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ABSTRACT
Security is a critical issue in modern power system opera-

tion. With the aid of analytic tools for large-scale and hybrid
systems, this paper proposes two new safety verification methods
for power systems. The first method is based on barrier certifi-
cates and passivity. This method provides a general safety veri-
fication framework for power systems with the port-Hamiltonian
structure. The energy shaping technique is also exploited to at-
tain safety conditions for controlled port-Hamiltonian systems.
The second method, based on positive invariance, yields exact
safety verification for power systems based on linearized mod-
els, particularly linear Hamiltonian systems. Decidability of ex-
act safety verification is established via algebraic and positive
invariance approaches; other analytic and numerical issues are
addressed from the positive invariance perspective.

1 INTRODUCTION
Modern society critically relies on a securely operated elec-

tric power system to supply electricity. By nature, a power
system is continually experiencing disturbances (contingencies),
such as load changes, outage of generators or other equipment,
short circuits, or combination of such events. These disturbances
usually lead to changes in the configuration and/or state of the
power system. Security refers to the degree of risk in a power
system’s ability to survive imminent disturbances without inter-
ruption to customer service at any instant of time [1]. In power
system operation, security analysis [2], [3] is performed to de-
termine the robustness of the system relative to imminent dis-
turbances. For a power system subject to disturbances, it is im-
portant when the disturbances are cleared, the system settles to
new operating conditions such that no physical and security con-

straints are violated. This characterization of system security
clearly highlights two aspects of its analysis, i.e., static security
analysis and dynamic security analysis [1], [4], [5].

In static security analysis, the transition to a new operating
condition is assumed to complete successfully and the analysis
is aimed at verifying that no physical and security constraints are
violated in the post-disturbance steady-state operating condition.
However, because of the new constraints placed by environmen-
tal and economic factors, the trend in power system planning and
operation is toward maximum utilization of existing infrastruc-
ture with tight system stability margins. This trend has increased
the effects of disturbances on power system security. It is con-
ceivable that, in the event of a severe disturbance, the system
state may not be able to transfer quickly to a new steady-state op-
erating point. This could trigger cascading outages in the power
system and threaten system security. Therefore, dynamic secu-
rity analysis is becoming more and more important in modern
power system operation. In dynamic security analysis, the tran-
sition itself is of interest. This involves examining stability of the
system. The majority of existing methods for dynamic security
analysis fall into four categories.

Traditionally, dynamic security analysis in large distur-
bances, i.e., the transient stability analysis, has been performed
by using nonlinear time-domain simulation [2–5]. In this
method, the dynamic behavior of the generators and other com-
ponents together with their interconnection through the electric
power grid is modeled by a set of nonlinear differential/algebraic
equations. These nonlinear equations are solved in time domain
using some integration algorithm. Consequently, the dynamic
behavior of the system relative to a given disturbance can be
studied to determine whether stability has been maintained or
lost. If instability is detected, the exact mode of instability can be
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identified. The time-domain simulation method has a few short-
comings. First, it requires intensive time-consuming numerical
integration and, therefore, is not suitable for on-line applications.
Second, it does not provide information regarding the degree of
stability when the system is stable and the degree of instability
when the system is unstable.

An alternative approach to transient stability analysis is
called direct methods [5], [6–11]. The direct methods determine
power system stability directly based on transient energy func-
tions, which have some of the properties of Lyapunov functions.
These methods determine whether or not the system will remain
stable by comparing the system energy when the disturbance is
cleared to a critical energy value. The direct methods not only
avoid the time-consuming solutions of step-by-step time-domain
stability analysis of the post-disturbance system, but also pro-
vide a quantitative measure of the degree of system stability and
a capability to calculate sensitivities of the stability margin to
power system parameters, allowing for efficient computation of
operating limits. A major limitation of the direct methods is that
they are impractical for large-scale power system stability anal-
ysis with detailed models. Another limitation is that the direct
methods are largely limited to first swing analysis. However, in
many cases transient instability may occur after the first swing if
there is no sufficient damping in the system [12]. Hybrid meth-
ods [13] combining the direct methods and the time-domain sim-
ulation method have been proposed for stability analysis. How-
ever, the hybrid methods still cannot overcome the limitations of
the direct methods and the time-domain simulation method.

A general safety verification of dynamical systems poses
a challenging analytical and numerical problem because of
infinite dimensional nature of dynamics. For this reason,
two technical paths have been widely followed in the liter-
ature: one is based on approximation methods (e.g., over-
approximation/under-approximation and asymptotic approxima-
tion) for general nonlinear dynamics or fast computation [14],
and the other focuses on exact approaches but only for simpler
dynamics [15]. In this paper, we consider both the paths for dy-
namic security analysis of electric power systems. The first one
is based on passivity and barrier certificates; the second one leads
to exact safety verification via positive invariance. These two ap-
proaches, complement to each other, offer new perspectives and
instrumental analytic and numerical tools for security analysis of
power systems.

2 MATHEMATICAL PRELIMINARIES
In this section, we present some mathematical notions

needed for the development of our results.

Definition 1. Consider nonlinear dynamical systems of the
form

ẋ(t) = f (x(t)), x(0) = x0, t ≥ 0, (1)

where f : R
q → R

q satisfies the regularity conditions so that the
solutions of (1) define a continuous global semiflow on R

q. Let
s(t,x) denote the solution of (1) at time t with the initial condition
x. Given a lower semi-continuous function V : R

q→R, the upper
right Dini derivative of V along the solution of (1) is defined by
V̇ (s(t,x)) = limsuph→0+

V (s(t+h,x))−V(s(t,x))
h .

Definition 2 ([16]). Let V : R
q →R be a locally Lipschitz con-

tinuous function. The Clarke upper generalized derivative of
V (·) at x in the direction of v ∈ R

q is defined by V o(x,v) ,

limsupy→x,h→0+
V (y+hv)−V (y)

h . The Clarke generalized gradient
∂V : R

q → B(Rq) of V (·) at x is the set

∂V (x) , co
{

lim
i→∞

∇V (xi) : xi → x, xi 6∈N ∪S
}

, (2)

where “co” denotes the convex hull, ∇ denotes the nabla opera-
tor, N is the set of measure zero where ∇V does not exist, and S
is an arbitrary set of measure zero in R

q.

Note that V o(x,v) always exists. Furthermore (2) is well de-
fined and consists of all convex combinations of all the possible
limits of the gradient at neighboring points where V is differen-
tiable. In order to state the main results of this paper, we need
some additional notation and definitions. Given a locally Lips-
chitz continuous function V : R

q →R, the set-valued Lie deriva-
tive L fV : R

q → B(R) of V with respect to f at x [16] is defined
as L fV (x) , {a ∈ R : there exists v ∈K [ f ](x) such that
pTv = a for all p ∈ ∂V (x)

}
, where K [ f ](x) is defined in (11). If

V (·) is continuously differentiable at x, then L fV (x) = {∇V (x) ·
v,v ∈ K [ f ](x)}. In the case where L fV (x) is nonempty, we use
the notation maxL fV (x) to denote the largest element of L fV (x).

3 POWER NETWORK SYSTEM MODEL
Consider an n-machine network-reduction power system

given by the three dimensional flux decay model [5]

δ̇i = ωi0ωMi, (3)
Miω̇Mi =−DMiωMi +Pmi−Vqi

×
n

∑
j=1, j 6=i

Vq j[GMi j cos(δi−δ j)+BMi j sin(δi−δ j)], (4)

TdiV̇qi =−[1−BMii(xdi− x′di)]Vqi− (xdi− x′di)

×
n

∑
j=1, j 6=i

Vq j[GMi j sin(δi−δ j)−BMi j cos(δi−δ j)]

+E f si +u f i, i = 1,2, . . . ,n, (5)

where δi represents the rotor angle, ωMi represents the rotor
speed, Vqi represents the quadrature axis internal voltage. Fur-
thermore, the control input is the field excitation signal u f i. The
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parameters GMi j = GM ji and BMi j = BM ji are, respectively, the
conductance and susceptance of the generator i. E f si represents
the constant component of the field voltage and Pmi the mechan-
ical power, which is assumed to be a constant. The parameters
xdi, x′di, ωi0, and DMi represent the direct axis synchronous reac-
tance, the direct axis transient reactance, the synchronous speed,
and damping coefficient, respectively. Note that all the parame-
ters are positive and xdi > x′di.

To simplify the model, we introduce the parameters ki ,

E f si/Tdi, ai , DMi/Mi, ci , (Pmiωi0)/Mi, di j , (GMi jωi0)/Mi,

bi j , (BMi jωi0)/Mi, Zi j ,

√
d2

i j +b2
i j, αi j , arctan(di j/bi j), hi ,

[1−BMi j(xdi− x′di)], and ri , (xdi− x′di)/Tdi. Furthermore, de-
fine the state variables as x1i , δi, x2i , ωi, and x3i , Vqi, and the
control input as ui , u f i/Tdi. Then (3-5) can be rewritten as

ẋ1i(t) = x2i(t), (6)
ẋ2i(t) =−aix2i(t)+ ci− x3i(t)

×
n

∑
j=1, j 6=i

x3 j(t)Zi j sin(x1i(t)− x1 j(t)+αi j), (7)

ẋ3i(t) =−hix3i(t)+ ki +ui(t)+ ri

×
n

∑
j=1, j 6=i

x3 j(t)Zi j cos(x1i(t)− x1 j(t)+αi j), (8)

where i = 1, . . . ,n. Note that if di j = 0, then αi j = 0.

4 SAFETY VERIFICATION: PASSIVITY-BASED AP-
PROACH
In this section, we consider an approximate safety verifica-

tion method using barrier certificates [14] and extend it to discon-
tinuous dynamics. Passivity structure and energy shaping tech-
nique are exploited to obtain new safety conditions.

4.1 Safety Verification using Barrier Certificates
Consider a nonlinear dynamical system G given by

ẋ(t) = f (x(t),u(t)), x(0) = x0, t ≥ 0, (9)

where x(t) ∈ R
n, u(t) ∈ U ⊆ R

m, and f (t) , f (x(t),u(t)) is
Lebesgue measurable and f : R

n × R
m is locally essentially

bounded [17].

Definition 3 ([14]). Consider G and assume that f is continu-
ous in x and u. Given the state set S ⊆ R

n, the initial set S0 ⊆ S ,
the unsafe set Su ⊆ S , and the control input set U ⊆ R

m, we
say that the safety property holds if there exist no time instant
T ≥ 0 and a piecewise continuous and bounded control input
u : [0,T ]→U that gives rise to an unsafe system trajectory, that
is, a trajectory x : [0,T ]→ R

n satisfying x(0) ∈ S0, x(T ) ∈ Su,
and x(t) ∈ S for all t ∈ [0,T ].

The following definition is a generalization of Definition 3
from continuous-time dynamical systems to discontinuous dy-
namical systems, which arise in many electric power systems
[18]. More importantly, risk assessment in power industry is par-
ticularly interested in the case where the power system topology
changes when a fault occurs in power networks. In this case, the
power system undergoes switching due to topological changes
and this fault is hard to detect a priori. Hence, it is better to use
discontinuous dynamical systems to describe the power system
under dynamically changing environment than hybrid dynamical
systems. Particularly the results in [14] are hard to be imple-
mented on power systems with switching topology.

Definition 4. Consider G and assume that f is upper semi-
continuous. Given the state set S ⊆R

n, the initial set S0 ⊆ S , the
unsafe set Su ⊆ S , and the control input set U ⊆R

m, we say that
the safety property holds if there exist no time instant T ≥ 0 and
a piecewise continuous and bounded control input u : [0,T ]→U
that gives rise to an unsafe Filippov solution, that is, a Filippov
solution ψ : [0,T ] → R

n satisfying ψ(0) ∈ S0, ψ(T ) ∈ Su, and
ψ(t) ∈ S for all t ∈ [0,T ].

Note that an absolutely continuous function x : [0,τ]→R
n is

said to be a Filippov solution [17] of (9) on the interval [0,τ] with
initial condition x(0) = x0, if for given u(t) ∈U, x(t) satisfies

ẋ(t) ∈K [ f ](x(t),u(t)), a.e. t ∈ [0,τ], (10)

where the Filippov set-valued map K [ f ] : R
n×R

m → B(Rn) is
defined by

K [ f ](x,u) ,
⋂

δ>0

⋂

µ(S)=0

co{ f (Bδ(x)\S ,u)}, x ∈ R
n, (11)

where B(Rn) denotes the collection of all subsets of R
n, µ(·) de-

notes the Lebesgue measure in R
n, and “co” denotes the convex

closure. Note that K [ f ] : R
n → B(Rn) is a map that assigns sets

to points. Dynamical systems of the form given by (10) are called
differential inclusions and for each state x ∈ R

n, they specify a
set of possible evolutions rather than a single one.

Definitions 3 and 4 are very general for G . But it is difficult
to verify them for a given system since it requires the informa-
tion of system trajectories. To overcome this, [14] proposed a
Lyapunov-like approach to verify safety for nonlinear systems
using barrier certificates. The continuum version of safety veri-
fication using barrier certificates can be found in [19]. Next, we
generalize these Lyapunov-like results to discontinuous dynam-
ical systems and discontinuous barriers. First, we consider the
case where (9) is a discontinuous dynamical system.

Theorem 1. Consider a discontinuous dynamical system (9)
with f being upper semi-continuous. Suppose there exists a lo-
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cally Lipschitz continuous function B : R
n → R such that

B(x)≤ 0, x ∈ S0, (12)
B(x) > 0, x ∈ Su, (13)

maxL f B(x)≤ 0 or L f B(x) = ∅,a.e.(x,u) ∈ S ×U, (14)

then the safety of the system in the sense of Definition 4 is guar-
anteed. Alternatively, if all the above conditions are satisfied
except (14) is replaced by maxL f B(x) < 0 or L f B(x) = ∅ a.e.
(x,u)∈ S×U such that B(x) = 0, then the safety of the system in
the sense of Definition 4 is guaranteed.

Proof. Conversely, assume that there exists a barrier certificate
B(x) satisfying (12)–(14) and at the same time the system is
not safe, that is, there exist a time instant T ≥ 0, a control in-
put u : [0,T ]→ U, and an initial condition x0 ∈ S0 such that a
Filippov solution x(t) of the system starting at x(0) = x0 sat-
isfies x(t) ∈ S for all t ∈ [0,T ] and x(T ) ∈ Su. Since either
maxL f B(x)≤ 0 or L f B(x) = ∅ for almost every (x,u) ∈ S ×U,
it follows from Lemma 1 of [16] that d

dt B(x(t)) exists and is con-
tained in L f B(x(t)) for almost every t ≥ 0. Now, by assump-
tion, B(x(t))−B(x(τ)) =

∫ t
τ

d
ds B(x(s))ds≤ 0, t ≥ τ. In particular,

B(x(T )) ≤ B(x(0)). This contradicts (12) and (13). Hence, the
system must be safe.

For the second conclusion, suppose that a control input
u : [0,T ] → U and a corresponding unsafe Filippov solution
x : [0,T ]→ S exist. Let t1 and t2 be two time instants such that
0≤ t1 < t2 ≤ T , B(x(t1))≤ 0, B(x(t2))≥ 0, and d

dt B(x(t)) < 0 for
almost all t ∈ [t1, t2]. Then the assertion follows using the similar
arguments as above.

A function B(x) satisfying (12) and (13) is called a barrier.
Theorem 1 considers the case where B(x) is a continuous barrier.
Next, we extend Theorem 1 to the case where B(x) is a discon-
tinuous barrier.

Theorem 2. Consider a nonlinear dynamical system (9) with
f being Lipschitz continuous. Suppose there exists a lower
semi-continuous function B : R

n → R such that (i) B(x) ≤
0,∀ x ∈ S0; (ii) B(x) > 0,∀ x ∈ Su; and (iii) Ḃ(x(t)) ≤ 0,∀ t ≥
0,∀ (x0,u(t)) ∈ S0×U, then the safety of the system in the sense
of Definition 3 is guaranteed.

Proof. The proof is similar to the proof of Theorem 1 and hence,
is omitted.

It follows from Theorems 1 and 2 that verifying safety for
G reduces to finding a Lyapunov-like function B(x). However,
finding an appropriate Lyapunov-like function is notoriously dif-
ficult. For the vector field being polynomials, an approxima-
tion method based on sums-of-squares optimization is presented
in [14]. This method is quite restrictive since the vector fields of
many electric power systems are not polynomials.

4.2 Safety Verification using Passivity
In this subsection, we propose a passivity-based approach to

verify safety of power systems by taking advantage of the struc-
ture of power systems. Specifically, since many electrical sys-
tems such as power systems possess power-conserving structure,
we may formulate the power system as a port-Hamiltonian sys-
tem [20]. Using dissipative system theory [21], it can be shown
that this port-Hamiltonian system satisfies a passive condition,
which yields a much simpler safety condition that can be checked
analytically without much computation. This gives an efficient
way to do risk assessment for power systems compared with
some traditional method in [9].

To start with our discussion, we put the power network
model (6)–(8) in the following port-Hamiltonian form

ẋ = [J (x)−R (x)]∇TH (x)+G(x)u, (15)
y = GT(x)∇TH (x). (16)

Let S ⊆ R
n be a given open set.

Lemma 1. Suppose H is locally Lipschitz continuous. Further-
more, assume (i) H (x) ≤ a,∀ x ∈ S0; (ii) H (x) > b,∀ x ∈ Su;
and

uTy ≤ ∇H (x)R (x)∇TH (x), (x,u) ∈ S ×U, (17)

where a,b ∈ R and a ≤ b. Then the safety of the system in the
sense of Definition 3 is guaranteed.

Note that if a = b = 0, then H in Lemma 1 becomes a bar-
rier. Also, Lemma 1 implies that if the level set of the Hamilto-
nian function happens to be a barrier, then the power system us-
ing passivity-based control is always safe. However, in general
H need not be a barrier. In this case, security analysis becomes
much more involved. Here, we first consider the simple case
where the barriers are contained in the level set of the Hamilto-
nian function.

Theorem 3. Suppose H is locally Lipschitz continuous and the
barrier certificate B(x) of (15) and (16) is given, that is, B(x) ≤
0,∀ x ∈ S0 and B(x) > 0,∀ x ∈ Su Assume B−1((−∞,0]) ⊆
H −1((−∞,a]) and B−1([0,+∞))⊆H −1([b,+∞)), where a≤ b.
Furthermore, assume (17) holds. Then the power system given
by (15) and (16) is safe in the sense of Definition 3. Alternatively,
if (17) holds almost everywhere, then the power system given by
(15) and (16) is safe in the sense of Definition 4.

Proof. Note that H (x) ≤ a, x ∈ S0, H (x) > b, x ∈ Su, and
L f H (x)≤ 0, x ∈ S . The assertion now follows from Lemma 1.

The following corollary says that if the unsafe set happens
to be the set of all minimum points of the Hamiltonian function,
then the power system using passivity-based control is always
safe. In this case, the barrier is always the minimum level set of
the Hamiltonian function.
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Corollary 1. Assume H is locally Lipschitz continuous
and bounded below. Furthermore, assume (i) H (x) =
infz∈S H (z), ∀ x ∈ S0; (ii) H (x) > infz∈S H (z), ∀ x ∈ Su; and
(iii) (17) holds. Then the safety of the system in the sense of
Definition 3 is guaranteed.

Remark 1. Motivated by the converse Lyapunov theorems, it
is interesting to ask whether the converse (or partial converse)
of Theorems 1–3 hold. Note that the converse is always true
if a barrier certificate function takes the extended values (e.g.,
+∞). For instance, let B be an indicator function defined by
B(x) = 0 if x 6∈ Su and B(x) = +∞ if x ∈ Su. Assuming that S\Su
is closed, then B is lower semicontinuous and the converse of
Theorem 2 holds. However, due to space limitation, we do not
further explore this issue here.

4.3 Safety Verification via Energy Shaping
Previously, we assume that the barriers are always contained

in the level set of the Hamiltonian function. However, this as-
sumption is restrictive since the shape of the barriers could be ar-
bitrarily depicted. Next, we propose an energy shaping-based ap-
proach to detect safety issues for power systems. The basic idea
is to transform the original Hamiltonian power system into an-
other Hamiltonian system in light of the prescribed barrier. Then
the security analysis of the original system becomes the security
of the transformed system. This transformation can be achieved
via the energy shaping technique [22], which is a powerful con-
trol design technique for Hamiltonian systems.

To begin with our approach, we review the energy-shaping
method for port Hamiltonian systems. Consider the port Hamil-
tonian system Σ given by (15) and (16). Next, we consider
the interconnection of Σ with another port Hamiltonian system
ΣC given by ẋc = [Jc(xc)− Rc(xc)]∇THc(xc) + Gc(xc)uc and
yc = GT

c (xc)∇THc(xc) regarded as the controller via the stan-
dard feedback interconnection u = −yc + e and uc = y + ec,
with e and ec external signals inserted in the feedback loop and
xc = [xc1, . . . ,xcnc ] ∈ R

nc . Then by using the Energy-Casimir
method [22], we obtain the following result.

Lemma 2 ([22]). Consider the feedback interconnected port
Hamiltonian system given by Σ and ΣC for ec = 0 and n = nc.
Let g = [g1, . . . ,gnc ] satisfy

∇g(x)J (x)∇Tg(x) = Jc(xc), (18)
R (x)∇Tg(x) = 0, (19)

Rc(xc) = 0, (20)
∇g(x)J (x) = Gc(xc)GT(x). (21)

Furthermore, assume that Jc(xc) = 0 and Gc(xc) is injective.
Then the reduced dynamics on any multi-level set LC = {(x,xc) :

xci = gi(x)+ ci, i = 1, . . . ,nc}

ẋ = [J (x)−R (x)]∇THs(x)+G(x)e, (22)
y = GT(x)∇THs(x), (23)

where Hs(x) , H (x)+Hc(g(x)+ c), c = [c1, . . . ,cnc ]
T.

We call Hs(x) an energy shaped Hamiltonian. There are
many efforts towards solving partial differential equations (18)–
(21) to obtain energy shaped Hamiltonian systems. The readers
should refer to [23] for the details of solving (18)–(21), [24] for
a survey of this method, and [25] for its application to stabiliza-
tion of power systems. Here we do not focus on how to derive
energy shaped Hamiltonian systems. We rather see how to use
this method to solve safety verification of power systems. To
this point, we assume that we already obtain the desired energy
shaped Hamiltonian.

Theorem 4. Suppose the barrier certificate B(x) of (15) and
(16) is given, that is, B(x) ≤ 0, x ∈ S0 and B(x) > 0, x ∈ Su. Let
Hs be an energy shaped Hamiltonian. Assume B−1((−∞,0]) ⊆
H −1

s ((−∞,a]) and B−1([0,+∞))⊆H −1
s ([b,+∞)), where a≤ b.

Consider the energy shaped port-controlled Hamiltonian system
given by (22) and (23) and the new control input set Ue. If

eTy ≤ ∇Hs(x)R (x)∇THs(x), (x,u) ∈ S ×Ue, (24)

then the power system given by (15) and (16) is safe in the sense
of Definition 3. Alternatively, if (24) holds almost everywhere,
then the power system given by (15) and (16) is safe in the sense
of Definition 4.

Proof. Suppose we obtain Hs via Lemma 2. Then the proof is
similar to that of Theorem 3.

4.4 Applications to Power Systems
To illustrate the safety verification approach developed in

Section 4, we convert the power system given by (6)–(8) into a
port-controlled Hamiltonian system. Specifically, let

H (x) ,
n

∑
i=1

[
ri

2hi
x2

2i−
rici

hi
x1i−

ki

hi
x3i +

1
2

x2
3i

−
ri

hi
x3i

n

∑
j=1, j 6=i

Zi jx3 j cos(x1i− x1 j +αi j)

]
,

where xi = [x1i,x2i,x3i]
T, x = [xT

1 , . . . ,xT
n ]T, and

i = 1, . . . ,n. Then (6)–(8) can be rewritten as ẋi =

[Ji(xi)−Ri(xi)]
(

∂H (x)
∂xi

)T
+ Gi(xi)ui, where Gi(xi) =

[
0 0 1

]T
,

Ji(xi) =




0 hi
ri

0
− hi

ri
0 0

0 0 0


 ,Ri(xi) = −




0 0 0
0 aihi

ri
0

0 0 hi


 Here, we
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define the system output yi as yi = GT
i (xi)

(
∂H (x)

∂xi

)T
.

Let B(x) be a given barrier certificate for this power
system. If (I): B−1((−∞,0]) ⊆ H −1((−∞,a]) and
B−1([0,+∞)) ⊆ H −1([b,+∞)), where a ≤ b, and (II):

∑n
i=1 uiyi ≤ ∑n

i=1
∂H (x)

∂xi
Ri(xi)

(
∂H (x)

∂xi

)T
, then it follows from (3)

that the power system given by (6)–(8) is safe in the sense of
Definition 3. Alternatively, if the condition (II) holds almost
everywhere except for some sets of measure zero in the state
space, then (6)–(8) is safe in the sense of Definition 4. Finally,
if the barrier certificate B(x) is not contained in the level set of
H (x), then one can try energy shaping so that the conditions in
Theorem 4 are satisfied. If this is the case, then the sufficient
condition for guaranteeing safety is given by Theorem 4. Other-
wise, the method is invalid and a new investigation is needed for
solving the safety verification problem. Due to space limitation,
we do not discuss this case here.

5 SAFETY VERIFICATION: POSITIVE INVARIANCE
APPROACH
Linear models are popular in power system analysis and

control because of its simplicity and good approximation. When
the operating condition of the power system is close to a nominal
equilibrium, the linear model is sufficiently accurate to describe
the dynamic behavior of the power system. This model also re-
duces complexity of security analysis by using well-developed
linear system theory. In this section, we utilize linear models of
the power system along with special structure of constraint re-
gions to address exact security verification of power systems.

5.1 Exact Safety Verification using Positive Invari-
ance

Roughly speaking, a set is positively invariant with respect
to a dynamical system if a system trajectory starting from the
given set will remain in that set for all positive times. The con-
cept of positive invariance is essential in asymptotic analysis of
dynamical systems and Lyapunov stability theory. It has also
been lately recognized that positive invariance of a hybrid system
plays a crucial role in characterization of a variety of important
long-time hybrid dynamic behavior.

The positive invariance technique developed in [26] has
been exploited to address analytical and computational issues of
safety verification of affine dynamics on semialgebraic sets. This
method makes use of the affine dynamic models widely used in
power system analysis and control and the algebraic structure of
constraint regions. This allows us to obtain less conservative and
computationally tractable verification results.

Suppose the linear power network model is given by S : ẋ =
Ax+d, where x∈R

n, A∈R
n×n, and d ∈R

n. For the given A and
d, we can uniquely decompose d into d = dc +dn, where dc is the
orthogonal projection of d onto the column space of A and dn is
the projection onto the null space of AT such that dc is orthogonal

to dn. Since dc = Auc for some vector uc, the state transformation
x̃ = x+uc converts the original system into ˙̃x = Ax̃+dn. Hence,
if dn = 0, then the original affine system can be transformed into
the linear dynamics.

Definition 5 ([26]). Consider G with u(t) ≡ 0. Given sets S0
and S f in R

n such that S0 ⊆ S f . We say that exact safety property
holds on a time interval ∆ if the trajectory s(t,x0) of G satisfies
s(t,x0) ∈ S f ,∀ t ∈ ∆,∀x0 ∈ S0.

Next consider the polyhedral initial set S0 and the final
safe region S f . Here a polyhedron is the set of the form
P = {x ∈ R

n : Cx ≥ b}, where C ∈ R
m×n and b ∈ R

m. By
Minkowski-Weyl Decomposition Theorem, we decompose S0
into the sum of a compact convex hull and a conic hull, i.e.,
S0 = conv(v1, . . . ,v`) + cone(u1, . . . ,uk) for the extreme points
vi and the extreme rays u j, where conv and cone denote the con-
vex hull and the closed conic hull of the given sets, respectively.
Using this decomposition and letting S f = {x ∈ R

n : Cx ≥ b}, it
follows from Theorem 18 of [26] that the affine dynamics S is
exactly safe from S0 on ∆ = [0,∞) in the sense of Definition 5
if and only if for all t ≥ 0, C[eAtvi +

∫ t
0 eA(t−τ)dτd] ≥ b for all

i = 1, . . . , ` and C[eAtu j +
∫ t

0 eA(t−τ)dτd] ≥ 0 for all j = 1, . . . ,k.
These conditions enable one to check for finitely many vectors
only and thus considerably simplify computations. We summa-
rize this result as follows.

Proposition 1. Given two polyhedral sets S0 and S f = {x ∈
R

n : Cx ≥ b}. Let S0 = conv(v1, . . . ,v`) + cone(u1, . . . ,uk) for
the extreme points vi and the extreme rays u j. Then the affine
dynamics S is exactly safe from S0 on ∆ = [0,∞) in the sense of
Definition 5 if and only if for all t ≥ 0, C[eAtvi +

∫ t
0 eA(t−τ)dτd]≥

b for all i = 1, . . . , ` and C[eAtu j +
∫ t

0 eA(t−τ)dτd] ≥ 0 for all j =
1, . . . ,k.

Analytic results are usually difficult to obtain for general S0
and S f in exact safety verification, and the best way to solve
the exact verification problem is to pursue numerical approaches.
This yields a critical computability question of whether such the
problem is finitely verifiable or decidable. A typical approach
to address this issue is to convert the original safety verification
problem into a semialgebraic problem and then apply the Tarski-
Seidenberg decision procedure [27]. Such an approach has been
successfully used to prove decidability of several classes of linear
dynamics on semialgebraic sets [15, 28].

It is shown in [26] that dynamic analysis techniques for pos-
itive invariance analysis, along with semialgebraic arguments,
lead to improved decidability results. Specifically, consider an
affine dynamics whose defining matrix contains complex eigen-
values only. Most of the linear power systems satisfy this con-
dition. Furthermore, assume that S0 and S f are closed semialge-
braic sets, i.e., they are described by finitely many multivariate
polynomial equations or inequalities which are neither convex
nor polyhedral in general. It is further shown that the exact safety
verification problem is decidable even if the ratios of mode fre-
quencies of the dynamics are irrational.
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Proposition 2 ([26]). Let S0 = {x ∈ R
n : p(x) ≥ 0,w(x) = 0}

and S f = {x∈R
n : f (x)≥ 0} be closed semialgebraic sets, where

p, w, and f are vector-valued multivariate polynomials. Suppose
that A has only complex eigenvalues which are all known. Then
checking exact safety of the affine dynamics S on the time interval
∆ = R in the sense of Definition 5 is decidable.

The following example from [26] illustrates how to convert
a safety verification problem into a semi-algebraic problem .

Example 1. Consider the linear system on R
8 whose defin-

ing matrix A = diag(A1,A2,A3,A4). Here the matrix blocks Ai

are A1 =

[
σ1 ω1
−ω1 σ1

]
, A2 =

[
0 π
−π 0

]
, A3 =

[
0 2π
−2π 0

]
, A4 =

[
0 1
−1 0

]
, where σ1 6= 0 and ω1 > 0. Let the initial set

S0 = {x ∈ R
8 |‖x − x∗‖2

2 ≤ 1} for a given x∗ and the safe
region S f = {x ∈ R

8 |cT x ≥ b} for some c ∈ R
8 and b ∈

R. To simplify notation, let cT = (cT
1 , · · · ,cT

4 ) and x =
((x1)T , · · · ,(x4)T )T , where ci,xi ∈ R

2 correspond to the matrix

block Ai, and let the symplectic matrix S =

[
0 −1
1 0

]
. Therefore,

cT eAtx = eσ1t [cT
1 x1 cos(ω1t) + (Sc1)

T x1 sin(ω1t)] + q1(x, t) +
q2(x, t), where q1(t,x) = cT

2 x2 cos(πt) + (Sc2)
T x2 sin(πt) +

cT
3 x3 cos(2πt) + (Sc3)

T x3 sin(2πt) and q2(t,x) = cT
4 x4 cos(t) +

(Sc4)
T x4 sin(t). Notice that q1(t,x) and q2(t,x) are periodic in

t but their frequency ratio is irrational. Moreover, for a fixed
x, even though q1 is the sum of two sinusoidal functions with
frequencies π and 2π respectively, the maximal (resp. minimal)
values of q1 cannot be simply written as the sum of the maximal
(resp. minimal) values of the two sinusoidal functions. This is
why we introduce the time derivative of q1 to characterize the
extremal value of q1. Now define u1 ≡ cos(πt),v1 ≡ sin(πt) and
u2 ≡ cos(t),v2 ≡ sin(t). Rewriting qi(t,x) and ∂qi(t,x)

∂ t , i = 1,2
in terms of x,u1,v1,u2,v2 and applying the argument in [26,
proposition 29], we transform the safety verification problem
on the time domain ∆ = R into the following semi-algebraic
decision problem

[
P ⇒ Q

]
on R

12, where P ≡
[
π(−cT

2 x2v1 +

(Sc2)
T x2u1−4cT

3 x3u1v1 +2(Sc3)
T x3(u2

1−v2
1)) = 0

]
∧ [u2

1 +v2
1−

1 = 0] ∧
[
− cT

4 x4v2 + (Sc4)
T x4u2 = 0

]
∧
[
u2

2 + v2
2 − 1 = 0

]
∧[

(x− x∗)T (x− x∗)− 1 ≤ 0
]

and Q ≡
[
cT

2 x2u1 + (Sc2)
T x2v1 +

cT
3 x3(u2

1−v2
1)+2(Sc3)

T x3u1v1 +cT
4 x4u2 +(Sc4)

T x4v2−b≥ 0
]
∧[

cT
1 x1 = 0

]
∧
[
(Sc1)

T x1 = 0
]
. The latter problem is decidable

and can be solved using the quantifier elimination technique.

5.2 Applications to Linear Hamiltonian Systems
By making use of Hamiltonian structure, we show that

Proposition 2 can be improved even for a dynamic ma-
trix with certain repeated real eigenvalues. Consider the
(uncontrolled) stable linear Hamiltonian system in canonical
form: ẋ = Ax, where A ∈ R

n×n is skew symmetric. The
matrix A has pure imaginary eigenvalues ±ıωi, i = 1, · · · , `
with real ωi > 0 and (n − 2`) zero eigenvalues. More-

over, there exists an orthogonal matrix U ∈ R
n×n such that

A = UDUT , where D = diag(J1, · · · ,J`, 0, · · · ,0︸ ︷︷ ︸
(n−2`)−copies

) is a

block diagonal matrix with the blocks Ji =

[
0 ωi
−ωi 0

]
, i =

1, · · · , ` Thus eAt = U diag(eJ1t , · · · ,eJ`t ,1, · · · ,1)UT , where

eJit =

[
cos(ωit) sin(ωit)
−sin(ωi) cos(ωit)

]
, i = 1, · · · , ` Hence, given a mul-

tivariate polynomial q : R
n → R and a vector x ∈ R

n, q(eAtx)
can be expressed as q(eAtx) = c(x) + ∑ j

[
g j(x)cos(ω̃ jt) +

h j(x)sin(ω̃ jt)
]
, where c,g,h : R

n → R are multivariate polyno-
mials, and each ω̃ j is a multiple of one of ωi, i = 1, · · · , `. There-
fore the similar argument in the proof of Proposition 2 [26] gives
rise to:

Corollary 2. Let S0 = {x ∈ R
n : p(x)≥ 0} and S f = {x ∈ R

n :
q(x)≥ 0} be closed semialgebraic sets, where p and q are vector-
valued multivariate polynomials. Then exact safety verification
of the linear Hamiltonian system on the time intervals ∆ = R+

or ∆ = R in the sense of Definition 5 is decidable.

The above corollary can be further strengthened if both S0
and S f are polyhedral, in view of Proposition 1. Let d = 0,
S0 = conv(v1, . . . ,v`) + cone(u1, . . . ,uk), and S f = {x ∈ R

n :
Cx ≥ b}. Since CeAtvi = (CU)eDt(UT vi), each component of

CeAtvi can be written as p(t)≡ γ+
`

∑
i=1

[
αi cos(ωit)+βi sin(ωit)

]
,

where the constants γ,αi,βi depend on C,U,vi only. Let di(t) ≡
αi cos(ωit)+βi sin(ωit). By considering the rationality of ratios
of ωi, we obtain the collection of (disjoint and distinct) equiv-
alent classes Eω j = {di(t) | ωi/ω j is rational}. Each equiva-
lent class Eω j attains a basis frequency ω̃s > 0, namely, ωi/ω̃s
is a positive integer for any frequency ωi associated with the
function di(t) ∈ Eω j . Let Eω̃s denote the equivalent class and
let q ω̃s(t) ≡ ∑

di ∈Eω̃s

di(t). Then the following hold: (1) q ω̃s(·) is

a real-valued smooth and periodic function with the frequency
ω̃s; (2) if q ω̃s(·) is not identically zero, then it attains the max-
imal and minimal values σ ω̃s > 0 and ν ω̃s < 0 on (−∞,∞) re-
spectively; (3) q ω̃s(·) is onto [ν ω̃s , σ ω̃s ]; and (4) the ratio of
two basis frequencies associated with two distinct equivalent
classes is irrational. Suppose there are k equivalent classes Eω̃s

and thus p(t) =
k
∑

s=1
q ω̃s(t). Although each q ω̃s is periodic, p is

generally not and hence may not attain its maximum and min-
imum on R+. Despite this, it is shown in [26, Lemma 5] that

sup[0,∞) p(t) = γ+
k
∑

s=1
σ ω̃s and inf[0,∞) p(t) = γ+

k
∑

s=1
ν ω̃s . Conse-

quently, p(t) ≥ b j,∀ t ≥ 0 for some entry b j of b if and only if

γ +
k
∑

s=1
ν ω̃s ≥ b j. Furthermore, the latter inequality is decidable

as shown in Proposition 2. The similar technique can be used to
treat CeAtu j ≥ 0,∀ t ≥ 0.
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The semialgebraic conditions obtained above can be veri-
fied using the quantifier elimination technique. The recent sum-
of-squares relaxation approach provides a numerically efficient
alternative via powerful semidefinite programming techniques.
We refer the interested reader to [14, 27, 28] for additional infor-
mation.
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