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Abstract— This paper addresses smoothing spline estimation
of complex functions subject to shape and/or dynamics con-
straints. Such estimation problems receive growing interest in
engineering and statistics, particularly newly emerging areas
such as systems biology. In this paper, we formulate the
estimation problem as an optimal control problem subject to
convex control constraints. By exploring techniques from convex
and variational analysis, the existence and uniqueness of opti-
mal solutions is established and explicit optimality conditions
are obtained. It is shown that the optimality conditions are
given in term of a two-point boundary value problem for
a complementarity system. To compute an optimal solution,
we formulate the optimality conditions as a B-differentiable
equation. A nonsmooth Newton’s method is exploited to solve
this equation; global convergence of this method is established.

I. INTRODUCTION

Spline models are extensively studied in approximation
theory, numerical analysis, and statistics with broad appli-
cations in diverse fields. Informally speaking, a univariate
spline model provides a piecewise polynomial curve that
“best” fits a given finite set of data. Such a spline can be
attained via efficient numerical algorithms and enjoys many
favorable analytic and statistical properties. A number of
variations and extensions have been developed, for example,
penalized polynomial splines [14] (simply P -splines) and
smoothing splines [18]. In particular, the smoothing spline
model is to find a smooth function f : [0, 1] → R
in a suitable function space that minimizes the following
objective functional:

1

n

n∑
i=1

(
f(ti)− yi

)2
+ λ∗

∫ 1

0

(
f (m)(t)

)2
dt, (1)

where yi are noisy data at points ti ∈ [0, 1], i = 1, . . . , n,
f (m) denotes the m-th derivative of f , and λ∗ > 0 is a
penalty parameter that characterizes a tradeoff between data
fidelity and smoothness of f . We refer the interested reader
to [18] and the references therein for extensive discussions
on statistical properties of smoothing splines.

From a control system point of view, the smoothing spline
model (1) is closely related to the linear quadratic optimal
control problem by treating f (m) as a control input [3]. This
observation has led to a highly interesting spline model,
which the authors of [3] coined as control theoretic splines.
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It is shown in [3] and the references therein, e.g. [16], [19],
[20], that a variety of smoothing, interpolation, and path
planning problems can be modeled in such the paradigm
and studied via control theory and optimization techniques
on Hilbert spaces with efficient numerical schemes. Other
relevant references include control theoretic wavelets [5].

In spite of the significant progress mentioned above, most
spline literature deals with unconstrained functions. How-
ever, various models of biological, engineering and economic
systems contain functions whose shape and/or dynamics are
subject to inequality constraints, e.g., the monotone and
convex constraints. For example, regulatory functions in
genetic networks are monotone [15]; another example is the
shape restricted function in an attitude control system with
the constraint f (3) ≥ 0 [11]. Incorporating the knowledge of
constraints into an estimation procedure is beneficial, since
it improves estimation efficiency and accuracy [10]. Two
classes of constraints usually arise in the framework of linear
optimal control for smoothing splines: (i) control constraints;
and (ii) state constraints. Being more tractable, (general)
control constraints remain posing many critical open issues in
analysis and computation, due to the nonsmooth nature of the
problem. Furthermore, many shape constraints are imposed
on derivatives of a function and can be formulated as control
constraints. Motivated by this, we develop optimality condi-
tions for a class of smoothing splines with convex control
constraints using optimal control and optimization techniques
in this paper. The resulting optimality conditions lead to
a two-point boundary-value problem of complementarity
systems [12], [13]. While certain special cases, e.g., the
monotone case, have been addressed in [3], [7], [17], [21],
[22], general control constraints have not been studied yet.
The latter are treated in a unified framework in this paper.
The obtained results form a cornerstone for investigation of
statistical properties of the splines.

The paper is organized as follows. In Section II, we
formulate the smoothing spline as an optimal control prob-
lem subject to control constraints. Detailed development of
optimality conditions are given in Section III. Section IV
addresses numerical issues of the smoothing splines.

II. PROBLEM FORMULATION

Consider the following (generalized) regression problem
on the interval [0, 1]:

yi = f(ti) + εi, i = 1, . . . , n, (2)

where ti’s are the pre-specified design points with 0 < t1 <
· · · < tn < 1, yi’s are samples, εi are random noise, and
the underlying function f : [0, 1]→ R is assumed to satisfy
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f(t) = cTx(t), where c ∈ R` is given, and x : [0, 1] → R`
is a vector-valued absolutely continuous function satisfying
the following linear differential equation:

ẋ(t) = Ax(t) + bu(t), a.e. [0, 1], (3)

subject to the control constraint:

u(t) ∈ Ω, ∀ t ∈ [0, 1], (4)

where A ∈ R`×` and b ∈ R` are known, and u ∈ L2[0, 1].
Here Ω ⊆ R is a closed convex constraint set, and L2[0, 1] is
the space of (Lebesgue) square integrable functions, endowed
with the inner product 〈v, w〉2 :=

∫ 1

0
v(t)w(t)dt for v, w ∈

L2[0, 1] and the induced norm ‖ · ‖L2
. Since u in (3) can be

viewed as the control input to the linear system (3), Ω can
be treated as the control constraint.

In summary, the generalized smoothing spline estimator is
cTx(t) with an absolutely continuous x(t) which minimizes
the functional

J :=

n∑
i=1

(
yi − cTx(ti)

)2
+ α

∫ 1

0

u2(t)dt, (5)

subject to the dynamics and control constraints (3)-(4), where
α := nλ∗ > 0 is the penalty parameter.

Example 2.1: The above model covers a wide range
of estimation problems subject to shape and/or dynamical
constraints. For instance, the standard monotone regression
problem is a special case where A = 0, c = b = 1 and
Ω = R+. Another case is the convex regression, for which

A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
0

]
, Ω = R+.

III. OPTIMALITY CONDITIONS OF CONSTRAINED
SMOOTHING SPLINES

In this section, we establish optimality conditions for the
constrained smoothing splines and discuss its complementar-
ity system formulation.

A. Characterization of optimality conditions

To show the existence and uniqueness of an optimal
solution and to establish its characterization conditions, we
introduce the following basis functions inspired by [3]:

pi(t) :=

{
cT eA(ti−t)b if t ∈ [0, ti]
0 if t > ti

, i = 1, . . . , n.

Hence,

f(ti) = cTx(ti) = cT eAtix0+

∫ 1

0

pi(t)u(t)dt, i = 1, . . . , n,

where x0 denotes the initial state of x(t). The objective
functional becomes

J(u, x0) =

n∑
i=1

(
cT eAtix0 +

∫ 1

0

pi(t)u(t)dt− yi
)2

+α

∫ 1

0

u2(t)dt. (6)

Letting W := {w ∈ L2[0, 1] : w(t) ∈ Ω,∀ t ∈ [0, 1]} and
P :=W × R`, the optimization problem is equivalent to

inf
(u,x0)∈P

J(u, x0) (7)

For given design points {ti}ni=1, define the condition:

H : rank
[
cT eAt1 , cT eAt2 , · · · , cT eAtn

]T
= `.

It is easy to see that if (cT , A) is an observable pair, then
the condition H holds for all sufficiently large n. Under
this condition, the existence and uniqueness of an optimal
solution can be shown via standard arguments in functional
analysis, e.g., [1], [6]. We present its proof in the following
theorem for self-containment.

Theorem 3.1: Given {ti}, {yi} and α > 0. Under the
condition H, the optimization problem (7) has a unique
optimal solution (u∗, x∗0) ∈ P .

Proof: Consider the Hilbert space L2[0, 1] ×
R` endowed with the inner product 〈(u, x), (v, z)〉 :=∫ 1

0
u(t)v(t)dt + xT z for any (u, x), (v, z) ∈ L2[0, 1] × R`.

Its induced norm ‖(u, x)‖2 := ‖u(t)‖2L2
+ ‖x‖2, where the

latter ‖ · ‖ is a vector norm on R`. We first show that the
objective functional J : L2[0, 1]× R` → R is coercive, i.e.,
for any sequence (uk, xk) with ‖(uk, xk)‖ → ∞ as k →∞,
J(uk, xk) → ∞. Consider two cases: (i) ‖uk‖L2 → ∞ as
k → ∞; (ii) otherwise. The first case is trivial in view
of the expression of J(u, x0) in (6). For the second case
where ‖uk‖L2

is bounded and ‖xk‖ → ∞ as k → ∞, let
Q :=

∑n
i=1(cT eAti)T (cT eAti) ∈ R`×` which is symmetric

and positive definite under the condition H. It is noted that

J(uk, xk)

= xTkQxk + 2

n∑
i=1

cT eAtixk
( ∫ 1

0

pi(t)uk(t)dt− yi
)

+

n∑
i=1

(

∫ 1

0

pi(t)uk(t)dt− yi
)2

+ α

∫ 1

0

u2k(t)dt

≥
√
λmin(Q)‖xk‖2

− 2‖xk‖ ·
n∑
i=1

∣∣ ∫ 1

0

pi(t)uk(t)dt− yi
∣∣ · ‖eAT tic‖

≥ ‖xk‖
(√

λmin(Q)‖xk‖ −M
)
,

where λmin(Q) is the smallest positive eigenvalue of Q and
the bound M ≥ 0 is due to the boundedness of ‖uk‖L2

.
Hence J(uk(t), xk)→∞ as k →∞.

Next we show that J(u, x0) is strictly convex on L2[0, 1]×
R`, i.e., for any (u, x), (v, z) ∈ L2[0, 1]× R` with (u, x) 6=
(v, z), J(λ(u, x)+(1−λ)(v, z)) < λJ(u, x)+(1−λ)J(v, z)
for all λ ∈ (0, 1). Given (u, x), (v, z) with (u, x) 6= (v, z),
consider two cases: (i) u 6= v (i.e. v is not in the equivalent
class of u or ‖u− v‖L2 6= 0); (ii) otherwise. To handle this,
we use the fact that for any reals a 6= b, [λa+ (1− λ)b]2 <
λa2 + (1 − λ)b2,∀ λ ∈ (0, 1). For the first case, we have
J(λ(u, x) + (1− λ)(v, z)) < λJ(u, x) + (1− λ)J(v, z), for
all λ ∈ (0, 1), where the above strict inequality is due to
the observation that the summation on the right satisfies the
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non-strict inequality but the integral term satisfies the strict
inequality. In the second case where ‖u − v‖L2

= 0 and
x 6= z, we have

J(λ(u, x) + (1− λ)(v, z))

= [λx+ (1− λ)z]TQ[λx+ (1− λ)z]

+2

n∑
i=1

(
cT eAti [λx+ (1− λ)z]

+

∫ 1

0

pi(t)[λu(t) + (1− λ)v(t)]dt− yi
)

+α

∫ 1

0

[λu(t) + (1− λ)v(t)]2dt.

Since Q is positive definite and x 6= z, [λx + (1 −
λ)z]TQ[λx + (1 − λ)z] < λxTQx + (1 − λ)zTQz for all
λ ∈ (0, 1). Furthermore, since ‖u− v‖L2 = 0,

n∑
i=1

(
cT eAti [λx+ (1− λ)z]

+

∫ 1

0

pi(t)[λu(t) + (1− λ)v(t)]dt− yi
)

= λ

n∑
i=1

(
cT eAtix+

∫ 1

0

pi(t)u(t)dt− yi
)

+(1− λ)

n∑
i=1

(
cT eAtiz +

∫ 1

0

pi(t)v(t)dt− yi
)
,

and
∫ 1

0
[λu(t) + (1 − λ)v(t)]2dt ≤ λ

∫ 1

0
u2(t)dt + (1 −

λ)
∫ 1

0
v2(t)dt. Thus J(λ(u, x)+(1−λ)(v, z)) < λJ(u, x)+

(1− λ)J(v, z),∀λ ∈ (0, 1), i.e., J is strictly convex.
Pick an arbitrary (ũ, x̃) ∈ P and define the level set S :=

{(u, x) ∈ P : J(u, x) ≤ J(ũ, x̃)}. Due to the convexity
and the coercive property of J , S is a convex and (L2-norm)
bounded set in L2[0, 1]× R`. Since the space L2[0, 1]× R`
is reflexive and self dual, it follows from Banach-Alaoglu
Theorem [6] that an arbitrary sequence {(un, xn)} in S
has a subsequence {(u′n, x′n)} that attains a weak*, thus
weak, limit (u∗, x∗) ∈ L2[0, 1]×R`. Therefore, cT eAtix′n+∫ 1

0
pi(t)u

′
n(t)dt converges to cT eAtix∗ +

∫ 1

0
pi(t)u

∗(t)dt
for each i. Further, by using the (L2-norm) boundedness
of {u′n} and the triangle inequality for the L2-norm, it is
easy to show that for any η > 0, there exists K ∈ N
such that ‖u∗‖2L2

≤ ‖u′n‖2L2
+ η,∀ n ≥ K. These results

imply that for any ε > 0, J(u∗, x∗) ≤ J(u′n, x
′
n) + ε for

all n sufficiently large. Consequently, J(u∗, x∗) ≤ J(ũ, x̃)
such that (u∗(, x∗) ∈ S . This thus shows that S is weakly
compact. In view of (strong) continuity of J , we see that a
global optimal solution exists on S [6, Section 5.10, Theorem
2], and thus on P . Further, since J is strictly convex and the
set P is convex, there is a unique optimal solution.

The next result provides the necessary and sufficient
optimality conditions in terms of variational inequalities.

Theorem 3.2: The pair (u∗, x∗0) ∈ P is an optimal solu-

tion to (7) if and only if the following two conditions hold:(
v(t)− u∗(t)

)[
αu∗(t) +

n∑
i=1

(
cT eAtix∗0

+

∫ 1

0

pi(t)u
∗(t)dt− yi

)
pi(t)

]
≥ 0, a.e.[0, 1], (8)

∀ v ∈ W , and
n∑
i=1

(
cT eAtix∗0 +

∫ 1

0

pi(t)u
∗(t)dt− yi

)
cT eAti = 0. (9)

Proof: Let (u′, x′) ∈ P be arbitrary. Due to the
convexity of P , (u∗, x∗0) + ε[(u′, x′) − (u∗, x∗0)] ∈ P for
all ε ∈ [0, 1]. Further, since (u∗, x∗0) is a global optimizer,
we have J((u∗, x∗0) + ε[(u′, x′)− (u∗, x∗0)]) ≥ J(u∗, x∗0) for
all ε ∈ [0, 1]. Therefore

0 ≤ lim
ε↓0

J((u∗, x∗0) + ε[(u′, x′)− (u∗, x∗0)])− J(u∗, x∗0)

ε

= 2
[ n∑
i=1

(
cT eAtix∗0 +

∫ 1

0

pi(t)u
∗(t)dt− yi

)
(
cT eAti(x′ − x∗0) +

∫ 1

0

pi(t)(u
′(t)− u∗(t))dt

)
+α

∫ 1

0

u∗(t)(u′(t)− u∗(t))dt
]
.

This thus yields the necessary optimality condition: for all
(u′, x′) ∈ P ,

n∑
i=1

(
cT eAtix∗0 +

∫ 1

0

pi(t)u
∗(t)dt− yi

)
[
cT eAti(x′ − x∗0) +

∫ 1

0

pi(t)(u
′(t)− u∗(t))dt

]
+α

∫ 1

0

u∗(t)(u′(t)− u∗(t))dt ≥ 0.

This condition is also sufficient in light of the following
inequality due to the convexity of J :

J(u′, x′)− J(u∗, x∗0)

≥ lim
ε↓0

J((u∗, x∗0) + ε[(u′, x′)− (u∗, x∗0)])− J(u∗, x∗0)

ε
,

∀ (u′, x′) ∈ P . Noticing that x′ is arbitrary in the vector
space R`, it is easy to show (by setting u′(t) = u∗(t)) that the
terms before x′−x∗0 must be zero. This yields the equivalent
condition (9) and∫ 1

0

(
u′(t)− u∗(t)

)
H(u∗(t), x∗0)dt ≥ 0,

where H(u∗(t), x∗0) := αu∗(t) +
∑n
i=1

(
cT eAtix∗0 +∫ 1

0
pi(t)u

∗(t)dt − yi
)
pi(t), for all u′ ∈ L2[0, 1] with u′ :

[0, 1] → Ω. Since H(u∗, x∗0) ∈ L2[0, 1] and u′ ∈ L2[0, 1],
it follows from [9, Section 2.1] that the above integral
inequality is equivalent to the variational inequality (8).

Recall that the control constraint Ω is a closed convex
subset of R. Hence, Ω must be an interval of one of the
following types: (1) Ω = [µ1,∞); (2) Ω = (−∞, µ2]; and
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(3) Ω = [µ1, µ2] with µ1 < µ2, where µ1, µ2 ∈ R. (Here we
omit the trivial case Ω = R.) This allows us to simplify the
variational inequality (8) using complementarity formulation.
In the following, let x∗(t) := eAtx∗0 +

∫ t
0
eA(t−s)bu∗(s)ds

and let f̂(t) := cTx∗(t) be the smoothing spline estimator.
Proposition 3.1: The following hold:

(1) If Ω = [µ1,∞), then (8) is equivalent to a.e. [0, 1],

u∗(t) =
[
− µ1 − α−1

n∑
i=1

(
f̂(ti)− yi

)
pi(t)

]
+

+ µ1;

(2) If Ω = (−∞, µ2], then (8) is equivalent to a.e. [0, 1],

u∗(t) = µ2 −
[
µ2 + α−1

n∑
i=1

(
f̂(ti)− yi

)
pi(t)

]
+

;

(3) If Ω = [µ1, µ2] with µ1 < µ2, then (8) is equivalent to
a.e. [0, 1],

u∗(t) = sat
( n∑
i=1

(
f̂(ti)− yi

)
pi(t)

)
,

where sat(·) denotes the following saturation function
defined by:

sat(z) :=

 µ2, if z ≤ −αµ2

−α−1z, if z ∈ [−αµ2,−αµ1]
µ1, if z ≥ −αµ1

(10)
Proof: For notational simplicity, let g(u∗(t), x∗0) :=∑n

i=1

(
cT eAtix∗0 +

∫ 1

0
pi(t)u

∗(t)dt − yi
)
pi(t) =∑n

i=1

(
f̂(ti)− yi

)
pi(t). Hence the variational inequality (8)

becomes
(
v − u∗(t)

)[
αu∗(t) + g(u∗(t), x∗0)

]
≥ 0, a.e. [0, 1]

for all v ∈ W . Since each Ω is a linear (i.e. polyhedral)
constraint, it follows from [2, Lemma 5.1.4] that the
Abadie’s Constraint Qualification holds such that the
variational inequality (8) can be equivalently described by
the following Karush-Kuhn-Tucker (KKT) conditions [4,
Proposition 1.3.4]:

(1) Ω = [µ1,∞). In this case, Ω = {v ∈ R : v − µ1 ≥ 0}
and the corresponding KKT conditions are:

αu∗(t)+g(u∗(t), x∗0)−χ = 0, 0 ≤ χ ⊥ u∗(t)−µ1 ≥ 0,

where a ⊥ b means two objects are orthogonal, i.e. aT b = 0.
Letting v∗(t) := u∗(t)− µ1, the KKT conditions become

0 ≤ αv∗(t) + αµ1 + g(u∗(t), x∗0) ⊥ v∗(t) ≥ 0.

This is equivalent to αv∗(t) =
[
− αµ1 − g(u∗(t), x∗0)

]
+

which leads to the desired condition.
(2) Ω = (−∞, µ2]. This case is similar to the first one

and its development is omitted.
(3) Ω = [µ1, µ2] with µ1 < µ2. Here Ω = {v ∈ R :

Ev − d ≥ 0}, where E = [1,−1]T and d = [µ1,−µ2]T .
(The inequality ≥ holds componentwise.) The corresponding
KKT conditions are:

αu∗(t) + g(u∗(t), x∗0)− ETχ = 0

and 0 ≤ χ ⊥ Eu∗(t) − d ≥ 0, where χ = [χ1, χ2]T ∈ R2.
This is equivalent to

0 ≤ χ ⊥ (nα)−1EETχ− (nα)−1Ez − d ≥ 0,

where z ≡ g(u∗(t), x∗0). It is known from complementarity
theory that ETχ in the above complementarity problem is
unique for any z ∈ R and is indeed a continuous piecewise
affine function of z given by:

ETχ(z) =

 αµ2 + z, if z ≤ −αµ2

0, if z ∈ [−αµ2,−αµ1]
αµ1 + z, if z ≥ −αµ1

(11)

Therefore u∗(t) = (α)−1[−g(u∗(t), x∗0) +
ETχ(g(u∗(t), x∗0))] = sat(g(u∗(t), x∗0)).

An interesting special case is when A is the following
nilpotent matrix:

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . . . . .
...

0 · · · 0 0 1 0
0 · · · 0 0 0 1
0 · · · 0 0 0 0


. (12)

In this case, each component of eAt is a polynomial, i.e.

eAt =



1 t t2

2!
t3

3! · · · t(`−1)

(`−1)!

0 1 t t2

2! · · · t(`−2)

(`−2)!
. . . . . .

...
0 · · · 0 1 t t2

2!
0 · · · 0 0 1 t
0 · · · 0 0 0 1


.

Therefore, each pi(t) is a (possibly discontinuous) piecewise
polynomial on [0, 1]. In fact, if cT b = 0, then pi(t) is
continuous on [0, 1]; otherwise, pi(t) is only discontinuous
at ti. In view of this, Proposition 3.1 and the fact that both
the plus function (·)+ and the saturation function in (10) are
continuous and piecewise linear or affine, we thus have:

Corollary 3.1: If A is the nilpotent matrix given in (12),
then u∗(t) is a (possibly discontinuous) piecewise polyno-
mial on [0, 1]. Further, each element of x(t) is an absolutely
continuous piecewise polynomial on [0, 1].

Due to the presence of the dynamics (characterized by A)
and the control constraint, the degree change of polynomials
in u∗(t) occurs not only at points ti but also possibly between
two consecutive points. This is different from the classical
unconstrained splines.

Remark 3.1: The above optimality results can be ex-
tended to a linear time-varying system of the form ẋ(t) =
A(t)x(t)+b(t)u(t) and f(t) = cT (t)x(t), where A : [0, 1]→
R`×` and b, c : [0, 1]→ R` are piecewise continuous.

B. Characterization via complementarity systems

Recall that x∗(t) = eAtx∗0 +
∫ t
0
eA(t−s)bu∗(s)ds and

f̂(t) = cTx∗(t). To characterize the estimator, we make the
following assumptions:
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A.1 The matrix-vector tuple (A, b, cT ) satisfies cTAkb =
0,∀ k = 0, . . . , `− 2, and cTA`−1b 6= 0.

A.2 The pair (A, b) is a controllable pair.
Without loss of generality, we may let cTA`−1b = 1.
Assumption A.1 implies that the linear control system
(A, b, cT ) has the relative degree (`−1). Under this assump-
tion, it is easy to show that for each k = 1, . . . , `, f̂ (k)(t)
exists almost everywhere on [0, 1] and is given by

f̂ (k)(t) =

{
cTAkx∗(t), if k ≤ `− 1
cTA`x∗(t) + cTA`−1bu∗(t), if k = `

By the Cayley-Hamilton Theorem, A` =
∑`−1
k=0 akA

i

for some real numbers ak. Therefore, f̂ (`)(t) =∑`−1
k=0 akf̂

(k)(t) + u∗(t). Furthermore, let ω be the uniform
distribution on {t1, . . . , tn} and I denotes the indicator
function of a set. For any function h : [0, 1] → R and
t ∈ [0, 1],

∫ t
0
h(s)dω(s) := 1

n

∑n
i=1 h(ti)I([ti, 1]). Hence,∫ t

0
h(s)dω(s) = 0 if t ∈ [0, t1) and

∫ t
0
h(s)dω(s) =

1
n

∑j
i=1 h(ti) for each t ∈ [tj , tj+1), j = 1, . . . , n−1. There-

fore, for t ∈ [0, 1],
∫ 1

t
h(s)dω(s) := 1

n

∑n
i=1 h(ti)I([0, ti]).

For the given {yi}, let g : [0, 1] → R be the piecewise
constant function defined by {yi}, namely, g(t) := 0,∀ t ∈
[0, t1), and g(t) := yi, ∀ t ∈ [ti, ti+1), i = 1, . . . , n− 1.
For a function h : [0, 1]→ R, define

W (h, t) := W(0)(h, t) =

∫ t

0

h(s)cT eA(s−t)b dω(s),

and W(k)(h, t) :=
∫ t
0
h(s)cT eA(s−t)Akb dω(s). In view of

the optimality condition (9) expressed as
∑n
i=1(f̂(ti) −

yi)c
T eAti = 0, it is easily shown that under the

assumption A.2, (9) is equivalent to W(k)(f̂ , 1) =
W(k)(g, 1), ∀ k = 0, 1, . . . , ` − 1. Moreover, noting that
pi(t) = cT eA(ti−t)bI([0, ti]), we have, for any t ∈ [tj , tj+1),

n∑
i=1

(
f̂(ti)− yi

)
pi(t) =

n∑
i=j+1

(
f̂(ti)− yi

)
cT eA(ti−t)b

= −n
(
W (f̂ , t)−W (g, t)

)
.

Putting the above results together and recalling λ∗ = α/n,
we obtain the following differential equation subject to
two-point boundary conditions in the integral form as the
necessary and sufficient optimality conditions:

Theorem 3.3: Under the condition H and the assumptions
A.1-A.2, the necessary and sufficient conditions for the
estimator f̂(t) are:

f̂ (`)(t) =

`−1∑
k=0

akf̂
(k)(t) + u∗(t), (13)

where
(i) If Ω = [µ1,∞), u∗(t) =

[
− µ1 + (λ∗)−1

(
W (f̂ , t) −

W (g, t)
)]

+
+ µ1, a.e. [0, 1];

(ii) If Ω = (−∞, µ2], u∗(t) = µ2−
[
µ2−(λ∗)−1

(
W (f̂ , t)−

W (g, t)
)]

+
, a.e. [0, 1];

(iii) If Ω = [µ1, µ2] with µ1 < µ2, u∗(t) = sat
(
nW (g, t)−

nW (f̂ , t)
)
, a.e. [0, 1],

subject to the boundary conditions W(k)(f̂ , 1) = W(k)(g, 1)

and W(k)(f̂ , 0) = 0, ∀ k = 0, 1, . . . , `− 1.
Define F̂ (t) :=

∫ t
0
f̂(s)cT eA(s−t)bds, where F̂ (t) is

similar to W (f̂ , t) except that the Lebesgue measure is used
in the former while the uniform distribution is used in the
latter. It is easy to show via direct computation that under
the assumption A.1,

F̂ (k)(t) =

∫ t

0

f̂(s)cT eA(s−t)(−A)kbds, ∀ k = 0, 1, . . . , `−1.

Furthermore, we obtain

F̂ (2`)(t) =

`−1∑
j=0

[(−1)`−j + 1] ajF̂
(`+2j)(t)

−
`−1∑
j=0

`−1∑
k=0

(−1)`−jajakF̂
(k+j)(t) + u∗(t),

where u∗(t) is defined in Theorem 3.3. This yields a comple-
mentarity system subject the two-point boundary conditions.

IV. COMPUTATION OF CONSTRAINED SPLINES

In this section, we discuss computation of optimal solu-
tions based on nonsmooth Newton’s methods. Note that to
determine an optimal solution, it suffices to find the optimal
initial state x∗0, since once x∗0 is known, u∗ and f̂ can be
computed recursively as shown below.

A. Computation of the optimal initial state x∗0
To emphasize the dependence of f̂ and u∗ on x0, we

use the notation f̂(t, x0) and u∗(t, x0) as follows. The next
lemma shows the B(ouligand)-differentiability of f̂ in x0 [4].

Lemma 4.1: Given {yi}. The function f̂(t, x0) is B-
differentiable with respect to x0 for any fixed t ∈ [0, 1].

Proof: We focus on the case when Ω = [µ1,∞); the
other cases can be treated in a similar manner. It follows
from the optimality conditions derived from the preceding
section that for the given {yi} and a given x0 ∈ R2,

f̂(t, x0) = cT eAtx0 +

∫ t

0

cT eA(t−s)bu∗(s, x0)ds, (14)

where u∗(t, x0) = µ1 +
[
− µ1 + (λ∗)−1

∫ t
0
(f̂(s, x0) −

g(s))cT eA(s−t)bdω(s)
]
+

. For any given t, it is equivalent
to show that f̂(t, ·) is Lipschitz continuous and direction-
ally differentiable [4, Chapter 3]. We use induction on the
intervals [tk, tk+1] to prove this. Let t ∈ [0, t1). Then
u∗(t, x0) = (−µ1)++µ1 = (µ1)+, and due to the continuity
of f̂ in t, f̂(t, x0) = cT eAtx0+(µ1)+

∫ t
0
cT eA(t−s)bds,∀ t ∈

[0, t1], which is clearly Lipschitz continuous and direction-
ally differentiable, thus B-differentiable, in x0 for any fixed
t ∈ [0, t1]. Now assume that f̂(t, ·) is B-differentiable for all
t ∈ [0, t1] ∪ · · · ∪ [tk−1, tk]. For t ∈ [tk, tk+1), note that

u∗(t, x0) = (15)[
− µ1 + 1

α

∑k
i=1(f̂(ti, x0)− yi)cT eA(ti−t)b

]
+

+ µ1.
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Algorithm 1 Newton’s Method with Line Search [8]
Choose scalars β ∈ (0, 1) and σ ∈ (0, 12 );
Initialize k = 0 and choose an initial vector z0;
repeat
k ← k + 1;
Find a direction vector dk such that Hy,n(zk−1) +
H ′y,n(zk−1; dk) = 0;
Let mk be the first nonnegative integer m for which
g(zk−1)− g(zk + βmdk) ≥ −σβmg′(zk−1; dk);
Set zk ← zk−1 + βmkdk;

until |g(zk)| is sufficiently small
return zk

Since the function (·)+ and f̂(ti, ·), i = 1, . . . , k are B-
differentiable, the composition given in u∗(t, ·) remains so
for all t ∈ [tk, tk+1). In view of f̂(t, x0) = cT eAtx0 +∫ t
0
cT eA(t−s)bu∗(s, x0)ds and the continuity of f̂ in t, we

deduce the B-differentiability of f̂(t, ·) ∀ t ∈ [tk, tk+1]. Thus
the lemma follows by the induction principle.

For the given sample y := {yi}ni=1 ∈ Rn, define the
function Hy,n : R` → R` as Hy,n(z) :=

(∑n
i=1

(
f̂(ti, z)−

yi
)
cT eAti

)T
. By the above lemma, we deduce that Hy,n is a

vector-valued B-differentiable function and that the condition
(9) is equivalent to the B-differentiable equation Hy,n(z) =
0. Nonsmooth Newton’s methods can be applied to solve this
equation, and its (unique) solution will be the optimal initial
state x∗0 that completely determines the estimator.

To describe a nonsmooth Newton’s method, we in-
troduce more notation. The directional derivative of
Hy,n(z) along a direction vector d ∈ R` is defined
by H ′y,n(z; d) := limτ↓0

Hy,n(z+τ d)−Hy,n(z)
τ . Hence,

H ′y,n(z; d) =
∑n
i=1 f̂

′(ti, z; d)
(
cT eAti

)T
, where f̂ ′(ti, z; d)

is the directional derivative of f̂(ti, ·) (its existence is shown
in Lemma 4.1). We also define the merit function g(z) :=
1
2H

T
y,n(z)Hy,n(z) [8]. It is clear that g is B-differentiable

and g′(z; d) = HT
y,n(z)H ′y,n(z; d). Using this function, we

may apply the nonsmooth Newton’s method with line search
[8] to solve the equation Hy,n(z) = 0. To be self-contained,
we present its numerical procedure in Algorithm 1.
B. Convergence analysis

To show convergence of the proposed Newton’s method,
we first establish a boundedness result for level sets defined
by Hy,n. For given y and z∗, define the level set Sz∗ :=
{z ∈ R` : ‖Hy,n(z)‖ ≤ ‖Hy,n(z∗)‖}. The proofs in this
section are omitted due to space limitation.

Proposition 4.1: The following statements hold: (1) Let
Ω = [µ1, µ2] with µ1 < µ2. Then for any y ∈ Rn and any
given z∗ ∈ R`, the level set Sz∗ is bounded.

(2) Let Ω = [µ,∞) or Ω = (−∞, µ]. Suppose
lim supn→∞ nα−1 < 4ρ−1, where ρ > 0 depends on
(cT , A, b) only, and max1≤i≤(n−1) |ti+1 − ti| = O(n−1).
Then for all n sufficiently large, the level set Sz∗ is bounded
for any y ∈ Rn and z∗ ∈ R`.

Next we show that under the similar order condition on α,
a directional vector d can always be found for the equation

Hy,n(z) +H ′y,n(z; d) = 0 for any z ∈ R`. This result, along
with boundedness of Sz∗ , ensures the global convergence of
Algorithm 1 [8, Theorem 4].

Proposition 4.2: Suppose lim supn→∞ nα−1 < 4ρ−1 and
max1≤i≤(n−1) |ti+1 − ti| = O(n−1). Then for all n suffi-
ciently large, any y ∈ Rn and z ∈ R`, there exists a unique
d ∈ R` such that Hy,n(z) +H ′y,n(z; d) = 0.

Let {zk} be the sequence generated by Algorithm 1 from
an initial vector z0. Under the assumptions in Proposi-
tions 4.1 and 4.2, it follows from [8, Theorem 4] that if
lim inf βmk > 0, then a limiting point of {zk} is a desired
solution to the B-differentiable equation Hy,n(z) = 0.
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