorem, we establish one of the main
results as follows.

Theorem 2.2. The SLS (1) is exponentially semistable under arbitrary
switching if and only if the SLS (1) with the output (3) is output
exponentially stable under arbitrary switching. Further, the exponen-
tial growth rates of semistability and output stability are identical,
i.e., rA ½0;1Þ is the exponential growth rate of semistability if and only
if it is that of output stability.

Proof. “If”. Let κ40 and ~rA ½0;1Þ be such that for any zARn and
any switching sequence s, Jyðt; z;sÞJrκ ~rt JzJ for all tAZþ . For
an initial state zARn and switching sequence s, it follows from (5)
that, for any s;wAZþ with sow,

J ~xðw; z;sÞ� ~xðs; z;sÞJ

¼ ∑
w�1

τ ¼ s
AsðτÞ;21yðτ; z;sÞ

���� ����r ∑
w�1

τ ¼ s
JAsðτÞ;21 J � Jyðτ; z;sÞJ

rmax
i

ðJAi;21 J Þðκ ~rsþ⋯þκ ~rw�1ÞJzJ

rmax
i

ðJAi;21 J Þκ ~rs=ð1� ~rÞJzJ :

Therefore, for all s;w sufficiently large (no matter how far they are
apart), J ~xðw; z;sÞ� ~xðs; z;sÞJ is sufficiently small. This shows that
f ~xðt; z;sÞg is a Cauchy sequence in Rn�ℓ and thus converges in
Rn�ℓ (because Rn�ℓ is complete). Since Rn�ℓ is closed, ~xeðz;sÞ≕
limt-1~xðt; z;sÞARn�ℓ. Let xeðz;sÞ≕½0; ~xTeðz;sÞ�TAEe and ~z≕z�xeðz;sÞ. It
can be verified via (4) and (5) directly that

xðt; ~z;sÞ ¼
yðt; z;sÞ
~xðt; z;sÞ

" #
�

0
~xeðz;sÞ

" #
:

This shows that Jyðt; ~z;sÞJ ¼ Jyðt; z;sÞJrκ ~rt J ~z J . Moreover, for
all t and under any s,

J ~xðt; ~z;sÞJ ¼ J ~xðt; z;sÞ� ~xeðz;sÞJ ¼ J ∑
1

τ ¼ t
AsðτÞ;21 yðτ; ~z;sÞJ

r max
i

JAi;21 J
� �

κð~rtþ ~rtþ1þ⋯ÞJ ~z J

r max
i

JAi;21 J
� �

κ ~rt

1� ~r
J ~z J :

In view of the above results and Jxðt; ~z;sÞJr Jyðt; ~z;sÞJþ
J ~xðt; ~z;sÞJ , we obtain a constant ρ40, independent of z and s,
such that Jxðt; z;sÞ�xeðz;sÞJ ¼ Jx ðt; ~z;sÞJrρ~rt J ~z J ¼ ρ ~rt Jz�
xeðz;sÞJ ; 8 tAZþ . This gives rise to the exponential semistability
and shows that the exponential growth rate ~r of output stability is
also that of exponential semistability.

“Only if”: We prove this part by contradiction. Suppose that the
SLS (1) is exponentially semistable but not output exponentially
stable, under arbitrary switching. It can be seen that the output
trajectory y(t) is equivalent to the state trajectory of the SLS (4)
defined by the subsystem matrices fAi;11g. Hence, if the original SLS
(1) is not output exponentially stable under arbitrary switching,
neither is the SLS (4). We thus deduce from Theorem 2.1 that the
SLS (4) is not convergent under arbitrary switching. Hence, there
exist zARn and a switching sequence s such that yðt; z;sÞ does not
converge to the origin of Rℓ. This contradicts the exponential
semistability of the SLS (1) under arbitrary switching.

Finally, we show that a constant rA ½0;1Þ is the exponential
growth rate of semistability if and only if it is that of output
stability. It suffices to consider the “only if” part as the other part
has been shown before. Suppose that the SLS (1) is exponentially
semistable with the exponential growth rate rA ½0;1Þ, i.e., for any

J. Shen et al. / European Journal of Control 20 (2014) 132–140134
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zARn and under any s, there exists xeðz;sÞAEe such that
Jxðt; z;sÞ�xeðz;sÞJrρrt Jz�xeðz;sÞJ ; 8 t with ρ40. This implies,
in light of the proof for the “only if” above, that the SLS (4) is
exponentially stable with the exponential growth rate ~rA ½0;1Þ
(not necessarily equal to r at this stage) and the parameter κ40,
under arbitrary switching. By slightly abusing notation, we use
yðt; yð0Þ;sÞ to denote the trajectory of the SLS (4) starting from yð0Þ
under s. Hence, we have, for any yð0ÞARℓ and under any s,
Jyðt; yð0Þ;sÞJrκ ~r t Jyð0ÞJ ; 8 t. It thus follows from the above

proof for the “if” part that for any initial state z¼ ½yTð0Þ; ~xTð0Þ�T
and any switching sequence s, ~xeðz;sÞ ¼ ~xð0Þþ limt-1 ∑t�1

τ ¼ 0
AsðτÞ;21 yðτ; yð0Þ;sÞ such that the latter limit exists. Moreover,

Jz�xeðz;sÞJr Jyð0ÞJþ lim
t-1

∑
t�1

τ ¼ 0
AsðτÞ;21 yðτ; yð0Þ;sÞ

���� ����
r Jyð0ÞJþmax

i
JAi;21 J ∑

1

τ ¼ 0
Jyðτ; yð0Þ;sÞJr Jyð0ÞJ

þmax
i

JAi;21 J ∑
1

τ ¼ 0
κ ~rτ Jyð0ÞJ

� �
r Jyð0ÞJþmax

i
JAi;21 J

κ
1� ~r

Jyð0ÞJ :

Consequently, by the exponential semistability, we have

Jyðt; z;sÞJr Jxðt; z;sÞ�xeðz;sÞJrρrt Jz�xeðz;sÞJ
r ~ρrt Jyð0ÞJr ~ρrt JzJ ; 8 tAZþ ;

for some constant ~ρ40. This shows that r is the exponential
growth rate of output stability. □

Remark 2.1. The above theorem and Eqs. (4) and (5) show that
under the exponential stability assumption, the SLS (1) can be
thought of two dynamical processes: one is the dynamics of y(t) in
the fiber direction governed by the exponentially stable SLS (4)
defined by the matrix set fAi;11g, and the other is the dynamics of
~xðtÞ along the base direction that evolves by integrating AsðtÞ;21yðtÞ.
The latter dynamics will move at worst in the pace proportional
to JyðtÞJ and thus converge to a constant vector at the same expo-
nential rate as that of y(t).

3. Semistability of switched linear systems: random case

The notion of semistability can be defined for a random SLS that
evolves at each time by a subsystem matrix selected randomly from
the matrix set fAigiAM according to a stationary distribution. In this
case, the system state is a stochastic process X(t) with the dynamics

Xðtþ1Þ ¼ AðtÞXðtÞ; t ¼ 0;1;2;…; ð6Þ
where at each time t, AðtÞARn�n is drawn independently randomly
from the matrix set fAigiAM with the probability PfAðtÞ ¼ Aig ¼
pi; iAM for some probability distribution p≕fpigiAM with
∑iAMpi ¼ 1 and piZ0. For a given probability distribution p, denote
by Xðt; z; pÞ the stochastic trajectory of the random SLS (6) starting
from a deterministic initial state Xð0Þ ¼ z, and denote by E the
expectation operator.

Definition 3.1. The random SLS (6) is mean square exponentially
semistable if there exist constants ρZ0 and rA ½0;1Þ such that for
any zARn, there exists a random vector Xeðz; pÞAEe such that

E½‖Xðt; z; pÞ�Xeðz; pÞ‖2�rρrt‖z�E½Xeðz; pÞ�‖2; 8 tAZþ : ð7Þ
Here, r is called the exponential growth rate of mean square
semistability.

Remark 3.1. One can also define the mean square exponential
semistability by replacing the right-hand side of (7) by a mean
square, i.e., E½‖Xðt; z; pÞ�Xeðz; pÞ‖2�rρrtE½‖z�Xeðz; pÞ‖2�. It can be
shown, in view of ‖z�E½Xeðz; pÞ�‖2rE½Jz�Xeðz; pÞJ2�, that the

latter definition preserves the same qualitative properties as that
defined in (7), such as those stated in Theorem 3.1. In what
follows, we consider the mean square semistability defined in (7).

Let O be the projection matrix used in Section 2. Define the
output of the random SLS (6) by

YðtÞ ¼ OTXðtÞ: ð8Þ
For a given probability distribution p, denote by Yðt; z; pÞ the
stochastic output trajectory of the SLS (6) from the deterministic
initial state Xð0Þ ¼ z.

Definition 3.2. The random SLS (6) with the output (8) is mean
square output exponentially stable if there exist constants κZ0 and
~rA ½0;1Þ such that for any zARn, E½‖Yðt; z; pÞ‖2�rκ ~rt JzJ2, 8 tAZþ .
Here, ~r is called the exponential growth rate of mean square output
stability.

We adopt the same (deterministic) state transformation introduced
in Section 2. Therefore, AðtÞ can bewritten as AðtÞ ¼ ½A11ðtÞ

A21ðtÞ
0

In� ℓ
�, where

at each t, A11ðtÞARℓ�ℓ and A21ðtÞARðn�ℓÞ�ℓ are drawn independently
randomly from the matrix tuple sets fðAi;11; Ai;21ÞgiAM. Further, let

XTðtÞ ¼ ½YTðtÞ; ~XTðtÞ�, and XT
Ee
ðtÞ ¼ ½0; ~XTðtÞ�. Hence,

Yðtþ1Þ ¼A11ðtÞYðtÞ; ð9Þ
and

~X ðtÞ ¼ ~X ð0Þþ ∑
t�1

τ ¼ 0
A21ðτÞYðτÞ: ð10Þ

3.1. The equivalence of semistability and output stability

The following theorem, as a counterpart of Theorems 2.2,
asserts the equivalence of mean square exponential semistability
and mean square output exponential stability.

Theorem 3.1. The random SLS (6) is mean square exponentially
semistable if and only if the SLS (6) with the output (8) is mean
square output exponentially stable. Besides, a constant rA ½0;1Þ is the
exponential growth rate of mean square exponential semistability if
and only if it is that of mean square output exponential stability.

Proof. “If”. Let κ40 and ~rA ½0;1Þ be such that for any zARn,
E½‖Yðt; z; pÞ‖2�rκ ~r t‖z‖2 for all tAZþ . Since A11ðtÞ in (9) is identi-
cally distributed, the matrix V≕E½A11ðtÞ� is independent of t. We
claim that V is a stable matrix in the discrete sense, i.e., the
spectral radius of V is strictly less than 1. To see this, note that the
mean square exponential stability implies that E½‖Yðt; z; pÞ‖2�,
hence E½Yðt; z; pÞ�, converges to zero as t-1, for all z. Since
E½Yðtþ1; z; pÞ� ¼ V � E½Yðt; z; pÞ�, the spectral radius of V must be
strictly less than 1.

Given an initial state z and a probability distribution p, let
~X ðt; z; pÞ denote the stochastic state trajectory of ~X ðtÞ in (10) and
define L≕maxiAM JAi;21 J . For arbitrary 0rsow,

‖ ~X ðw; z; pÞ� ~X ðs; z; pÞ‖2rL2‖Yðs; z;pÞþ⋯þYðw�1; z; pÞ‖2

rL2 ∑
w�1

k ¼ s
‖Yðk; z;pÞ‖2þ2 ∑

sr jokrw�1
YTðj; z; pÞYðk; z; pÞ

 !
:

Since Yðk; z; pÞ ¼A11ðk�1Þ⋯A11ðjÞYðj; z; pÞ for jok and V is a stable
matrix, we have

E½YTðj; z; pÞYðk; z; pÞ� ¼ trðE½A11ðk�1Þ⋯A11ðjÞ�E½Yðj; z; pÞYTðj; z; pÞ�Þ
¼ trðVk� jE½Yðj; z; pÞYTðj; z;pÞ�Þ
rανk� jE½‖Yðj; z; pÞ‖2�

for some constants α40 and νA ½0;1Þ dependent on V and its
order ℓ only. By the mean square exponential stability of Yðt; z; pÞ,

J. Shen et al. / European Journal of Control 20 (2014) 132–140 135



Author's personal copy

we further have

E½‖ ~X ðw; z; pÞ� ~X ðs; z; pÞ‖2�

rL2 ∑
w�1

k ¼ s
κ ~rk‖z‖2þ2 ∑

sr jokrw�1
ανk� jκ ~r j‖z‖2

 !

rκL2
~rs

1� ~r
þ2α ∑

sr jokrw�1
νk� j ~r j

 !
‖z‖2:

Using the pattern of the summation above in the last inequality,
we have

∑
sr jokrw�1

νk� j ~r j ¼ ~rs�1 ∑
w� s

i ¼ 1
~r i ∑

w� sþ1� i

k ¼ 1
νk

 !

r ~rs�1 ν
1�ν

∑
w� s

i ¼ 1
~r ir ~rs

ν
ð1�νÞð1� ~rÞ:

This implies that

E½‖ ~X ðw; z; pÞ� ~X ðs; z; pÞ‖2�r ~L ~rs‖z‖2; ð11Þ

where ~L40 is a constant independent of w; s and z. By letting s¼0,
we conclude that Xðt; z; pÞ has bounded second moment. Hence,
f ~X ðt; z; pÞgt ¼ 0;1;… is a Cauchy sequence of random vectors in the L2-
space with respect to the underlying probability measure. Since
the L2-space is complete, ~X ðt; z; pÞ converges in mean square to
some random vector ~X eðz; pÞ (with the finite second moment) as

t-1. Let ~z≕z�½0; E½ ~XT
eðz; pÞ��T. Hence, Yðt; ~z; pÞ ¼ Yðt; z; pÞ (in dis-

tribution), and this, together with (10), shows that ~X ðt; ~z; pÞ ¼
~X ðt; z; pÞ�E½ ~X eðz; pÞ�. Further, as t-1, ~X ðt; ~z; pÞ converges to the
random vector ~X eð~z; pÞ ¼ ~X eðz;pÞ�E½ ~X eðz; pÞ� (with zero mean) in

mean square. Let XT
eðzÞ ¼ ½0; ~XT

eðzÞ� and XT
eð~z; pÞ ¼ ½0; ~XT

eð~z; pÞ�. Then

E½‖Xðt; z; pÞ�Xeðz; pÞ‖2� ¼ E½‖Xðt; ~z; pÞ�Xeð~z; pÞ‖2�
¼ E½‖Yðt; ~z; pÞ‖2�þE½‖ ~X ðt; ~z; pÞ� ~X eð~z; pÞ‖2�:

By letting s¼t, w¼1, and replacing z by ~z in (11), we see
E½‖ ~X ðt; ~z; pÞ� ~X eð~z; pÞ‖2�r ~L ~rt‖~z‖2. Along with the mean square
output exponential stability, we obtain

E½‖Xðt; z; pÞ�Xeðz; pÞ‖2�rðκþ ~LÞ~rt‖~z‖2

r ðκþ ~LÞ~rt‖z�E½Xeðz; pÞ�‖2; 8 t; z:

This yields the mean square exponential semistability and shows
that the exponential growth rate ~r of the mean square output
stability is also that of the mean square semistability.

“Only if”. Suppose that the random SLS is mean square
exponentially semistable but not mean square output exponen-
tially stable. In light of (9) and (10), we deduce, via the equivalence
of mean square asymptotic stability and mean square exponential
stability of randomly jumped linear systems [4, Theorem 4.1.1],
that the random SLS (9) is not mean square asymptotically
stable. This yields a contradiction, using a similar argument of
Theorem 2.2.

To complete the proof, we only need to show that the
exponential growth rate rA ½0;1Þ of mean square exponential
semistability is that of mean square output exponential stability.
By observing the above “only if” part, we deduce that
E½‖yðt; z; pÞ‖2�r ~κ ~rt‖z‖2 for all t and z, for some constants ~κ40
and ~rA ½0;1Þ (not necessarily equal to r at this stage). It follows
from the above “if” part that ~X ðt; z; pÞ converges to ~X eðz; pÞ in mean
square as t-1. By (10), we have that ∑t

τ ¼ 0A21ðτÞYðτ; z; pÞ also
converges in the L2-space as t-1. Consequently,

‖ ~X ð0Þ�E½ ~X eðz; pÞ�‖2 ¼ :E ∑
1

τ ¼ 0
A21ðτÞYðτ; z;pÞ

� �
:2

rE ∑
1

τ ¼ 0
A21ðτÞYðτ; z; pÞ

���� ����2
" #

rE½‖ ~X eðz; pÞ� ~X ð0Þ‖2�r ~L‖z‖2;

where the last inequality follows from (11) by letting s¼0 and

w¼1. Finally, recalling that Xeðz; pÞ ¼ ½0; ~XT
eðz; pÞ�T, we deduce the

existence of some constant ~ρ40 such that

E½‖Yðt; z; pÞ‖2�rE½‖Xðt; z;pÞ�Xeðz; pÞ‖2�rρrt‖z�E½Xeðz; pÞ�‖2
rρrtð‖Yð0Þ‖2þ ~L‖z‖2Þr ~ρrt‖z‖2; 8 tAZþ :

This yields the desired growth rate for the mean square output
exponential stability. □

4. Numerical verification of semistability of the SLSs via
generating functions

It is shown in the preceding sections that semistability and
convergence rate of the SLS boils down to regular stability and
convergence rate of the reduced SLS, for which various numerical
approaches have been developed. In this section, we consider
generating function based algorithms recently proposed in [6].
An advantage of the generating function approach is that it yields a
unified analytic framework and effective numerical schemes for
computing exponential growth rates under different switching rules
[6]. Since the generating function approach is relatively new, we
present concise discussions of essential elements of this approach
and its semistability application in order to be self-contained.

4.1. Verification of semistability via strong generating functions

Consider the semistability under arbitrary switching. In view of
Theorem 2.2, the maximum exponential growth rate of the
semistable SLS (1) is completely determined by that of the reduced
SLS (4), under arbitrary switching. The latter exponential growth
rate, denoted by rn, may serve as a quantitative measure of the
semistability of the SLS (1). Indeed, the SLS (1) is exponentially
semistable if and only if rno1. In what follows, we characterize rn,
and thus exponential semistability, using the strong generating
function [6,18,19,21].

Let yðt; v;sÞ denote the trajectory of the reduced SLS (4)
starting from the initial state vARℓ under the switching sequence
s. The strong generating function G : Rþ � Rℓ-Rþ [ fþ1g of the
SLS (4) is defined as

Gðλ; vÞ≕GλðvÞ ¼ sup
s

∑
1

t ¼ 0
λt‖yðt; v;sÞ‖2; vARℓ; λZ0; ð12Þ

where the supremum is taken over all switching sequences s.
A wealth of analytic properties of the generating functions can be
found in [6]. For the strong generating function Gλð�Þ, the radius
of strong convergence λn is defined as λn≕supfλ40 : GλðvÞo1;

8vARℓg. The following theorem characterizes the exponential
stability of the SLS (4) via λn:

Theorem 4.1 (Hu et al. [6, Theorem 2]). The SLS (4) is exponentially
stable under arbitrary switching if and only if its radius of strong
convergence λn41.

Moreover, as shown in [6, Corollary 1], the maximum expo-
nential growth rate of the SLS (4) is given by rn ¼ ðλnÞ�1=2.
Consequently, we obtain the following corollary:

Corollary 4.1. The SLS (1) is exponentially semistable under arbi-
trary switching if and only if the radius of strong convergence of the
reduced SLS (4) satisfies λn41. Further, the maximum exponential
growth rate of the semistable trajectories of the SLS (1) is given by
ðλnÞ�1=2.
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In order to compute the strong generating function and the
radius of strong convergence for the SLS (4), we approximate Gλ,
which is the value function of an infinite horizon optimal control
problem, by a sequence of finite horizon approximations. Specifi-
cally, define Gk

λðvÞ≕maxs ∑k
t ¼ 0λ

t‖yðt; v;sÞ‖2, vARℓ; k¼ 0;1;….
Then the functions Gk

λðvÞ can be computed recursively by G0
λðvÞ ¼

‖v‖2 and Gk
λðvÞ ¼ ‖v‖2þλmaxiAMGk�1

λ ðAi;11vÞ, kAN. Based on the
Bellman equation and the sub-additivity of Gλ, an algorithm is
developed to obtain increasingly accurate estimates of Gλ on a grid
of the unit sphere; see [6, Section III] for details.

Remark 4.1. As shown in the above corollary, finding the expo-
nential growth rate of semistable trajectories of the SLS under
arbitrary switching amounts to finding the radius of strong
convergence. The latter problem is known to be NP-hard. For a
given k, the generating function based algorithm has linear
complexity with respect to the number of subsystems (4). There-
fore, the proposed algorithm is suitable for a reduced SLS with a
relatively large number of subsystems (4) but a smaller state
dimension, namely, ℓ; its overall complexity is exponential [6].

4.2. Verification of mean square semistability via mean generating
functions

Theorem 3.1 enables us to characterize the mean square
exponential semistability and its maximum exponential growth
rate by using the mean generating function of the reduced random
SLS (9). Let Yðt; v; pÞ denote the stochastic state trajectory of the
random SLS (9) starting from the deterministic initial state vARℓ

under the switching probability distribution p. The mean generat-
ing function F : Rþ � Rℓ-Rþ [ fþ1g of the random SLS (9) is
defined as

Fðλ; zÞ ¼ FλðzÞ≕E ∑
1

t ¼ 0
λt‖Yðt; v; pÞ‖2

� �
¼ ∑

1

t ¼ 0
λtE½‖Yðt; v; pÞ‖2�: ð13Þ

The mean generating function Fλ shares the similar properties of
the strong generating function Gλ, and a collection of its properties
can be found in [6, Proposition 13]. The radius of convergence of
the mean generating function Fλ is defined as

λnp≕sup λZ0 : FλðvÞo1; 8vARℓ
� �

: ð14Þ

This quantity can be used to determine the mean square expo-
nential stability as shown below.

Lemma 4.1 (Hu et al. [6, Theorem 4]). The random SLS (9) is mean
square exponentially stable if and only if the radius of convergence of
the mean generating function Fλ satisfies λnp41.

It also follows from a similar argument of [6, Corollary 1] that
ðλnpÞ�1=2 is the maximum exponential growth rate of the random
SLS (9). In view of this and Theorem 3.1, we have:

Corollary 4.2. The random SLS (6) is mean square exponentially
semistable if and only if the radius of convergence λnp of the reduced
random SLS (9) satisfies λnp41. Further, the maximum exponential
growth rate of the mean square semistable trajectories of the SLS (6)
is ðλnpÞ�1=2.

The mean generating function Fλ and its radius of convergence
λnp can be efficiently computed using the finite horizon approx-

imations of Fλ given by FkλðvÞ ¼∑k
t ¼ 0λ

t
E½‖Yðt; v; pÞ‖2�. Further, FkλðvÞ

can be computed recursively by F0λðvÞ ¼ ‖v‖2 and FkλðvÞ ¼ ‖v‖2þ
λ∑iAMpiF

k�1
λ ðAi;11vÞ, kAN. The details can be found in [6,

Section V].

4.3. Numerical example

To illustrate the generating function approach, we consider the
SLS motivated by Hui [12, Example 3.1] that consists of two
subsystems whose matrices are given by

A1 ¼
0:7 0:0707 0:0707

0:0707 0:85 �0:15
0:0707 �0:15 0:85

264
375;

A2 ¼
0:5 0:2121 0:2121

0:2121 0:75 �0:25
0:2121 �0:25 0:75

264
375:

The common equilibrium subspace is Ee ¼ \2
i ¼ 1 N ðAi� IÞ ¼

spanfvg, where v¼ ð0; �1=
ffiffiffi
2

p
;1=

ffiffiffi
2

p
ÞT. Hence, ℓ¼ 2. Using the

transformation for (4) and (5), we obtain

bA1 ¼
0:7 0:1 0
0:1 0:7 0
0 0 1

264
375; bA2 ¼

0:5 0:3 0
0:3 0:5 0
0 0 1

264
375:

This gives rise to the two subsystem matrices in (4):

bA1;11 ¼
0:7 0:1
0:1 0:7

� �
and bA2;11 ¼

0:5 0:3
0:3 0:5

� �
:

In what follows, we compute the exponential semistability
convergence rates rn under two switching rules using the pro-
posed method:

(1) Arbitrary switching: the radius of convergence λn of the strong
generating function is computed to be within the interval
ð1:561;1:564Þ; hence rnAð0:7996;0:8004Þ.

(2) Random switching with the distribution PðAðtÞ ¼ A1Þ ¼ 1
3 and

PðAðtÞ ¼ A2Þ ¼ 2
3 : it is computed that λnpA ð1:562;1:563Þ; hence

rnAð0:7999;0:8001Þ.

In this example, note that bA1;11 and bA2;11 commute so that they can
be simultaneously diagonalized as

bA1;11 ¼ V
0:6

0:8

� �
V �1; bA2;11 ¼ V

0:2
0:8

� �
V �1;

V ¼
� 1ffiffi

2
p 1ffiffi

2
p

1ffiffi
2

p 1ffiffi
2

p

24 35:
As a result, the semistability convergence rates under arbitrary and
random switching can be found explicitly as 0.8, which is very
close to the numerical results obtained above.

5. Application to the PageRank algorithm

The PageRank algorithm is one of the main tools at Google to
evaluate web page relevance by quantifying the importance of
each web page [2,14]. The key idea of this algorithm is that a web
page having links from important web pages is assigned a higher
value based on page interconnection structure. Such a value is
determined as the sum of the contributions from all the other web
pages connecting to it [14]. For a fixed link topology, the PageRank
problem boils down to an eigenvector problem for a stochastic
matrix. The latter problem can be solved by an iterative update
scheme formulated as a discrete-time linear system; see [2,14] and
the references therein.

Specifically, consider a network of n web pages that is des-
cribed by the directed graph G¼ ðV; EÞ, where V ¼ f1;…;ng denotes
the index set of the web pages and EDV � V denotes the links
between the web pages. The notation ði; jÞAE means that page i
has an outgoing link to page j. For each iAV, let Li≕fk : ðk; iÞAEg,
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and let ni be the total number of outgoing links of page i. The
corresponding link matrix is L¼ ðℓijÞARn�n, where

ℓij≕
1
nj

; jALi;

0; otherwise;

8><>:
where we assume that L is a column stochastic matrix. The
PageRank problem is to find a probability vector p, i.e., pARn

þ
with 1Tp¼ 1, such that Lp¼ p, where 1ARn is the vector of ones.
This eigenvector problem may have multiple solutions in general.
To overcome this problem, a modified version is used by replacing
L with ð1�mÞLþðm=nÞS, where mA ð0;1Þ is a parameter and S is an
n�n matrix of ones, i.e., S¼ 11T. The following iterative update
scheme is employed to solve the modified eigenvector problem:

xðtþ1Þ ¼ ð1�mÞLþm
n
S

h i
xðtÞ ¼ ð1�mÞLxðtÞþm

n
1; tAZþ ;

where an initial state xð0Þ is a probability vector. The convergence
rate of this scheme is ð1�mÞ.

In this section, we study the update dynamics of the PageRank
Algorithm on a switched link topology from the point view of
semistability. This scenario occurs when web page connections are
subject to change (a different scenario also occurs in a distributed
randomized approach for solving the eigenvector problem [14]). Due
to the topology change, the iterative update scheme gives rise to an
SLS whose subsystem matrices are column stochastic matrices, and
finding a desired eigenvector leads to a semistability-like problem of
the SLS. It should be pointed out that because of state constraint and
other properties of the PageRank problem, the common equilibrium
set may not exist or, if exists, becomes a discrete or even a singleton
set. We introduce two update schemes in this section, one of which is
based on link matrices and the other based on the modified matrices
with the parameters mi. While these schemes are restricted to
switching topologies that admit a common equilibrium set, it is
shown that the convergence rates of certain classes of update schemes
can be effectively computed using the semistability techniques and the
generating function approach.

Consider the case where there are M link topologies
Ei; iAM≕f1;…;Mg, each of which is characterized by the link
matrix Li and the parameter miAð0;1Þ (for the modified version).
Two update schemes for the switching topology are as follows.

1. The PR-SLS of type I, where the link matrices Li are used as
subsystem matrices:

xðtþ1Þ ¼ LsðtÞxðtÞ;
where each Li is a nonnegative matrix and is assumed to be a
column stochastic matrix. In this case, if \ iAMN ðLi� InÞ is non-
trivial, then the proposed semistability results can be applied.
Some properties of this SLS are as follows:

(1) Let P≕fzARn
þ : 1Tz¼ 1g denote the set of probability vectors.

For any zAP and any switching sequence s, xðt; z;sÞAP for
any t. (In other words, the SLS is positively invariant on P
under arbitrary switching.) Hence, the common equilibrium
set is given by \ iAMN ðLi� InÞ \ P.

(2) Suppose that \ iAMN ðLi� InÞ is of dimension ℓZ2. Since P is
an ðn�1Þ�dimensional polytope, the common equilibrium set
\ iAMN ðLi� InÞ \ P is a polytope of dimension ℓ�1.

2. The PR-SLS of type II, where we use the matrices

Ai≕ð1�miÞLiþ
mi

n
S; iAM

as subsystem matrices. Then the update scheme is given by the
SLS:

xðtþ1Þ ¼ AsðtÞxðtÞ; ð15Þ

where the initial state is a probability vector z. It is ready to see
that each Ai is a (strictly) positive and column stochastic matrix,
and the SLS is positively invariant on P under arbitrary switching.
Equilibria properties of the SLS (15) are given below.

Lemma 5.1. Given a switching sequence s, assume that xðt; z;sÞ
converges under s for some zAP as t-1. Then for any zAP,
xðt; z;sÞ converges to a unique vector in P under the same s. In other
words, the limiting point of xðt; z;sÞ only depends on s but is
independent of the initial state z.

Proof. To see this, note that the SLS can be written as

xðtþ1Þ ¼ ð1�msðtÞÞLsðtÞxðtÞþ
msðtÞ
n

1:

Therefore,

xðtþ1Þ ¼ ð1�msðtÞÞð1�msðt�1ÞÞLsðtÞLsðt�1Þxðt�1ÞþmsðtÞ
n

1

þð1�msðtÞÞ
msðt�1Þ

n
LsðtÞ1

¼ ∏
t

i ¼ 0
ð1�msðiÞÞ

 !
LsðtÞLsðt�1Þ⋯Lsð0Þz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wðtþ1;z;sÞ

þ msðtÞIþ ∑
t

i ¼ 1
msðt� iÞ ∏

i

j ¼ 1
ð1�msðiÞÞ

 !
LsðtÞLsðt�1Þ⋯Lsðt� iþ1Þ

( )
1
n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vðtþ1;sÞ

;

where we drop z in v since it is independent of z. We study the
dynamic behavior of wðt; z;sÞ as follows. It is easy to see that
wðt; z;sÞARn

þ for any t. Hence, observing that Li is a column
stochastic matrix, we have

‖wðt; z;sÞ‖1 ¼ 1Twðt; z;sÞ ¼ ∏
t�1

i ¼ 0
ð1�msðiÞÞ

 !
1Tz

¼ ∏
t�1

i ¼ 0
ð1�msðiÞÞrrt ; 8 tAZþ ;

where r≕maxiAMð1�miÞAð0;1Þ. This shows that for any zAP,
wðt; z;sÞ-0 as t-1 under the given (in fact, any) s. Hence, the
limit of xðt; z;sÞ is completely determined by the limit of vðt;sÞ
that is independent of zAP. □

In view of Lemma 5.1, we call a switching sequence s satisfying
the assumption stated in the lemma a switching sequence of
convergence (a word of caution on terminology: s itself is not
necessarily convergent but it yields a converging state trajectory
for any initial state). For such a switching sequence s, let pnðsÞ be
the unique limit of a state trajectory under s. Then we have

pnðsÞAf\ iAIsN ðAi� InÞg \ P;
where Is is the asymptotic index set associated with s defined in
(2). This result follows directly from Lemma 2.1 and the fact that
each trajectory state is in P which is closed. The following
proposition presents more equilibrium properties of the SLS (15).

Proposition 5.1. The following statements hold:

(1) Let s be a switching sequence of convergence. Then the subspace
\ iAIsN ðAi� InÞ is of dimension one, and the set f\ iAIs
N ðAi� InÞg \ P contains a unique positive vector.

(2) The SLS (15) has at most M limiting points, where M is the
number of link topologies.

(3) If each state trajectory of the SLS (15) is convergent under
arbitrary s, then the SLS (15) has a unique equilibrium in
f\ iAMN ðAi� InÞg \ P, which is independent of z and s.

Proof. (1) Let iAIs. Since each Ai is a strictly positive and column
stochastic matrix, the spectral radius ρðAiÞ ¼ 1. It thus follows from
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Perron's Theorem [17, Section 8.2] that there is a unique positive
vector p such that Aip¼ p and JpJ1 ¼ 1Tp¼ 1. Hence, the dimen-
sion of N ðAi� InÞ is one. The nonemptiness of f\ iAIsN ðAi� InÞg \ P
is obvious. To see the singleton property, let pAf\ iAIs
N ðAi� InÞg \ P, i.e., p is a probability vector such that Aip¼ p for
all iAIs. The previous argument based on Perron's Theorem shows
that p is the unique positive vector such that Aip¼ p and
JpJ1 ¼ 1Tp¼ 1. Consequently, p¼ pnðsÞ40.

(2) Let Σ denote the set of all switching sequences of conver-
gence. Let s;s0AΣ. It follows from (1) that if Is \ Is0 is none-
mpty, then pnðsÞ ¼ pnðs0Þ. In view of this, we call two index sets Is
and Iπ with s;πAΣ similar, denoted by Is � Iπ , if there exists a
(finite) sequence fIsk gℓk ¼ 1 with skAΣ such that Is \ Is1 a∅,
Is1 \ Is2 a∅, …, and Isℓ \ Iπa∅. It is clear that � defines an
equivalent relation on fIs : sAΣg, i.e., it is reflexive, symmetric,
and transitive. This yields a finite collection of (disjoint and
distinct) equivalence classes fHsg of fIs : sAΣg. Each equivalent
class corresponds to a unique limit pnðsÞ for any s with IsAHs.
Therefore, the number of the equivalent classes Hs is exactly the
total number of limiting points of all convergent state trajectories
in P. Since there are at most M equivalent classes, the statement
holds.

(3) In this case, note that Σ ¼M�⋯�M�⋯. Therefore,
Is ¼M for some s. By (1), we see that the SLS has a unique
equilibrium in f\ iAMN ðAi� InÞg \ P, which is independent of z
and s. □

The above proposition indicates that the set of limiting points
of the SLS (15) is discrete and contains at most M points. Under the
assumption of convergence under arbitrary switching, this set
shrinks to a singleton set which contains a unique common
equilibrium point. While this property is different from the
original setting of the semistability analysis, the following example
demonstrates that the convergence rates of the two types of PR-
SLSs can be effectively computed using the semistability techni-
ques and the generating function approach under suitable choice
of system parameters, e.g., mi.

Example 5.1. For illustration, we consider a three-webpage net-
work with two topologies whose link matrices are given by

L1 ¼
1 0 0
0 1 1

2

0 0 1
2

264
375; L2 ¼

1 0 0
0 1 1

3

0 0 2
3

264
375:

The two update schemes under arbitrary switching are as
follows:

(1) The PR-SLS of type I: xðtþ1Þ ¼ LsðtÞxðtÞ. The common equili-
brium subspace Ee ¼ spanfe1; e2g, and the common equili-
brium set Ee \ P is the polytope fzAR3

þ : z1þz2 ¼ 1; z3 ¼ 0g.
Further, the output SLS defined in (4) is a scalar system (i.e.,
ℓ¼ 1Þ with bA1;11 ¼ 1=2 and bA2;11 ¼ 2=3. Hence, it is easy to
obtain the convergence rate as 2=3. Given an initial state
z¼ ðz1; z2; z3ÞT AP, it can be shown that under any s, the state
trajectory converges to xe ¼ ðz1;1�z1;0ÞT AP, which is depen-
dent on z but independent of s.

(2) The PR-SLS of type II: xðtþ1Þ ¼ AsðtÞxðtÞ, where Ai ¼ ð1�miÞLi
þmi=3 � S and the parameters miA ð0;1Þ are to be determined.
A direct computation shows that

N ðA1� I3Þ ¼ span

1þm1
2m1

1
m1

1

2664
3775

8>><>>:
9>>=>>;;

N ðA2� I3Þ ¼ span

1þ2m2
3m2

2þm2
3m2

1

2664
3775

8>><>>:
9>>=>>;:

Hence, the two null spaces have nontrivial intersection if and
only if

3
m1

¼ 2
m2

þ1:

We choose, for example, m2 ¼ 1=2; this leads to m1 ¼ 3=5. The
unique equilibrium point is given by pn ¼ ð13 ; 5

12 ;
1
4 ÞT A \ i ¼ 1;2

N ðAi� I3Þ \ P. Using the transformation introduced in (4), we
have ℓ¼ 2 and

bAi ¼
bAi;11 0bAi;21 1

24 35; i¼ 1;2;

where

bA1;11 ¼
0:3291 0:0546
0:1677 0:2709

� �
; bA2;11 ¼

0:4409 0:0455
0:1398 0:3924

� �
;

bAT
1;21 ¼

�0:0849
0:1414

� �
; bAT

2;21 ¼
�0:0707
0:1179

� �
:

The convergence rate of this update scheme under arbitrary
switching is that of the output SLS with the subsystem matrices
fbA1;11; bA2;11g that can be computed using the generating function
approach as λnA ð3:99;4:01Þ. Therefore, the exponential conver-
gence rate rn ¼ ðλnÞ�1=2Að0:4994;0:5006Þ. Numerical issues for
a large size network follow from Remark 4.1.

6. Conclusion

This paper performs semistability analysis of the SLSs under
both deterministic and random switchings. It is shown that
exponential semistability is equivalent to exponential stability of
some reduced SLS under given switching rules; the generating
functions are exploited to compute convergence rates. These
results are used to determine performance of the update schemes
of PageRank algorithms subject to switching topology.
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