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Abstract— This paper extends the recent study of the gen-
erating function approach to stability analysis of switched
linear systems from the Euclidean space to a closed convex
cone. Examples of the latter class of switched systems include
switched positive systems that model various biologic and
economic systems with positive states. Strong and weak stability
notions are considered in this paper. In particular, it is shown
that asymptotic and exponential stability are equivalent for
both notions. Strong and weak generating functions on cones
are introduced and their properties are established. Necessary
and sufficient conditions for strong/weak exponential stability

of switched linear systems on cones are obtained in terms of
the radii of convergence of strong/weak generating functions.

I. INTRODUCTION

There has been a surging interest in switched and hybrid

systems and their applications across a number of fields, such

as engineering, robotics, and systems biology. A fundamental

issue in the analysis and design of switched dynamical sys-

tems are their stability [11], [14], [15]. Numerous techniques

have been proposed for the stability analysis, e.g., the Lie-

algebraic approach [10] and the Lyapunov framework [3],

[7]. In the vast literature on switched systems, switched

linear systems have received particular attention due to their

relatively simple structure and yet rich dynamical behaviors.

Recently introduced in [8], the generating functions have

been proven to be an efficient and unified tool for studying

the exponential stability of discrete-time switched linear

systems. Roughly speaking, generating functions are suitably

defined power series with coefficients determined from the

systems trajectories under certain switching policies. Their

radii of convergence characterize the exponential growth

rates of the system trajectories. Therefore, the exponential

stability of a switched linear system can be completely

described in terms of the radii of convergence of its generat-

ing functions. Furthermore, generating functions are closely

related to the value functions of properly defined optimal

control problems and admit efficient numerical computation.

This allows one to develop effective algorithms to determine

the exponential growth rates, and in turn the exponential

stability, under different switching policies, e.g., arbitrary

switching, optimal switching, or random switching. The
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generating function approach can also be extended to handle

state-dependent switchings [13].

Most literature on switched systems concentrates on those

on the Euclidean space. However, a variety of applied

systems have their states confined within certain regions. A

prominent example is positive systems [5] that model a wide

range of industrial, biological, economic, and social systems.

Stability of switched positive systems and their extension,

i.e., switched systems over cones, has also received increas-

ing attention due to applications in such areas as communi-

cation and multi-agent systems; certain stability tools have

been studied, e.g. the common Lyapunov function approach

[2], [4], [6], [12]. In this paper, we carry out the stability

analysis for switched linear systems on closed convex cones

by using the generating function approach. Specifically, we

consider the strong and weak stability notions on a cone, and

show that for both notions, the asymptotic and exponential

stability are equivalent. Analytic properties of strong and

weak generating functions on a cone, as well as their stability

implications and numerical approximations, are established.

The paper is organized as follows. In Section II, switched

linear systems on cones are introduced and their stability

notions are defined. In Section III, the equivalence of the

asymptotic and exponential stability is proven. Sections IV

and V treat the strong and the weak generating functions of

switched linear systems on closed convex cones, respectively.

II. STABILITY OF SWITCHED LINEAR SYSTEMS ON

CONES

The dynamics of a discrete-time autonomous switched

linear system (SLS) is given by

x(t + 1) = Aσ(t)x(t), t = 0, 1, . . . . (1)

Here x(t) ∈ Rn is the state; {A1, . . . , Am} is a set of

subsystem dynamics matrices; and σ(t) ∈ M := {1, . . . , m}
for all t, or simply σ, is the switching sequence. Given the

initial state x(0) = z, the trajectory of the SLS under the

switching sequence σ is denoted by x(t; z, σ).
Let C be a closed convex cone. Throughout this paper,

we assume that the SLS (1) is positively invariant with

respect to C, namely, each subsystem defined by Ai satisfies

Aiz ∈ C whenever z ∈ C. This assumption ensures that a

trajectory x(t; z, σ) starting from z ∈ C will remain in C at

all subsequent times regardless of the switching sequence σ.

Because of the positive invariance assumption, the restriction

of the SLS (1) on the cone C is a valid dynamical system,

which we refer to as the SLS (1) on C. A particular example

of SLSs on cones is switched positive systems, where C =
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R
n
+ is the nonnegative orthant of R

n, and Ai, i ∈ M, are

all positive matrices.

A. Stability Notions of SLSs on Cones

The stability of the SLS (1) on the cone C can be defined

as follows.

Definition 1: The SLS (1) on the cone C is called

• exponentially stable under arbitrary switching (with the

parameters κ and r) if there exist κ ≥ 0 and r ∈ [0, 1)
such that starting from any initial state z ∈ C and

under any switching sequence σ, the trajectory x(t; z, σ)
satisfies ‖x(t; z, σ)‖ ≤ κrt‖z‖ for all t ∈ Z+;

• exponentially stable under optimal switching (with the

parameters κ and r) if there exist κ ≥ 1 and r ∈
[0, 1) such that starting from any initial state z ∈ C,

there exists a switching sequence σ for which x(t; z, σ)
satisfies ‖x(t; z, σ)‖ ≤ κrt‖z‖, for all t ∈ Z+.

Similar to linear systems, we can define the notions of

stability (in the sense of Lyapunov) and asymptotic stability

for the SLS on C under both arbitrary and optimal switchings.

Due to the homogeneity of the SLS, the local and global

stability notions are equivalent. For simplicity, we also refer

to the stability under arbitrary switching as strong stability

and stability under optimal switching as weak stability.

In Definition 1, by replacing the cone C with R
n, we obtain

the corresponding notions of strong and weak exponential

stability for the original SLS (1) (on Rn). It is easily seen

that stability of the SLS on Rn in any particular sense (such

as strongly or weakly exponentially stable) implies that on C
but not vice versa. As a result, the stability study for SLSs

on cones poses new challenges beyond that for SLSs on Rn.

Before ending this section, we briefly review some basic

notions of cones [1]. A cone C is called pointed if the

condition that x1 + · · · + xk = 0 with xi ∈ C, i = 1, . . . , k,

implies that xi = 0 for all i. A convex cone C is pointed if

and only if C ∩ (−C) = {0}, or equivalently, if C does not

contain a nontrivial subspace. For example, Rn
+ is pointed

but the half space {x ∈ Rn |x1 ≥ 0} is not. A convex cone

C can always be decomposed as C = K + V , where K is a

pointed cone and V = C ∩ (−C) is a subspace (called the

linearity space of C) orthogonal to K: K ⊥ V . A cone C is

solid if it has nonempty interior. For example, Rn
+ is solid

and hence proper (i.e. closed, convex, solid, and pointed.)

III. ASYMPTOTIC AND EXPONENTIAL STABILITY OF

SLSS ON CONES

It is well known that the notions of asymptotic stability

and exponential stability are equivalent for linear systems. In

this section, we will extend this result to SLSs on cones, first

for strong stability and then for weak stability. The previous

result in [13] on the strong stability of SLSs on Rn then

becomes a special case of our proof.

A. Equivalence of Strong Asymptotic and Exponential Sta-

bility for SLSs on Cones

To show the equivalence of asymptotic and exponential

stability for the SLS (1) on the cone C under arbitrary

switching, we consider a more general setting: conewise

linear inclusions (CLIs) on the cone C. SLSs on C are special

instances of CLIs on C.

Let Ξ := {Xi}ℓ
i=1 be a finite family of nonempty closed

cones whose union is C, namely, ∪ℓ
i=1Xi = C. Each Xi is

neither necessarily polyhedral nor convex, and two cones in

Ξ may overlap. Associated with each cone Xi is a linear

dynamics x 7→ Aix if x ∈ Xi, for some matrix Ai ∈ R
n×n

positively invariant on C. The conewise linear inclusion on

C is the dynamical system defined by:

x(t + 1) ∈ f(x(t)), t ∈ Z+. (2)

Here, f : C ⇉ C is the set-valued map defined by f(x) :=
{Aix | for all i such that x ∈ Xi}. Thus, at any time t,
each Xi which the current state x(t) = x belongs to offers a

possible location Aix to which the state may evolve at the

next step. Obviously, by setting ℓ = m and Xi = C for all

i = 1, . . . , m, the CLI (2) on C reduces to the SLS (1) on C.

Starting from an initial state z ∈ C, denote by x(t, z)
a solution trajectory of the CLI (2). Due to the set-valued

nature of the dynamics, there are in general (infinitely) many

choices of x(t, z). The (local) stability notions of the CLI (2)

at the equilibrium point xe = 0 are defined as follows.

Definition 2: At xe = 0, the CLI (2) on C is called

• strongly stable if, for each ε > 0, there is a δε > 0 such

that ‖x(t, z)‖ < ε, ∀ t ∈ Z+, for any trajectory x(t, z)
starting from z ∈ C with ‖z‖ ≤ δε;

• strongly asymptotically stable if it is strongly stable and

there is a δ > 0 such that x(t, z) → 0 as t → ∞ for

any trajectory x(t, z) starting from z ∈ C with ‖z‖ < δ;

• strongly exponentially stable if there exist δ > 0, κ ≥ 1,

and r ∈ [0, 1) such that ‖x(t, z)‖ ≤ κrt‖z‖, ∀t ∈ Z+,

for any x(t, z) starting from z ∈ C with ‖z‖ < δ.

Due to homogeneity of the dynamics (2), the local and global

stability notions of the CLI (2) are equivalent. In other words,

in the above definitions we can equivalently set δ = ∞.

In the Appendix, we shall prove the following result.

Theorem 1: The CLI (2) on C is strongly asymptotically

stable if and only if it is strongly exponentially stable.

Since the SLS (1) on C is a special instance of CLIs on

C, Theorem 1 implies the following.

Corollary 1: The asymptotic and exponential stability of

the SLS (1) on C under arbitrary switching are equivalent.

B. Equivalence of Weak Asymptotic and Exponential Stabil-

ity for SLSs on Cones

It has been shown through a counter example in [13, Ex-

ample 5] that weak asymptotic and weak exponential stability

are not equivalent for general CLIs on C (or even on Rn).

In this subsection, however, we establish the equivalence of

these two weak stability notions for SLSs on cones. The

underlying reason for the difference in these two cases, as

evidenced by the following proof, is that solutions to SLSs

on C under a fixed switching sequence depend continuously

on initial states, while this is not the case for CLIs on C.

Theorem 2: The SLS (1) on C is weakly asymptotically

stable if and only if it is weakly exponentially stable.
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Proof: It suffices to show that weak asymptotic stability

implies weak exponential stability as the other direction is

trivial. Assume that the SLS (1) on C is asymptotically stable

under optimal switching, namely, for any initial state z ∈ C,

the state trajectory x(t; z, σ) → 0 as t → ∞ for at least

one switching sequence σ. For each z ∈ C ∩ Sn−1, where

Sn−1 := {z ∈ Rn | ‖z‖ = 1}, there exist a switching

sequence σz and a time Tz ∈ Z+ such that ‖x(Tz; z, σz)‖ ≤
1
4 . Since under the fixed switching sequence σz , the solution

x(t; z, σz) at time Tz depends continuously on the initial

state z, we can find a neighborhood Uz of z in C ∩ Sn−1

such that ‖x(Tz; y, σz)‖ ≤ 1
2 for all y ∈ Uz . The union

of all such neighborhoods, {Uz | z ∈ C ∩ Sn−1}, is an open

covering of the compact set C∩Sn−1; hence there must exist

a finite sub-covering: C ∩ Sn−1 ⊆ ∪ℓ
i=1Uz∗

i
for some ℓ < ∞

and z∗1 , . . . , z∗ℓ ∈ C ∩ Sn−1.

The above obtained finite covering enables us to con-

struct a state-feedback switching policy that leads to an

exponentially converging state trajectory. To see this, define

T∗ := maxi Tz∗

i
. For any initial state z ∈ C∩Sn−1, the above

argument implies that z ∈ Uz∗

i
for some 1 ≤ i ≤ ℓ. By our

construction, x(T1) := x(Tz∗

i
; z, σz∗

i
) satisfies ‖x(T1)‖ ≤ 1

2 .

Assume without loss of generality that x(T1) 6= 0. Then

x(T1)/‖x(T1)‖ ∈ Uz∗

j
for some 1 ≤ j ≤ ℓ, and as a result,

x(T2) := x(Tz∗

j
; x(T1), σz∗

j
) satisfies ‖x(T2)‖ ≤ 1

2‖x(T1)‖.

Repeating this process inductively, we obtain a switching

sequence σz concatenated by σz∗

i
, σz∗

j
, . . . and a sequence

of times 0 = T0 ≤ T1 ≤ T2 ≤ · · · with at most T∗

between successive ones such that the resulting trajectory

x(t; z, σz) satisfies ‖x(Tk+1; z, σz)‖ ≤ 1
2‖x(Tk; z, σz)‖ for

all k. Let κ :=
∑T∗

j=0 (maxi∈M ‖Ai‖)
j
. Then it is easily

seen that ‖x(t; z, σz)‖ ≤ κ(0.5)t/T∗−1‖z‖ for all t ∈ Z+.

Since neither κ nor T∗ depends on z, the SLS (1) on C is

exponentially stable under optimal switching.

Remark 1: We call the SLS (1) on C weakly convergent

if for any z ∈ C, a switching sequence σz exists such that

x(t; z, σz) → 0 as t → ∞. This condition seems weaker than

weak asymptotic stability as weak Lyapunov stability is not

required. However, the proof of Theorem 2 essentially shows

that weak convergence is equivalent to weak exponential

(thus asymptotic) stability. This observation will be exploited

in Theorems 5 and 6 in Section V.

IV. STRONG GENERATING FUNCTIONS OF SLSS ON

CONES

A. Strong Generating Functions of SLSs on Rn

In [8], the notion of strong generating functions is pro-

posed to study the exponential stability under arbitrary

switching of SLSs. The strong generating function of the

SLS (1) on Rn is the map G : R+ × Rn → R+ ∪ {∞}
defined as follows: for each z ∈ R

n and λ ≥ 0,

Gλ(z) := G(λ, z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, (3)

where the supremum is taken over all the possible switching

sequences, q is a positive integer, and ‖ · ‖ is an arbitrary

norm on Rn.

The radius of convergence of the strong generating func-

tion on Rn is defined as

λ∗
Rn := sup{λ ≥ 0 |Gλ(z) < ∞, ∀ z ∈ R

n}. (4)

The following result is proved in [8].

Theorem 3: The SLS (1) on Rn is exponentially stable

under arbitrary switching if and only if λ∗
Rn > 1.

Thus the radius of convergence of the strong generating

function on Rn fully characterizes the strong exponential

stability of the SLS on Rn.

B. Strong Generating Functions of SLSs on Cones

For the closed convex cone C, define W to be the smallest

subspace of Rn invariant with respect to {Ai}i∈M containing

C, or equivalently, the set of all vectors generated from

elements of C through repeated operations of multiplication

by matrices in {A1, . . . , Am} and linear combinations:

W := span
{
C, ∪i∈MAiC, ∪i,j∈MAiAjC, . . .

}
.

In particular, if C is solid, then W = Rn. If

C is polyhedral, i.e. it is finitely (and positively)

generated such that C = {
∑ℓ

k=1 αk vk |αi ≥ 0} for

some vectors vk ∈ Rn, k = 1, · · · , ℓ, then W =
span{{vk}ℓ

k=1,∪i∈MAi{vk}ℓ
k=1,∪i,j∈MAiAj{vk}ℓ

k=1, . . .}.

Note that C ⊆ W ⊆ Rn form a cascade of sets invariant

with respect to {Ai}i∈M. Hence, the SLS (1) restricted to

each set is well defined and the definition of the generating

function in (3) can be extended to C and W as well. In

particular, the strong generating function of the SLS (1) on

the cone C is defined as, for λ ≥ 0,

Gλ(z) := sup
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, ∀z ∈ C. (5)

Here, the same notation Gλ(·) is used as in (3) as (5) is

exactly the restriction of (3) on C. For this reason, we simply

refer to (5) as the strong generating function on C. Similarly,

we can define Gλ(·) on W as the restriction of (3) on W .

Define the radii of convergence of the strong generating

functions on C and W respectively as

λ∗
C := sup{λ ≥ 0 |Gλ(z) < ∞, ∀z ∈ C},

λ∗
W := sup{λ ≥ 0 |Gλ(z) < ∞, ∀z ∈ W}.

For each λ ≥ 0, define the three subsets

Gλ(C) := {z ∈ C |Gλ(z) < ∞} ⊆ C,

Gλ(W) := {z ∈ W |Gλ(z) < ∞} ⊆ W ,

Gλ(Rn) := {z ∈ R
n |Gλ(z) < ∞} ⊆ R

n,

which satisfy Gλ(C) ⊆ Gλ(W) ⊆ Gλ(Rn), and

Gλ(C) = Gλ(Rn) ∩ C, Gλ(W) = Gλ(Rn) ∩W . (6)

These sets will be useful in the next subsection.

422



C. Properties of Strong Generating Functions

Obtained through restriction, the strong generating func-

tions on C and W inherit many of the properties of their

counterpart on Rn established in [8], as listed below.

Proposition 1: For any q ∈ N and any vector norm ‖ · ‖,

the strong generating functions Gλ(z) of the SLS (1) on C
and W have the following properties.

1. (Bellman Equation): For all λ ≥ 0 and z ∈ C (or W),

Gλ(z) = ‖z‖q + λ · max
i∈M

Gλ(Aiz).

2. (Sub-additivity): For each λ ≥ 0, we have

(
Gλ(z1 + z2)

)1/q
≤

(
Gλ(z1)

)1/q
+

(
Gλ(z2)

)1/q
,

for all z1, z2 ∈ C (or W).

3. (Convexity): For each λ ≥ 0, the function
(
Gλ(z)

)1/q

is convex on C (or W).

4. (Invariant Cone): Let λ ≥ 0 be arbitrary. The set Gλ(C)
is a closed convex cone in C invariant with respect to

{Ai}i∈M. Particularly, if C is polyhedral, so is Gλ(C).
5. (Invariant Subspace): Let λ ≥ 0 be arbitrary. The set

Gλ(W) is a subspace of W invariant with respect to

{Ai}i∈M.

6. For 0 ≤ λ < (maxi∈M ‖Ai‖q)−1, where the matrix

norm is induced from the vector norm ‖ · ‖, Gλ(z) is

finite everywhere on C.

Proof: 1. This follows directly from the dynamic

programming principle.

2. For any z1, z2 ∈ C, z1 + z2 ∈ C as C is a convex cone.

Then, by definition,

Gλ(z1 + z2) = sup
σ

∞∑

t=0

λt‖x(t; z1, σ) + x(t; z2, σ)‖q

≤ sup
σ

∞∑

t=0

λt
(
‖x(t; z1, σ)‖ + ‖x(t; z2, σ)‖

)q

≤ sup
σ

[( ∞∑

t=0

λt‖x(t; z1, σ)‖q

)1/q

+

( ∞∑

t=0

λt‖x(t; z2, σ)‖q

)1/q ]q

≤

[(
Gλ(z1)

)1/q
+

(
Gλ(z2)

)1/q
]q

,

where the second inequality is due to the Minkowski inequal-

ity. The case for W is entirely similar.

3. This is due to the subadditivity and the positive homo-

geneity of
(
Gλ(z)

)1/q
.

4. The conic property and the convexity of Gλ(C) fol-

low from the positive homogeneity and the convexity of(
Gλ(z)

)1/q
, respectively. The invariance with respect to

{Ai}i∈M is a consequence of the Bellman equation. To

show that Gλ(C) is a closed convex cone, we note that

Gλ(C) = Gλ(Rn) ∩ C, and Gλ(Rn) is easily shown to

be a subspace [8]. Thus, Gλ(C) as the intersection of the

convex cone C and a subspace is convex and closed, and is

polyhedral whenever C is polyhedral.

5. Gλ(W) = Gλ(Rn) ∩W is evidently a subspace.

6. The proof is similar to that in [8], hence omitted.

Besides the above inherited properties, the strong gener-

ating functions on C and W also have some other shared

properties. Obviously, the former is the restriction of the

latter on the cone C. Less obviously, we have the following.

Proposition 2: For any λ ≥ 0, the strong generating

functions Gλ(z) of the SLS (1) on C and W satisfy:

Gλ(z) < ∞, ∀ z ∈ C ⇐⇒ Gλ(z) < ∞, ∀ z ∈ W .
Proof: It suffices to show “⇒” direction. Suppose

Gλ(·) is finite on C, i.e., Gλ(C) = C. Since Gλ(Rn) is

a subspace of Rn invariant with respect to {Ai}i∈M and

contains Gλ(C), hence C, it must also contain W , as W is

the smallest invariant subspace containing C. In other words,

W ⊆ Gλ(Rn). Hence Gλ(z) is finite for all z ∈ W .

As a result, the radii of convergence of the strong generat-

ing functions on C, W , and Rn have the following relation.

Corollary 2: λ∗
C = λ∗

W ≥ λ∗
Rn . In particular, if C is solid,

then λ∗
C = λ∗

W = λ∗
Rn .

Proposition 3: The strong generating functions Gλ(z) of

the SLS (1) on C and W have the following properties.

1. If λ ∈ [0, λ∗
C) (hence Gλ(z) < ∞ for all z ∈ C), then

there exists a constant c ∈ [1,∞) such that

‖z‖ ≤
(
Gλ(z)

)1/q
≤ c‖z‖, ∀ z ∈ W .

2. (Relative Lipschitz Property) Let λ ∈ [0, λ∗
C). Then(

Gλ(z)
)1/q

is relatively Lipschitz on W (thus on C),

i.e., there exists L > 0 such that for any x, y ∈ W ,

|
(
Gλ(x)

)1/q
−

(
Gλ(y)

)1/q
| ≤ L‖x − y‖.

Proof: 1. The first inequality is obvious as Gλ(z) ≥
‖z‖q follows directly from the definition. To show the

second inequality, by homogeneity, it suffices to show that(
Gλ(z)

)1/p
≤ c, ∀z ∈ W ∩ S

n−1, for some constant c ≥ 1.

Let {ui}ℓ
i=1 be a basis of W . Since W ∩ Sn−1 is bounded,

we can find γ > 0 such that for each z ∈ W ∩ Sn−1,

there exists a unique real tuple {α1, · · · , αℓ} satisfying z =∑ℓ
j=1 αju

j and
∑ℓ

j=1 |αj | < γ. Therefore, by virtue of the

subadditivity and positive homogeneity of
(
Gλ(z)

)1/q
, we

conclude that
(
Gλ(z)

)1/q
≤ c := γ

∑ℓ
i=1

(
Gλ(ui)

)1/q
for

all z ∈ W ∩ Sn−1. It is easy to verify that c ≥ 1.

2. It follows from the subadditivity of
(
Gλ(z)

)1/q
on W

that for any x, y ∈ W ,

(
Gλ(x)

)1/q
−

(
Gλ(y)

)1/q
≤

(
Gλ(x − y)

)1/q
.

Switching x and y, we have

(
Gλ(y)

)1/q
−

(
Gλ(x)

)1/q
≤

(
Gλ(y − x)

)1/q
.

Combining the above two inequalities, we obtain

∣∣(Gλ(x)
)1/q

−
(
Gλ(y)

)1/q∣∣ ≤
(
Gλ(x−y)

)1/q
≤ c‖x−y‖,

where the last step is due to (x − y) ∈ W and the first

property.

423



Remark 2: By the results of this subsection, Gλ(C) is a

closed convex sub-cone of C: suppose C admits the decom-

position C = K + V where K is a pointed cone and V
is a subspace, then Gλ(C) = Kλ + Vλ with Kλ ⊂ K a

pointed cone and Vλ ⊂ V a subspace. As λ increases, Gλ

will increase, hence the invariant subsets Gλ(C), Gλ(W), and

Gλ(Rn) will shrink. In particular, if C is not pointed (i.e., V 6=
{0} is nontrivial), then as λ increases, Gλ(C) will change

from non-pointed to pointed, or equivalently, Vλ will shrink

to {0}, at exactly λ∗
V := inf{λ ≥ 0 |Gλ(z) = ∞, ∀z ∈ V}.

D. Strong Exponential Stability Characterization

The radii of convergence of the strong generating functions

characterize the strong exponential stability of the SLS on

C, as stated by the following theorem.

Theorem 4: The following are equivalent:

1. the SLS (1) on the cone C (or on the subspace W) is

exponentially stable under arbitrary switching;

2. λ∗
C = λ∗

W > 1;

3. G1(z) is finite for all z ∈ C (or W).

Proof: In view of Corollary 1 and Proposition 3, the

proof is essentially the same as that of [8, Theorem 1].

E. Numerical Computation of Strong Generating Functions

The algorithm developed in [8] for computing strong

generating functions on Rn can be extended to compute

those on closed convex cones. We briefly discuss this

in this section. For any λ ∈ [0, λ∗
C), define gλ :=

supz∈C, ‖z‖=1 Gλ(z). Moreover, define the following func-

tions that approximate the strong generating function Gλ(z)
on C: Gk

λ(z) := maxσ

∑k
t=0 λt‖x(t; z, σ)‖q, ∀ z ∈ C.

It is easy to see that Gk
λ(z) satisfies Gk

λ(z) = ‖z‖q +
λmaxi∈M Gk−1

λ (Aiz), ∀ z ∈ C, with G0
λ(z) = ‖z‖q. This

yields a recursive procedure to compute these functions. Ap-

plying Propositions 1 and 3 as well as the similar argument

as in [8, Proposition 6], we have the following.

Proposition 4: The functions Gk
λ(z) satisfy

(1) G0
λ(z) ≤ G1

λ(z) ≤ · · · ≤ Gλ(z), ∀λ ≥ 0, ∀z ∈ C.

(2) |Gk
λ(z) − Gλ(z)| ≤ gλ(1 − 1/gλ)k+1‖z‖q, ∀k ∈ Z+,

∀z ∈ C, for any λ ∈ [0, λ∗
C).

These results show that the sequence of functions {Gk
λ}

converges uniformly and exponentially fast to Gλ and as

such can provide numerical approximations of the latter.

To efficiently implement this numerical procedure, an over-

approximation can be developed using the convex, conic

structure of C; we refer the interested reader to Algorithm 1

in [8] for further details.

V. WEAK GENERATING FUNCTIONS OF SLSS ON CONES

Similar to the strong generating functions, weak gen-

erating functions can be defined to address weak asymp-

totic/exponential stability of SLSs on cones, i.e. the stability

of the SLSs on cones under optimal switching. Specifically,

for the SLS (1) on the closed convex cone C, define its weak

generating function H : R+ × C → R+ ∪ {∞} as

Hλ(z) := H(λ, z) := inf
σ

∞∑

t=0

λt‖x(t; z, σ)‖q, (7)

where λ ≥ 0, z ∈ C, and the infimum is over all switching

sequences σ of the SLS on C. In addition, q ∈ N, and ‖ ·‖ is

an arbitrary norm in Rn. The radius of convergence for the

weak generating function of the SLS on C is defined as

λC
∗ := sup{λ ≥ 0 |Hλ(z) < ∞, ∀ z ∈ C}.

Proposition 5: For any q ∈ N and any vector norm ‖ · ‖,

the weak generating function Hλ(z) of the SLS (1) on C has

the following properties.

1. (Bellman Equation): For any λ ≥ 0 and z ∈ C,

Hλ(z) = ‖z‖q + λ · min
i∈M

Hλ(Aiz).

2. (Invariant Cone): For any λ ≥ 0, the set

Hλ(C) := {z ∈ C |Hλ(z) = ∞}

is a cone in C not containing 0. Further, Hλ(C) is

invariant with respect to {Ai}i∈M, i.e. AiHλ(C) ⊆
Hλ(C), ∀i ∈ M.

3. For 0 ≤ λ < (mini∈M ‖Ai‖q)−1, where the matrix

norm is induced from the vector norm ‖ · ‖, Hλ(z) is

finite everywhere on C.

Proof: The proofs of these properties are similar to

those in [8] for the corresponding properties of the weak

generating function on Rn; hence they are omitted.

The subsequent theorem shows two important results:

(i) As λ increases, λC
∗ is the exact value at which Hλ(z)

starts to have the infinite value; (ii) if for some λ ≥ 0, the

weak generating function Hλ(·) is finite everywhere on C,

then it must be bounded by a homogeneous function c‖z‖q

uniformly on C.

Theorem 5: For each λ ≥ 0, the following are equivalent:

(a) Hλ(z) ≤ c‖z‖q, ∀ z ∈ C, for some constant c > 0
(generally dependent on λ);

(b) Hλ(z) < ∞ for all z ∈ C;

(c) λ ∈ [0, λC
∗).

Proof: It is obvious that (a) ⇒ (b) and (c) ⇒ (b). We

shall show (b) ⇒ (a) and (b) ⇒ (c) as follows, which leads

to the equivalence of the three statements.

To prove (b) ⇒ (a), consider λ ≥ 0 such that (b)

holds. Then for any z ∈ C, there exists a switching se-

quence σz such that
∑∞

t=0 λt‖x(t; z, σz)‖q < ∞. Define

Ãi := λ1/qAi, ∀i ∈ M. For the initial state z ∈ C
and the switching sequence σz , let x̃(t; z, σz) denote the

trajectory from z under σz with the dynamics matrices

Ai in the corresponding x(t; z, σz) replaced by Ãi. Then,

‖x̃(t; z, σz)‖q = λt‖x(t; z, σz)‖q for all t ∈ Z+. Since∑∞
t=0 ‖x̃(t; z, σz)‖q < ∞ for each z ∈ C, x̃(t; z, σz) → 0

as t → ∞. In other words, the SLS defined by subsystem

dynamics matrices {Ãi}i∈M is weakly convergent on C. We

thus deduce from Remark 1 that it is weakly exponentially

stable on C. Thus there exist κ > 0 and ρ ∈ (0, 1) such that

‖x̃(t; z, σz)‖q ≤ κρt‖z‖q, ∀ t ∈ Z+ for each z ∈ C. Hence

Hλ(z) ≤
∞∑

t=0

λt‖x(t; z, σz)‖
q =

∞∑

t=0

‖x̃(t; z, σz)‖
q

≤
κ

1 − ρ
‖z‖q, ∀ z ∈ C.
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Letting c := κ/(1 − ρ) yields (a). Further, (c) ⇒ (a) holds.

To show (b) ⇒ (c), it suffices to show that HλC
∗
(z) =

∞ for some z ∈ C. To this end, define hλ :=
supz∈C, ‖z‖=1 Hλ(z), ∀λ ∈ [0, λC

∗). It follows from the

implication (c) ⇒ (a) and a similar argument as in [8,

Proposition 9] that for any λ ∈ (0, λC
∗), λ/(1− 1/hλ) ≤ λC

∗ ,

or equivalently, 0 ≤ 1/hλ ≤ 1 − λ/λC
∗ . Therefore, hλ tends

to infinity as λ ↑ λC
∗ . This in turn implies that HλC

∗
(z) = ∞

for some z ∈ C, since otherwise, by using (b) ⇒ (a), we

would have hλC
∗
≤ c for some c > 0, a contradiction to the

fact that hλ → ∞ as λ ↑ λC
∗ .

The next result shows that the radius of convergence λC
∗

characterizes the weak exponential stability of the SLSs on C.

Theorem 6: The SLS (1) on C is exponentially stable

under optimal switching if and only if λC
∗ > 1.

Proof: The proof for necessity is straightforward. To

show sufficiency, suppose λC
∗ > 1. Thus for λ = 1, H1(z)

is finite for any z ∈ C. This implies that the SLS on C is

weakly convergent and thus weakly exponentially stable, in

view of Remark 1 and Theorem 2.

Using Theorem 6, it can be shown as in [8] that

Corollary 3: For any r > (λC
∗ )−1/q , there exists κr > 0

such that for any z ∈ C, there exists a switching sequence

σz such that ‖x(t; z, σz)‖ ≤ κrr
t‖z‖, ∀ t ∈ Z+.

Similar numerical approximations for the weak generating

function on C can be obtained; see [8] for more details.

VI. APPENDIX: PROOF OF THEOREM 1

The following technical lemma is easy to show and its

proof is omitted.

Lemma 1: Let {Si}ℓ
i=1 be a finite family of closed sets

in Rn and let S := ∪ℓ
i=1Si. For any x∗ ∈ S, there exists

a neighborhood U of x∗ such that (U ∩ S) ⊆ ∪i∈I(x∗)Si,

where the index set I(x∗) := {i |x∗ ∈ Si}.

Assume that the CLI (2) is strongly stable on C. Then for

any given r > 0, there exists δ > 0 such that ‖x(t, x0)‖ < r,

∀t ∈ Z+, for any trajectory x(t, x0) starting from x0 ∈ C
with ‖x0‖ ≤ δ.

Proposition 6: If the CLI (2) is asymptotically stable on

C, then for the δ > 0 obtained above and a given c ∈ (0, 1),
there is Tδ, c ∈ Z+ (depending on δ and c only) such that

[x0 ∈ C with ‖x0‖ ≤ δ] ⇒ ‖x(t, x0)‖ ≤ c δ, ∀ t ≥ Tδ, c

for any x(t, x0) starting from x0.

Proof: For the given δ > 0 and a given c ∈ (0, 1),
suppose the proposition fails. Then there exist an initial

state sequence {x0
k} ⊆ Bδ ∩ C, the corresponding trajec-

tories {x(t, x0
k)}, and a strictly increasing time sequence

{tk} ⊆ Z+ with lim
k→∞

tk = ∞ such that ‖x(tk, x0
k)‖ > c δ.

Furthermore, it follows from the stability of xe = 0 that a

positive scalar µ exists (with µ < δ), along with the positive

scalar r > δ, such that (i) ‖x(t, x0
k)‖ ≤ r, ∀ t ∈ Z+, for all

k; (ii) x0 ∈ (Bµ ∩ C) ⇒ ‖x(t, x0)‖ ≤ c δ, ∀ t ∈ Z+. By (ii)

and the semi-group property, we have ‖x(t, x0
k)‖ ≥ µ for

all t ∈ {0, 1, · · · , tk}. Since µ ≤ ‖x0
k‖ ≤ δ for all k and C

is closed, there exists a subsequence of {x0
k} converging to

x0
∗ ∈ C with µ ≤ ‖x0

∗‖ ≤ δ. Without loss of generality, let

{x0
k} be that subsequence converging to x0

∗. In view of (i)-

(ii) and the construction of {tk}, we see that the sequence

{x(1, x0
k)}k≥t1 ⊆ C satisfies µ ≤ ‖x(1, x0

k)‖ ≤ r for all

k ≥ t1. Thus it has a subsequence converging to x1
∗ ∈ C

with µ ≤ ‖x1
∗‖ ≤ r. By Lemma 1, a neighborhood N of

x0
∗ can be found such that (N ∩C) ⊆ ∪i∈I(x0

∗
)Xi. Note that

x(1, x0
k) = Aj x0

k for some j and x0
k ∈ N for all large k.

Furthermore, since the index set I(x0
∗) is finite, we deduce

that there exist a subsequence {x(1, x0
k′ )} of {x(1, x0

k)}k≥t1

and an index j1 ∈ I(x0
∗) such that x(1, x0

k′ ) = Aj1x
0
k′ for

all k′ with x(1, x0
k′ ) → x1

∗ and x0
k′ → x0

∗. This shows that

x1
∗ = Aj1x

0
∗. Recalling j1 ∈ I(x0

∗), we have x1
∗ ∈ f(x0

∗).
Repeating this argument and using induction, we obtain

{xt
∗}t∈Z+

⊆ C such that (i) µ ≤ ‖xt
∗‖ ≤ r for all t ∈ Z+;

(ii) for each t ∈ Z+, xt+1
∗ ∈ f(xt

∗). This shows that the

trajectory x(t, x0
∗) = {xt

∗}t∈Z+
is such that ‖x(t, x0

∗)‖ ≥
µ, ∀ t ∈ Z+. This contradicts the assumption of asymptotic

stability of the CLI on C.

With Proposition 6 in hand, the remaining proof of The-

orem 1 essentially follows from the similar argument in the

proof of [13, Theorem 3].
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