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SUMMARY

This paper considers the development of spatially adaptive smoothing splines for the esti-
mation of a regression function with nonhomogeneous smoothness across the domain. Two
challenging issues arising in this context are the evaluation of the equivalent kernel and the deter-
mination of a local penalty. The penalty is a function of the design points in order to accommodate
local behaviour of the regression function. We show that the spatially adaptive smoothing spline
estimator is approximately a kernel estimator, and that the equivalent kernel is spatially depen-
dent. The equivalent kernels for traditional smoothing splines are a special case of this general
solution. With the aid of the Green’s function for a two-point boundary value problem, explicit
forms of the asymptotic mean and variance are obtained for any interior point. Thus, the optimal
roughness penalty function is obtained by approximately minimizing the asymptotic integrated
mean squared error. Simulation results and an application illustrate the performance of the pro-
posed estimator.

Some key words: Equivalent kernel; Green’s function; Nonparametric regression; Smoothing spline; Spatially adaptive
smoothing.

1. INTRODUCTION

Smoothing splines play a central role in nonparametric curve-fitting. Recent surveys include
Wahba (1990), Eubank (1999), Gu (2002), and Eggermont & LaRiccia (2009). Specifically, con-
sider the problem of estimating the mean function from a regression model

yi=folti) +o(tp)e (G=1,...,n),

where the #; are the design points on [0, 1], the ¢; are independent and identically distributed
random variables with zero mean and unit variance, o%(-) is the variance function, and fois
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the underlying true regression function. The traditional smoothing spline is formulated as the
solution /" to the minimization of

1 n 1
et = P+ [ (1 0P,
i=1

where A > 0 is the penalty parameter controlling the trade-off between the goodness-of-fit and
the smoothness of the fitted function. Smoothing splines have a solid theoretical foundation and
are among the most widely used methods for nonparametric regression (Cox, 1983; and a 1981
unpublished technical report by P. L. Speckman of the University of Oregon).

The traditional smoothing spline model has a major deficiency: it uses a global smooth-
ing parameter A, so the degree of smoothness of fy remains about the same across the design
points. This makes it difficult to efficiently estimate functions with nonhomogeneous smooth-
ness. Wahba (1995) suggested using a more general penalty term, where the constant A is replaced
by a roughness penalty function A(-). Since A(-) is then a function of 7, the model becomes adap-
tive in the sense that it accommodates the local behaviour of fy and imposes a heavier penalty
in regions of lower curvature of fj. Pintore et al. (2006) used a piecewise constant approxima-
tion for A(-), but this requires specification of the number of knots, the knot locations, and the
values of A(-) between those locations. Storlie et al. (2010) discussed some computational issues
with spatially adaptive smoothing splines. Liu & Guo (2010) refined the piecewise constant idea
and designed a data-driven algorithm to determine the optimal jump locations and sizes for
A(-). Besides adaptive smoothing splines, many other adaptive methods have been developed,
including variable-bandwidth kernel smoothing (Miiller & Stadtmiiller, 1987), adaptive wavelet
shrinkage (Donoho & Johnstone, 1994, 1995, 1998), local polynomials with variable bandwidth
(Fan & Gijbels, 1996), local penalized splines (Ruppert & Carroll, 2000), regression splines
(Friedman & Silverman, 1989; Stone et al., 1997; Luo & Wahba, 1997; Hansen & Kooperberg,
2002), and free-knot splines (Mao & Zhao, 2003). Further, Bayesian adaptive regression has been
reported by Smith & Kohn (1996), DiMatteo et al. (2001), and Wood et al. (2002). Nevertheless,
adaptive smoothing splines have the advantages of computational efficiency and easy extension
to multi-dimensional covariates via the smoothing spline analysis of variance technique (Wahba,
1990; Gu, 2002). Moreover, the results in the present paper can be extended to the more general
L-spline smoothing (Kimeldorf & Wahba, 1971; Kohn & Ansley, 1983; Wahba, 1985). Also, the
usual Reinsch scheme can be easily modified to this case.

Let W' ={f": £m=1 is absolutely continuous and ) e L,[0, 1]}, where L,[0, 1] denotes
the space of Lebesgue square-integrable functions, endowed with the usual norm ||-|| and inner
product (-, -)2. The method of adaptive smoothing splines involves finding "€ W}" to minimize
the functional

1 ¢ !
=5 Yoo = faR [ wp (1)
i=1

where A > 0 is the penalty parameter and p : [0, 1] — (0, oo) denotes the adaptive penalty func-
tion; more properties of p will be stated later. Here, by incorporating a function p(#) into the
roughness penalty, we generalize the traditional smoothing splines, which correspond to p(¢) = 1.
A two-point boundary value problem technique has been developed to find the asymptotic mean
squared error of the adaptive smoothing spline estimator with the aid of the Green’s function.
Thus, the optimal roughness penalty function is obtained explicitly by approximately minimiz-
ing the asymptotic integrated mean squared error. Asymptotic analysis of traditional smoothing
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splines using Green’s functions was performed by Rice & Rosenblatt (1983), Silverman (1984),
Messer (1991), Nychka (1995), Eggermont & LaRiccia (2009) and Wang et al. (2010); an exten-
sion to certain adaptive splines was presented in Abramovich & Grinshtein (1999). In this paper
we take a different approach, and develop a general framework for asymptotic analysis of adap-
tive smoothing splines. This yields a systematic, yet simpler, method for obtaining closed-form
expressions of equivalent kernels for interior points, as well as for asymptotic analysis. Our esti-
mator possesses the interpretation of spatial adaptivity (Donoho & Johnstone, 1998), and the
equivalent kernel may vary in shape and bandwidth from point to point, depending on the data.

2. CHARACTERIZATIONS OF THE ESTIMATOR

In this section, we derive optimality conditions for the solution that minimizes the functional
(1). Let w, (t) = n1 Z?:l 1(t; <t), where [ is the indicator function, and let w be a distribu-
tion function with a continuous and strictly positive density function ¢ on [0, 1]. For a func-
tion g, define its norm by |[|gll = sup;¢[o,171g(®)]. Let D, = ||o, — w||. If the design points ¢
are equally spaced, then D, = O(n~') with ¢(t) =1 for ¢ € [0, 1]. If the # are independent
and identically distributed regressors from a distribution with bounded positive density ¢, then
D, = O{n~'/?(loglog n)'/?} by the law of the iterated logarithm for empirical distribution func-
tions.

Let 4 be a piecewise constant function such that 4(¢;) =y; (i =1, ...,n). For any ¢ € [0, 1]
and f € L]0, 1], define

t t
l1(f,t)=/O o2 (5) f(s) dw(s), lk(f,l)=/0 lk—1(f,s)ds (2<k<m)
and

t t
h(ft)= /0 o 2() £ (s) dan(s),  Te(fo1) = /0 loi(f,5)ds @ <k<m).

THEOREM 1. Necessary and sufficient conditions for f € W' to minimize  in (1) are that

D" p®) ™) + L (fo 1) =Ln(h, t) (2 €[0,1]) )
almost everywhere and that
L(f, )y=I(h, 1) (k=1,...,m). (3)

Both 71 (f, t) and lv] (h,t) are piecewise constant in ¢. Therefore lvm(h, t) —va(f, t) is a
piecewise (m — 1)th-order polynomial. Thus, Theorem 1 shows that p(#) f M (1) is a piecewise
(m — 1)th-order polynomial. The exact form of f will depend on additional assumptions about
p(t). For example, Pintore et al. (2006) assumed p(¢) to be piecewise constant with possible
jumps at a subset of the design points; then, the optimal solution is a polynomial spline of order
2m. It is well known that the traditional smoothing spline is a natural spline of order 2m, which
corresponds to the case where p(¢) = 1.

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

We establish an equivalent kernel and an asymptotic distribution of the spatially adaptive
smoothing splines at interior points using a two-point boundary value problem technique. The
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key idea is to represent the solution to (2) by using a Green’s function. It will be shown that the
adaptive smoothing spline estimator can be approximated by a kernel estimator using this Green’s
function.

Let R (1) :lk(f, t) — ik(f, t) (k=1,...,m). Specifically, when k =m, it follows from
Theorem 1 that

Ru() = (=1)" 2 p(0) [ () + L ([ 1) = L (B 1).
Write 7 (¢) = o 2(¢) /q(t). Then [, ( f , 1) solves the two-point boundary value problem

d” d” A A v
(=D" K,O(t)dTm {V(f)dtmlm(f, t)} +In(f ) =ln(h, 1) + Ry (1), “4)

subject to the 2m boundary conditions from (3):

L(f,00=0, L(f, D)=L, D)+R(1) (k=1,...,m). (5)

The solution to (4) can be obtained explicitly with the aid of the Green’s function. For readers
unfamiliar with Green’s functions, operationally speaking, if P (¢, s) is the Green’s function for

(=" 1 p@){r @u™ 1)} + u(r) =0,

then fol Pz, s){lvm (h,s) + R, (s)} ds will solve (4). This, taken together with the boundary con-
ditions (5), yields the solution to the two-point boundary value problem (4)—(5). The derivation
of the Green’s function and discussion of the boundary conditions are given in the Supplemen-
tary Material. Specifically, let {Cr(¢) : k=1, ..., 2m} be 2m linearly independent solutions to
the homogeneous differential equation

m

d d” A A
(=D" )»,O(t)dTm {r(t)dzmlm(f’ 1)} +1n(f, 1) =0.

Then, [,,( f , 1) in (4) can be expressed as

1 1 2m
(F0)= [ PO &5+ [ PRI+ Y it (©)
0 0 Py
where the last term is due to the boundary conditions and the coefficients a; (k=1,...,2m)

can be shown to be unique and stochastically bounded for all sufficiently small X; see the Sup-
plementary Material. The expression (6) can be decomposed into three parts: the asymptotic

mean fol P(t, s)y(fo, s) ds, the random component fol P(t, )l (h — fo,s)ds, and the remain-
der term T'(1) = 37" axCx(t) + [, P(t,5)Rpn(s) ds, where Ry (1) =1L (f — fo, 1) = Iu(f —
fo, t). It will be shown that || R, || has a smaller order and that the remainder term is negligible

in the asymptotic analysis. The crucial representation of the adaptive smoothing spline estimator
is obtained by taking the mth derivative pointwise on both sides of (6); this gives

m

NN 4 ! d
070 =g [ PCSI o b+

m

1
/ P(t, )lm(h — fo,5)ds + T (@), (7)
0

We now introduce the main assumptions of this paper.
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Assumption 1. The functions p(-), ¢(-) and o (-) are m + 1 times continuously differentiable
and strictly positive.
Assumption 2. The function fy is 2m times continuously differentiable.
Assumption 3. The smoothing parameter A satisfies A — 0 as n — oo. Write
Ay = Dyn =123~ +m/@m max [{log(l/k)}l/z, (log logn)l/z]
and assume that A,, — 0 as n — oo.

Assumption 4. The random errors ¢; have a finite fourth moment.

Assumption 3 ensures that the smoothing parameter A tends to zero but not too quickly. In par-
ticular, it encompasses the case of equally spaced design variables and the case of independent
and identically distributed regressors from a distribution with bounded positive density. In the
former case we have D, = O(n!), and in the latter case D,, = O{n_l/2 (loglogn) l/2}. The opti-
mal choice of A discussed below is of order n=2"/@"+1) and it is easy to check that it satisfies
Assumption 3.

THEOREM 2. Suppose that Assumptions 1-4 hold. Let p = A~1C@™ For any given t € (0, 1),
the adaptive smoothing spline estimator f can be written as

n

A 1
O = fo&) + 2(=D""rOlp@) " O} +00) + =
n

i=1

o (t;)
q(t)

J(t, t)e;

+ O(B™)An + O(B™) exp{—BO(1)}
uniformly in A, where J(t, s) is as given in (8).

Remark 1. Eggermont & LaRiccia (2006) were the first to show in full generality that stan-
dard spline smoothing corresponds approximately to smoothing by a kernel method. A sim-
ple explicit formula for the equivalent kernel for all m, denoted by K (z,s), was given by
Berlinet & Thomas-Agnan (2004). For interior points, the kernel K is of the form K(¢,s) =
BL(B|t — s|) for some function L, such that L(|-|) is a 2mth-order kernel on (—oo, 00). In par-
ticular, the shape of K (¢, -) is determined by L (-) and is the same for different #. For example,
the closed-form expressions for the first equivalent kernels are

1
m=1: L(th) = Z exp(=leD),
m=2 ( |)—237exp YY) CcoS 172 + sin Si7 ’
3: Lt ! exp(—|t]) + e |7 1 cos 31/2|t| N 31/2 o 31/2|t|
m=3. = — exp(— X il 1 |
6 P =3 )1 . y .

m=4: L(|t|) = exp(—0-9239]¢[){0-2310 cos(0-3827|¢|) + 0-0957 sin(0-3827|¢|)}
+ exp(—0-3827]¢]){0-0957 cos(0-9239|¢]) + 0-2310 sin(0-9239]¢)}.
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Theorem 2 indicates that the spatially adaptive smoothing spline estimator is also approximately a
kernel regression estimator. The equivalent kernel J (¢, s) is the corresponding Green’s function.
It is shown in the Supplementary Material that

J(t,5)=Po(s)Qs)L{BIQs1) — Op(s)]}, (8)
where

t
05() = /O ()} VM1 + 08~} ds

is an increasing function of # and [lo|| = 1 + O(B~"). This shows that the shape of J (¢, -) varies
with ¢. Our estimator possesses the interpretation of spatial adaptivity (Donoho & Johnstone,
1998); it is asymptotically equivalent to a kernel estimator with a kernel that varies in shape and
bandwidth from point to point.

Remark 2. The number 8~! in (8) plays a role similar to the bandwidth / in kernel smoothing.
Theorem 2 shows that the asymptotic mean has bias (=)™ O {p () fo(m)(t)}(’”), which can
be made negligible if A is taken to be reasonably small. On the other hand, A cannot be arbitrarily
small, since that would inflate the random component. The admissible range for A results from a
compromise between these two opposing influences.

COROLLARY 1. Given p(-) aAndr(-), and assuming Assumptions 1-4, if A = n=2m/GmtD) thop
forany t € (0, 1), n?"/ @m0 £(1) — fo(1)} converges to

N[=D" Ol @) f3™ @)™, Lo @)=Y p(n)=1/Cm]
in distribution, where Lo = [ L2(|t]) dt.
The proof of Corollary 1 is given in the Supplementary Material. The asymptotic mean squared

error of the spatially adaptive smoothing spline estimator is of order n=#"/@m+D which is the
optimal rate of convergence given in Stone (1982).

4. OPTIMAL SELECTION OF p

The optimal A and p are chosen to minimize the integrated asymptotic mean squared error

1
/0 (Azr%) o) f3™ @Y™ + MIL/E’ZM)r(r)l—l/@'")p(t)—”@'")) dr,

which is in fact a function of Ap (). We choose the optimal A to be A%Pt = p—27/@Gm+D) The
optimal roughness penalty function p(#) minimizes the functional

1
M(p) = / (P OUpO " OY™] + Lor 0!~ ()= 1/0m) dr. ©)
0

Without any further assumptions, the above minimization problem does not have an optimal
solution, since any arbitrarily large and positive function p with {p(z) fo(m)(t)}(m) =0 on any
subinterval of [0, 1] will make IT(-) arbitrarily small. To deal with this problem, we first impose
a technical assumption on fj.
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Assumption 5. The set N ={t €[0, 1]: fo(m)(t) = 0} has zero measure.

Letu(t) = {p(t)fo(m)(t)}(’”) andz(t) = ,o(t)fo(m)(t), and let D™ be the m-fold integral oper-
ator. Then z (¢) = u(¢) and

z(t) = (D™"u) (1) + 0" ()xo, (10)

for 0(t)=(1,1,¢2/2!,...,t"" 1 /(m — 1)!1)T and some xo € R”. Moreover, we can define
2(6)/f{"™ (1) to be any positive constant for all 7 € A" at which f¢"™(¢) = 0. This definition is
assumed in what follows. Hence, the functional I1(p) in (9) becomes

1 1 2(t) —1/@2m)
J(u,xo):/ rz(t)uz(t)dz+/ Lor(t)l—l/@m){} dt,
0 0

where z(¢) is defined by (u, xg). We then introduce another technical assumption on z(¢) or,
essentially, on p.

Assumption 6. There exist positive constants u and € such that || xg|| < nand z(¢)/ fo(m) (t)=e
for all z. Also, {z(t)/fo(m)(t)}_l/(z’”) is Lebesgue integrable on [0, 1].

Consider the following set in L;[0, 1] x R™:
P ={(u, x0) € L2[0,1] x R" : |Ixoll < , z(6)/f{"™ (1) > & for all £ € [0, 1], and
) —1/@m) )
{z(t)/f0 (t)} is Lebesgue integrable on [0, 1]},

where z(?) is as given in (10), dependent on (u, x¢). In the Supplementary Material we establish
the following theorem, which says that the objective functional .J attains a unique minimum in
P. Under Assumptions 5 and 6, the existence of an optimal solution is established. Then, since
the objective functional J is strictly convex and the constraint set P is convex, the uniqueness of
the optimal solution follows.

THEOREM 3. Under Assumptions 1, 2, 5 and 6, the optimization problem inf , x\ep J (1, x0)
has a unique solution in P.

Remark 3. Given the optimal solution (u*, x*), zq» x+)(¢) is bounded on [0, 1] by virtue of
its absolute continuity. The lower bound € in Assumption 6 ensures that the optimal p is bounded
below, away from zero. However, there is no guarantee that the optimal p is bounded above, due
to the possibility of small values of | fo(m) |. To avoid this problem, one could impose an additional
upper bound constraint in Assumption 6. The proof of existence and uniqueness would remain
the same.

5. IMPLEMENTATION

Obtaining an explicit solution of (9) is difficult. Motivated by Pintore et al. (2006), we consider
approximating p by a piecewise constant function such that p(¢) = p; for t € (t;_1, 7;], j =
0,...,854+1.Here 7o =0, t541 =1,and 0 < 71 < --- < 75 < 1 are interior adaptive smoothing
knots whose selection will be described below. When the integral in (9) is taken ignoring the
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nondifferentiability at the jump points 7; (j =1, ..., §), we obtain
[ o [T e yem, (7 i-1e
W — —
> pj/ POy " ) dt + p; Lo/ P!~V dr
J=1 Tj_l Tj_l

Therefore, the optimal p; is

. - 2m/(4m—+1)
Lo [/ r(ni=1/@m dr

4m [I P20 f3™" ()2 dr

,OjI (]:1,,S+1)

Unfortunately, the optimal values for the p; depend on r(¢) and the 2mth derivative of the under-
lying regression function fy(¢). We replace them by estimates in practice.

Remark 4. Rigorously speaking, such a step-function approximation to p is not a valid solu-
tion of (9) due to nondifferentiability. However, simulations seem to suggest that such a simple
approximation can yield good results. Furthermore, one can modify such a p, for instance, to
make it satisfy Assumption 2. In a sufficiently small neighbourhood of each jump point, one can
replace the steps on either side of the jump by a smooth curve connecting the two constants such
that the resulting function satisfies Assumption 2. Hence the piecewise constant p can be viewed
as a simple approximation to this smooth version of p.

We now describe the implementation steps. The first step is to select the interior smoothing
knots T; (j =1,...,S). An abrupt change in the smoothness of the function is often associated
with a similar change in the conditional probability density of y given ¢. For example, a steeper
part of the function often comes with sparser data, or smaller conditional probability densities of y
given ¢. Hence, we first use the sscden function in the R package gss (R Development Core Team,
2013) to estimate the conditional probability densities of y given ¢ on a dense grid, say sy = k/100
for k=1, ...,100. Then, for a given S, we select the top S grid points sz where the condi-
tional probability density changes the most from s to s;41. A more accurate but considerably
more time-consuming way of selecting the smoothing knots is by means of a binary tree search
algorithm as proposed in Liu & Guo (2010).

Estimation of o2() was first studied by Miiller & Stadtmiiller (1987). Here we use the local
polynomial approach of Fan & Yao (1998); see Hall & Carroll (1989), Ruppert et al. (1997),
and Cai & Wang (2008) for other methods. This provides the weights for obtaining a weighted
smoothing spline estimate of f(¢), whose derivative yields an estimate of @) (¢). The func-
tion ¢ (¢) can be replaced by an estimate of the density function of #; (i =1, ..., n). All these
computations can be conveniently carried out using the R packages locpol and gss.

Ideally, the optimal p,; computed as above would work well. However, similar to Storlie et al.
(2010), we have found that a powered-up version ,0}/ for some y > 1 often helps in practice.

Intuitively, this power-up compensates a bit for the underestimated differences in ") (¢) across
the predictor domain.

For the tuning parameters S and y, we consider S € {0, 2, 4, 8} and y € {1, 2, 4}. Theoreti-
cally, a larger S might be preferred due to the better approximation of such step functions to the
real function. However, as shown in Pintore et al. (2006) and Liu & Guo (2010), an S greater
than 8 tends to overfit the data. The choices for y are as suggested in Storlie et al. (2010). In tra-
ditional smoothing splines, smoothing parameters are selected by generalized crossvalidation
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(Craven & Wahba, 1979) or the generalized maximum likelihood estimate (Wahba, 1985).
As pointed out by Pintore et al. (2006), a proper criterion for selecting the piecewise constant
o () should penalize on the number of segments of p. The generalized Akaike information cri-
terion proposed in Liu & Guo (2010) serves this purpose; it is a penalized version of the gener-
alized maximum likelihood estimate where S is penalized similarly to the degrees of freedom in
the conventional Akaike information criterion. In this paper, we will use the generalized Akaike
information criterion to select S and y .

Once the piecewise constant penalty function p is determined, we compute the corresponding
adaptive smoothing spline estimate as follows. By the representer theorem (Wahba, 1990), the
minimizer of (1) lies in a finite-dimensional space of functions of the form

n m—1
F@O =YK, t)+ Y dig;(t), (11)
i=1 j=0
where the ¢; and d; are unknown coefficients, ¢, () = tj/j! for j=0,...,m —1,and K, is the

reproducing kernel function whose closed-form expressions at (#;, -) with a piecewise constant
p are given in §2.2 of Pintore et al. (2006). Upon substituting (11) into (1), we solve for ¢ =
(c1y...,cp)"andd = (dp, . .., dyn—1)" by the Newton—Raphson procedure with a fixed A. Here
A can be selected by generalized crossvalidation or the generalized maximum likelihood estimate
with the adaptive reproducing kernel function.

6. SIMULATIONS

This section compares the estimation performance of different smoothing spline methods.
For traditional smoothing splines, we used the cubic smoothing splines from the function ssanova
in the R package gss, and the smoothing parameter was selected by the generalized crossval-
idation score. For the spatially adaptive smoothing splines of Pintore et al. (2006), we used
an equally spaced five-step penalty function following their implementation, and the optimal
penalty function was selected to minimize the generalized crossvalidation function (19) in
Pintore et al. (2006). For the Loco-Spline of Storlie et al. (2010), we downloaded the authors’
original program from the Journal of Computational and Graphical Statistics website. For the
proposed adaptive smoothing splines, we used m = 1 and cubic smooth splines to compute the
optimal p;.

Two well-known functions with varying smoothness over the domain were considered under
the model y; = f(#) + € with ¢ ~ N (O, 02%). We used n =200 and ¢ =i/n (i=1,...,n)
in all the simulations and repeated each simulation on 100 randomly generated data repli-
cates. The integrated squared error fol{ f (1) — fo(1)}*dt and pointwise absolute errors at ¢ =

0-2, 0-4, 0-6, 0-8 were used to evaluate the performance of an estimate f. To visualize the com-
parison, we also selected for each example and each method a data replicate to represent the
median performance as follows. The function estimates from each method yielded 100 inte-
grated squared errors. Upon ranking these from lowest to highest, we chose the 50th integrated
squared error and its corresponding data replicate to represent the median performance. We then
plotted the function estimates from these selected data replicates in Fig. 1-2 to compare the
median estimation performances of different methods. To assess the variability in estimation, we
also superimposed on these plots the pointwise empirical 0-025 and 0-975 quantiles of the 100
estimates.
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()

Fig. 1. Estimates of the Heaviside function produced by the data replicate with median inte-

grated squared error, for four different methods: (a) traditional smoothing spline; (b) the

method of Pintore et al. (2006); (c) the Loco-Spline of Storlie et al. (2010); (d) our pro-

posed adaptive smoothing spline. The plotted curves are the true function (solid grey line),

the spline estimate (solid black line), and the pointwise empirical 0-025 and 0-975 quantiles
(dotted lines).

(@ (b)

(c) (d

Fig. 2. Estimates of the Mexican hat function produced by the data replicate with median

integrated squared error, for four different methods: (a) traditional smoothing spline; (b) the

method of Pintore et al. (2006); (c) the Loco-Spline of Storlie et al. (2010); (d) our proposed

adaptive smoothing spline. The plotted curves are the true function (solid grey line), the

spline estimate (solid black line), and the pointwise empirical 0-025 and 0-975 quantiles
(dotted lines).
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Table 1. Comparison of integrated squared errors and pointwise absolute errors
for various estimates. Values are empirical means and standard deviations (in
parentheses) multiplied by 100 based on 100 data replicates

Method ISE PAE(0-2) PAE(0-4) PAE(0-6) PAE(0-8)
Heaviside function
SS 18 (7) 15(11) 17 (14) 16 (14) 16 (12)
PSH 5(2) 6(5) 6(5) 7(5) 7(5)
Loco 7(3) 10 (8) 13 (12) 11 (10) 12 (12)
ADSS 2(2) 7(5) 6(5) 6(5) 7 (6)
Mexican hat function

SS 6-6 (6:2) 8 (6) 8(8) 96 (72) 8 (6)
PSH 1-1(0-3) 4(3) 8(5) 35(11) 8(5)
Loco 0-6 (0-3) 4(4) 5(4) 13 (10) 54)
ADSS 0-6 (0-2) 4(3) 4 (3) 15 (10) 6(4)

ISE, integrated squared error; PAE, pointwise absolute error; SS, smoothing splines; PSH, the
splines of Pintore et al. (2006); Loco, the Loco-Splines of Storlie et al. (2010); ADSS, the adap-
tive smoothing splines proposed in this paper

We first consider data generated from the Heaviside function f(¢) =57 (¢ > 0-5) witho = 0-7.
Based on the error summary statistics in Table 1, all the adaptive methods outperform the tra-
ditional smoothing splines, with our method and that of Pintore et al. (2006) displaying clear
advantages in all the error measures. Furthermore, our method had the smallest mean integrated
squared error, illustrated by the plots in Figs 1. While the median estimates from all three adap-
tive methods tracked the true function reasonably well, the Loco-Spline estimates showed greater
variability in the flat parts of the Heaviside function than estimates obtained from the other
two adaptive methods. Further, our method does the best job in tracking the jump. As shown
in Fig. 1(b), the estimate of Pintore et al. (2006) oscillates around the jump of the Heaviside
function, possibly because the equally spaced jump points for p suggested in their paper some-
times have difficulty characterizing the jump in the true function. This echoes the finding in
Liu & Guo (2010) that the jump locations of p also need to be adaptive, an idea that is adopted
in our method.

The second example is the Mexican hat function f(¢) = —1 + 1-5¢ 4+ 0-2¢.02(¢ — 0-6) with
o =0-25, where ¢.02(t — 0-6) is the density function of N (0-6, 0-022). From Table 1 and Fig. 2,
the estimates from our method and the Loco-Spline have comparable performance, and both
outperform the traditional smoothing spline and the method of Pintore et al. (2006). Again, the
estimate of Pintore et al. (2006) shows oscillations around the places where the hat peak rises
steeply from the brim.

For the estimates plotted in Figs. 1-2, we also plot in Fig. 3 the estimated log penalties. In
general, the penalty functions from the three adaptive methods track the smoothness changes in
the underlying functions reasonably well.

7. APPLICATION

In this section, we apply the proposed adaptive smoothing splines to data from electroen-
cephalograms of epilepsy patients (Liu & Guo, 2010). Previous research (Qin et al., 2009) has
shown that the 26-50 Hz frequency band is important in characterizing electroencephalograms
and may help to determine the spatial-temporal initiation of seizures. Figure 4(a) shows the raw
time-varying log spectral band power of 26—50 Hz calculated every half second for a 15-minute
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Fig. 3. Estimated log penalties for the estimates shown in Figs. 1-2: (a) Heaviside function; (b)

Mexican hat function. The log penalties are for traditional smoothing splines (solid grey lines), the

method of Pintore et al. (2006) (dashed steps), the Loco-Spline (dotted lines), and the proposed method
(solid steps).

(a) (b) ()
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Fig. 4. EEG data example: (a) raw log spectral band power; (b) reconstructions obtained from the tra-

ditional smoothing splines (dashed line) and the proposed adaptive smoothing splines (solid line); (c)

estimated log penalties for the traditional smoothing splines (dashed line) and the proposed adaptive
smoothing splines (solid steps).

intracranial electroencephalogram series. The sampling rate was 200 Hz, and seizure onset
occurred at the 8th minute (Litt et al., 2001). The raw band powers are always very noisy and
need to be smoothed before further analysis. Figure 4(b) shows the reconstructions obtained
from traditional smoothing splines and the proposed adaptive smoothing splines. We also tried
the Loco-Spline, but the program exited due to a singular matrix error.

Traditional smoothing splines clearly undersmooth the pre- and post-seizure regions and over-
smooth the seizure period, because a single smoothing parameter is insufficient to capture the
abrupt change before the onset of the seizure. Our estimate smoothes out the noise at both ends
but retains the details before the onset of seizure. In particular, we see a fluctuation in power start-
ing from a minute or so before the onset of the seizure, which could be a meaningful predictor of
seizure initiation. The band power then increases sharply at the beginning of the seizure. At the
end of the seizure, around the 10th minute, the band power drops sharply to a level even lower
than the pre-seizure level, indicating the suppression of neuronal activity after seizure. After-
wards, the band power starts to rise again, but it still fails to reach the pre-seizure level even at
the end of the 15th minute. These findings agree with those of Liu & Guo (2010).
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The proposed method took less than 10 minutes for the whole analysis, compared with 40-50
minutes for the method of Liu & Guo (2010). This is not surprising, since the latter not only
needs a dense grid search to locate the jump points but also lacks good initial step sizes.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Theorems 1-3
and Corollary 1, and the detailed derivation of the Green’s function.

APPENDIX

Here we outline the proofs of Theorems 1 and 2. For the full proofs of the three theorems and Corollary 1,
we refer the reader to the Supplementary Material.

Outline of proof of Theorem 1. For any f, g € W}" and § e R,

1 1
Y(f +8g) — v (f) =28y (f, g) + & [/0 gz(r)dwn(r>+x/ p{g"™ @)} dt |,

0

where

vi(f,g)= /0 l o (O (0) — h(0)}g () dw, () + 2 /0 1 p () [ (1)g™ (1) dr. (A1)
LEMMA Al. The function f € W' minimizes W (f) in (1) if and only if Y, (f, g) =0 for all g € W}’
Let g(t) =t* (k=0,...,m — 1) in (Al). By Lemma Al, if / minimizes v ( f), then
/0l o 2O f (1) —h()} " dw, (1) =0 (k=0,1,...,m —1).
First, we have
LA = Th 1) =/01 o 2O () — h(1)) desy (1) = 0.

Further,

LOf 1) —hh, 1>=/01/Osa-zu){f(r)—h(r)}dwnmds:/olo—-2<r>{f<t>—h(t)}dwna):o.
Similarly, [, (£, 1) =L, (h, 1) fork=1, ..., m.

Lemma A2, If f € W} satisfies [, (f, 1) =i (h, 1) for k=1, ..., m, then for all g € W},

1
(fg)= /0 Va(f) g™ (1) dr,

where

V() =2 p@O) f™ () + (=D)L (f, 1) — L (h, D).

€T0Z ‘ST PqURIaQ U0 108Q SeLeS e /610°S[euIno[pio4x0ewoig//:diy wouy papeojumoq


http://biomet.oxfordjournals.org/
http://biomet.oxfordjournals.org/

968 X. WANG, P. DU AND J. SHEN

Let Bt ={te[0,1]:v2(f) >0} and B~ ={t €[0, 1]: ¥2(f) <0}. Define g (1) = —Iz+(t) and
g(,m) (t) =1Ip-(t), where I denotes the indicator function. Since ¥ (f, g) =0 for all ge W}, we have
Yi(f,gy) <0and ¥ (f, g-) < Ounless BT and B~ have measure zero. This shows that ¥, ( /) = 0 almost
everywhere.

Outline of proof of Theorem 2. It follows from (7) that ! (t)f(t) =11(t) + V(@) + V3(t) + Va(t),
where

m 1 dm 1 . .
Vl(t): (m / P(l‘,S)lm(f(),S)dS, VZ(I):dim/ P(I,S){lm(l’l,s)—lm(f(),S)}dS,
Bo=g / P~ for) ~TnF = foo s, Ta) =3 G0,
k=1
Let f minimize the functional
1 1
/ FUGs) — fol))Pds + A / P () £ ()2 ds.
0 0
Similar to Theorem 1, we have
=D"2p@) ) + 1y (f, 1) =1 (fo, 0) (A2)
and 1
In(f, 1) =/ P(t, )y ( fo,s)ds. (A3)
0

Hence V(1) =r~'(¢) f (#). Taking the mth derivative of both sides of (A2), we get
D" Mp @ SN + N O SO =70 fo0).

Recall that f; is 2m times continuously differentiable and 8 = A~!/") By combining this with (A3), it is
easy to show that f® (1) — f(k) (t)asp—ocofork=1,...,2m. Therefore

i) =r=1@) fo) + (=" 'ap ) £ (O} + o(h).

m

PRrROPOSITION Al. Assume that a function J(t,s) satisfies (—1)" - v,,,J(t s) =
[0, 1]. Then J(t,s) + >0 ( 1)k§k+1(s)Jk(t)—{r(s)/r(t)}J(t s), where

" P(t,s) for t,s €

t’”

- 8 -
;k<s>=/ / dsiidsis - dsy, (D) = ——J(t,s)|
s sk_3 Jsin as s=1

and J(t, s) is the Green's function for
=D"ar O {pOu™ O} + u(t) =0.

By Proposition Al, for any 7 € (0, 1) we have

1 om
V2(1)=/ (=1
m—1

/J(t )AL = fo, )} + (= 1)"12( D kOl i1 (h = fo, 1)

Jo,s)ds

t _ .
L Z ”((t) J(t, t)o l(ti)ei + higher order terms.
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Eggermont & LaRiccia (2006) established uniform error bounds for regular smoothing splines. We
adopt the same approach for adaptive smoothing splines; the details are omitted here. For A <
(n~"log n)?™/(1+4m) "\we obtain

I/ = fol =0 ({max{l(’g(l/)»), log logn} ]1/2>

n)l/@2m)

Therefore, || V3] < O(B™)D,|| f — foll. Finally, it is shown in detail in the Supplementary Material that
| V4l is of order O(B™) exp[—BOp(t){0p(1) — Op(¢)}] and is thus a negligible term in the asymptotic
expansion of 7! (¢) f (t). This completes the representation for f .
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