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PROOF OF THEOREM 1 15

For any f, g ∈Wm
2 and δ ∈ R,

ψ(f + δg)− ψ(f) = 2δψ1(f, g) + δ2
[ ∫ 1

0
g2(t)dωn(t) + λ

∫ 1

0
ρ(t){g(m)(t)}2dt

]
, (1)

where

ψ1(f, g) =

∫ 1

0
σ−2(t){f(t)− h(t)}g(t)dωn(t) + λ

∫ 1

0
ρ(t)f (m)(t)g(m)(t)dt. (2)

LEMMA 1. f ∈Wm
2 minimizes ψ(f) in (2), if and only if, ψ1(f, g) = 0 for all g ∈Wm

2 .

Proof. If f ∈Wm
2 minimizes ψ(f), ψ(f + δg)− ψ(f) ≥ 0 for all g ∈Wm

2 and any δ ∈ R.
Then ψ1(f, g) = 0 follows since δ can be either negative or positive. On the other hand, if 20

ψ1(f, g) = 0, we have ψ(f + δg)− ψ(f) ≥ 0 by (1). Thus, f minimizes ψ(f). �

Let g(t) = tk(k = 0, . . . ,m− 1) in (2). An application of Lemma 1 shows that if f minimizes
ψ(f), then ∫ 1

0
σ−2(t){f(t)− h(t)} tkdωn(t) = 0(k = 0, 1, . . . ,m− 1).

We first have

ľ1(f, 1)− ľ1(h, 1) =

∫ 1

0
σ−2(t){f(t)− h(t)}dωn(t) = 0.
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Further,

ľ2(f, 1)− ľ2(h, 1) =

∫ 1

0

∫ s

0
σ−2(t){f(t)− h(t)}dωn(t)ds =

∫ 1

0
σ−2(t){f(t)− h(t)} t dωn(t) = 0.

Similarly, it is shown that ľk(f, 1) = ľk(h, 1)(k = 1, . . . ,m).

LEMMA 2. If f ∈Wm
2 satisfies ľk(f, 1) = ľk(h, 1)(k = 1, . . . ,m), then for all g ∈Wm

2 ,

ψ1(f, g) =

∫ 1

0
ψ2(f) g

(m)(t)dt, (3)

where

ψ2(f) = λ ρ(t) f (m)(t) + (−1)m {ľm(f, t)− ľm(h, t)}. (4)

Proof. If f ∈Wm
2 satisfies ľk(f, 1) = ľk(h, 1) (k = 1, . . . ,m), we have25 ∫ 1

0
σ−2(t){f(t)− h(t)}g(t)dωn(t) =

∫ 1

0
σ−2(t){f(t)− h(t)} {g(t)− g(1)}dωn(t)

= −
∫ 1

0
σ−2(t){f(t)− h(t)}

∫ 1

t
g′(s)dsdωn(t)

= −
∫ 1

0
{ľ1(f, s)− ľ1(h, s)} g′(s)ds

= · · ·

= (−1)m
∫ 1

0
{ľm(f, s)− ľm(h, s)} g(m)(s)ds

Hence, (4) follows. �

Let B+ = {t ∈ [0, 1] : ψ2(f) > 0} and B− = {t ∈ [0, 1] : ψ2(f) < 0}. Define
g
(m)
+ (t) = −IB+(t) and g(m)

− (t) = IB−(t), where I is the indicator function. Since ψ1(f, g) = 0
for all g ∈Wm

2 , we have ψ1(f, g+) < 0 and ψ1(f, g−) < 0, unless B+ and B− are of measure
zero. This shows that ψ2(f) = 0 almost everywhere.30

PROOFS OF THEOREM 2 AND COROLLARY 1
It follows from (9) that r−1(t)f̂(t) = V1(t) + V2(t) + V3(t) + V4(t), where

V1(t) =
dm

dtm

∫ 1

0
P (t, s)lm(f0, s)ds,

V2(t) =
dm

dtm

∫ 1

0
P (t, s){ľm(h, s)− ľm(f0, s)}ds,35

V3(t) =
dm

dtm

∫ 1

0
P (t, s){lm(f̂ − f0, s)− ľm(f̂ − f0, s)}ds,

and V4(t) =
∑2m

k=1 akC
(m)
k (t). Let f̄ be the minimizer of the functional∫ 1

0
r−1(s){f(s)− f0(s)}2ds+ λ

∫ 1

0
ρ(t){f (m)(s)}2ds.
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Similar to Theorem 1, we have

(−1)mλρ(t)f̄ (m)(t) + lm(f̄ , t) = lm(f0, t), (5)

and

lm(f̄ , t) =

∫ 1

0
P (t, s)lm(f0, s)ds. (6)

Hence, V1(t) = r−1(t)f̄(t). Taking the mth derivative of both sides of (5), we get

(−1)mλ{ρ(t)f̄ (m)(t)}(m) + r−1(t)f̄(t) = r−1(t)f0(t).

Recall that f0 is 2m times continuously differentiable and β = λ−1/(2m). Combining this with
(6), it is easy to show that f̄ (k)(t) → f

(k)
0 (t)(k = 1, . . . , 2m) as β → ∞. Therefore,

V1(t) = r−1(t)f0(t) + (−1)m−1λ{ρ(t)f (m)
0 (t)}(m) + o(λ).

PROPOSITION 1. Assume that a function J̃(t, s) satisfies

(−1)m
∂m

∂sm
J̃(t, s) =

∂m

∂tm
P (t, s), t, s ∈ [0, 1].

Then,

J̃(t, s) +
m−1∑
k=0

(−1)kζk+1(s)J̃k(t) =
r(s)

r(t)
J(t, s),

where

ζk(s) =

∫ 1

s
· · ·

∫ 1

sk−3

∫ 1

sk−2

dsk−1dsk−2 · · · ds1, J̃k(t) =
∂k

∂sk
J̃(t, s) |s=1,

and J(t, s) is the Green’s function for

(−1)mλr(t){ρ(t)u(m)(t)}(m) + u(t) = 0. (7)

Proof. Consider the integral equation (−1)mλρ(t)f (m)(t) + lm(f, t) = lm(g, t). If we write 40

this equation as a differential equation for f , we have

(−1)mλ{ρ(t)f (m)(t)}(m) + r−1(t)f(t) = r−1(t)g(t). (8)

Further writing (8) as a differential equation for lm(f, t), we obtain

(−1)mλρ(t)
dm

dtm

{
r(t)

dm

dtm
lm(f, t)

}
+ lm(f, t) = lm(g, t). (9)

It follows from (9) that lm(f, t) =
∫ 1
0 P (t, s)lm(g, s)ds. Hence,

r−1(t)f(t) =
dm

dtm
lm(f, t) =

∫ 1

0

∂m

∂tm
P (t, s)lm(g, s)ds = (−1)m

∫ 1

0

∂m

∂sm
J̃(t, s)lm(g, s)ds

= (−1)m
m∑
k=1

(−1)k+1lm−k+1(g, 1)J̃m−k(t) +

∫ 1

0
J̃(t, s)r−1(s)g(s)ds

=

∫ 1

0

{m−1∑
k=0

(−1)kζk+1(s)J̃k(t) + J̃(t, s)
}
r−1(s)g(s)ds
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From (7) and (8), we have f(t) =
∫ 1
0 J(t, s)g(s)ds. Thus,∫ 1

0

[
r−1(t)J(t, s)−

{m−1∑
k=0

(−1)kζk+1(s)J̃k(t) + J̃(t, s)
}
r−1(s)

]
g(s)ds = 0.

Since the above equation is true for all g ∈ L2[0, 1], the proposition follows. �

By applying Proposition 1, we have, for any t ∈ (0, 1),45

V2(t) =

∫ 1

0
(−1)m

∂m

∂sm
J̃(t, s)ľm(h− f0, s)ds

=

∫ 1

0
J̃(t, s)d{ľ1(h− f0, s)}+ (−1)m

m−1∑
k=1

(−1)k−1J̃m−k(t)ľm−k+1(h− f0, 1)

=
1

n

n∑
i=1

r(ti)

r(t)
J(t, ti)σ

−1(ti)ϵi + higher order terms .

Eggermont & LaRiccia (2006) established the uniform error bounds for regular smoothing
splines. We adopt the same approach as in Eggermont & LaRiccia (2006) for adaptive smoothing
splines; the details are omitted here. For λ≪ (n−1 log n)2m/(1+4m), we obtain

∥f̂ − f0∥ = O
[max

(
{log 1/λ}1/2, {log log n}1/2

)
n1/2λ1/(4m)

]
.

Therefore, ∥V3∥ ≤ O(βm)Dn∥f̂ − f0∥. Finally, it follows from Lemma 4 in next section that
∥V4∥ is of order O(βm) exp{−βQβ(t){Qβ(1)−Qβ(t)}}, and thus a negligible term in the
asymptotic expansion of r−1(t)f̂(t). This completes the representation for f̂ .

Proof of Corollary 1. Define Uβ(t) =
1
n

∑n
i=1{σ(ti)/q(ti)}J(t, ti)ϵi. For any t ∈ (0, 1), the50

variance of Uβ(t) is given by

E{U2
β(t)} =

1

n

∫ 1

0

σ2(s)

q2(s)
J2(t, s)dωn(s)

=
β2

n

∫ 1

0

σ2(s)

q2(s)
ϱ(s)2{Q′

β(s)}2L2
{
β|Qβ(t)−Qβ(s)|

}
dωn(s)

=
β2

n

∫ 1

0
r(s){Q′

β(s)}2L2
{
β|Qβ(t)−Qβ(s)|

}
ds+ higher order terms

=
β

n

∫ βQβ(t)

−β{Qβ(1)−Qβ(t)}
r
[
Υβ{Qβ(t)−

x

β
}
]
Q′[Υβ{Qβ(t)−

x

β
}
]
L2(|x|)dx+ higher order terms55

=
β

n
r(t)Q′(t)

∫ ∞

−∞
L2(|x|)dx+ higher order terms

where Υβ is the inverse function of Qβ , the second last equality is obtained by letting
β
{
Qβ(t)−Qβ(s)

}
= x, and the last equality is from a simple Taylor expansion. We invoke the

Lindeberg–Lévy Central Limit Theorem to verify that (n/β)1/2Uβ(t) converges in distribution
to N

{
0, r(t)1−1/(2m)ρ(t)−1/(2m)L0

}
. Lindeberg’s condition is easily satisfied if the ϵi have the60

finite fourth moment. The corollary follows by incorporating the bias term from Theorem 2.
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Green’s Functions
A critical step in the representation of the adaptive smoothing spline estimator is to use the

Green’s function to solve a two-point boundary value problem with a large parameter. This step 65

is of independent technical interest. In this section, we derive the Green’s functions for the time-
varying ordinary differential equation

(−1)mλw(t)
{
r(t)F (m)(t)

}(m)
+ F (t) = G(t), t ∈ [0, 1], (10)

subject to the natural boundary conditions.
We firstly focus on the homogeneous equation with a large parameter β = λ−1/(2m):

(−1)mw(t){r(t)F (m)(t)}(m) + β2mF (t) = 0, t ∈ [0, 1]. (11)

We exploit the techniques in Coddington & Levinson (1955) to establish approximations to its
fundamental solutions and their derivatives up to the (m− 1)th order. Let

µk = cos
{(1 + 2k)π

2m

}
, ωk = sin

{(1 + 2k)π

2m

}
(k = 0, . . . ,

m

2
− 1)

when m is even, and let

µk = cos
(kπ
m

)
, ωk = sin

(kπ
m

)
(k = 1, . . . ,

m− 1

2
)

when m is odd. 70

LEMMA 3. Given an m, suppose that w(·) and r(·) are positive functions in Cm+1[0, 1].
Denote γ(t) = {w(t)r(t)}−1/(2m). Then, for all β sufficiently large, a fundamental solution of
(11) is given by

hk(t) = exp
{
β
(
± µk ± ı ωk

)
Qβ(t)

}
,

for any k defined above (corresponding to either an even m or an odd m), where

Qβ(s) =

∫ t

0
γ(s)

{
1 +O(β−1)

}
ds.

Furthermore, for each k and ℓ = 1, . . . ,m− 1,

h
(ℓ)
k (t) =

{
β(±µk ± ıωk)γ(t)

}ℓ
exp

[
β
(
± µk ± ı ωk

) ∫ t

0
γ(s)

{
1 +O(β−1)

}
ds
]
.

Proof. We exploit the techniques in Coddington & Levinson (1955) to establish approxima- 75

tions to its fundamental solutions of (10) and their derivatives up to the (m− 1)th order. The
homogeneous ordinary differential equation (11) can be written as

(−1)mw(t)
{
r(t)F (2m)(t) +mr′(t)F (2m−1)(t) + · · ·+ r(m)(t)F (m)(t)

}
+ β2mF (t) = 0

Since w(t)r(t) > 0 on [0, 1], we have

F (2m)(t) + βa1(t, β)F
(2m−1)(t) + β2a2(t, β)F

(2m−2)(t) + · · ·+ β2ma2m(t, β)F (t) = 0
(12)

where

a1(t, β) = (−1)m−1mr
′(t)

βr(t)
, . . . , am(t, β) = (−1)m−1 r

(m)(t)

βmr(t)
,
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and80

aℓ(t, β) ≡ 0 (ℓ = m+ 1, . . . , 2m− 1), a2m(t, β) =
(−1)m−1

w(t)r(t)

In particular, ai(t, β) = (−1)m−1pi(t)/{βiw(t)r(t)} (i = 1, . . . , 2m− 1), where pi(t) is a lin-
ear combination of finite products of w(t) and the derivatives of r(t) up to the mth order. Hence
each ai(t, β) can be written as ai(t, β) =

∑m
j=0 aij(t)β

−j for suitable functions aij(t) which
are at least in C1[0, 1]. Therefore, ai(t, β) → 0 (i = 1, . . . , 2m− 1) uniformly in t on [0, 1] as
β → ∞. Let x1(t) ≡ F (t) and xi+1(t) ≡ x′i(t)/β (i = 1, . . . , 2m− 1). Then the ordinary dif-85

ferential equation (12) can be written as

x′i = βxi+1, (i = 1, . . . , 2m− 1), x′2m = −β
{
a2m(t, β)x1 + · · ·+ a1(t, β)x2m

}
(13)

Let x = (x1, . . . , x2m)T ∈ R2m. The ordinary differential equation (13) becomes ẋ =
βA(t, β)x, where

A(t, β) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0

. . .
0 0 0 · · · 0 1

−a2m(t, β) −a2m−1(t, β) · · · · · · −a2(t, β) −a1(t, β)

 =

2m−1∑
k=0

β−kAk(t)

Here

A0(t) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0

. . .
0 0 0 · · · 0 1

−a2m,0(t) 0 0 · · · 0 0


where a2m,0(t) = (−1)m−1/{w(t)r(t)}, andAk(t) (k = 0, · · · , 2m− 1) are at least of the class90

C1[0, 1]. Note that for each t ∈ [0, 1], A0(t) has 2m distinct eigenvalues given by (±µk ±
ıωk)/{w(t)r(t)}1/2m, where µk and ωk are defined before this proposition. Since the angle be-
tween any two distinct roots of the equation (−1)mx2m + 1 = 0 is given by ±qπ/m, where q ∈
{1, · · · ,m}, it follows from the similar argument in Abramovich & Grinshtein (1999) that the
hypothesis of Coddington & Levinson (1955) holds. Let {λk(t)} represent the 2m distinct eigen-95

values of A0(t) (or equivalently the distinct roots of (−1)mx2m + 1 = 0). Consequently, by us-
ing Coddington & Levinson (1955), we conclude that the fundamental solutionX(t) ∈ R2m×2m

of the homogeneous ordinary differential equation Ẋ(t) = βA(t, β)X(t) can be represented
as X(t) = B0(t)P̂ (t, β)e

βQ0(t)+Q1(t) +O(β−1), where Q′
0(t) = diag(λ1(t), · · · , λ2m(t)) with

Q(0) = 0,Q′
1(t) is a diagonal matrix whose diagonal entries are bounded on [0, 1] withQ1(0) =100

0,

P̂ (t, β) =


1 0 0 · · · 0 0
0 1 0 · · · 0 0

. . .
0 0 0 · · · 1 0

O(β−1) · · · · · · · · · O(β−1) 1 +O(β−1)


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and

B0(t) =


1 · · · 1

λ1(t) · · · λ2m(t)
λ21(t) · · · λ22m(t)

... · · ·
...

λ2m−1
1 (t) · · · λ2m−1

2m (t)


Recall that F (ℓ) = βℓxℓ+1 and each λk(t) is continuous and bounded away from 0 on
[0, 1]. These results, together with the discussion in (Coddington & Levinson, 1955, Sec-
tion 6.5), show that the ℓth derivative of each fundamental solution is of the form 105

{βλk(t)}ℓ exp
[
β(

∫ t
0 λk(s){1 +O(β−1)}ds)

]
(ℓ = 0, . . . ,m− 1). Hence, the lemma follows.�

The functions represented by O(β−1) in Lemma 3 might be different, although they have the
same order.

PROPOSITION 2. Let P (t, s) be the Green’s function for (10). Let P (t, s) equal to P1(t, s)
when t > s and P2(t, s) when t < s. If

∂k

∂tk
P1(t, s)

∣∣∣
s=t

=
∂k

∂tk
P2(t, s)

∣∣∣
s=t

(k = 0, 1, . . . , 2m− 2),

and

∂2m−1

∂t2m−1
P1(t, s)

∣∣∣
s=t

− ∂2m−1

∂t2m−1
P2(t, s)

∣∣∣
s=t

=
1

(−1)mλw(t)r(t)
,

then F0(t) =
∫ 1
0 P (t, s)G(s) is a solution of (10).

Proof. We write F0(t) =
∫ t
0 P1(t, s)G(s)ds+

∫ 1
t P2(t, s)G(s)ds for all t ∈ [0, 1]. Since

∂kP (t, s)/∂tk (k = 0, 1, . . . , 2m− 1) is continuous at s = t, we have

F
(k)
0 (t) =

∫ 1

0

∂k

∂tk
P (t, s)G(s)ds (k = 1, 2, . . . , 2m− 1).

Furthermore, due to the jump of ∂2m−1P (t, s)/∂t2m−1 at s = t, we have

F
(2m)
0 (t) =

G(t)

(−1)mλw(t)r(t)
+

∫ 1

0

∂2m

∂t2m
P (t, s)G(s)ds.

For any fixed s, P (t, s) is a solution of the homogeneous differential equation (11). This verifies 110

that F0(t) =
∫ 1
0 P (t, s)G(s)ds is a solution of (10). �

Now consider a special case when w(t) ≡ 1 and r(t) ≡ 1 for t ∈ [0, 1]. This leads to the time-
invariant ordinary differential equation

(−1)mλF (2m)(t) + F (t) = G(t), t ∈ [0, 1].

Under this circumstance, the Green’s function has been obtained explicitly before, see Berlinet
& Thomas-Agnan (2004) and Wang et al. (2010). The homogeneous differential equation
λF (2m)(t) + F (t) = 0 has 2m solutions exp{(±µk ± ıωk)βt}. Let K(t, s) be the correspond-
ing Green’s function. It turns out that K(t, s) is a function of |t− s| and can be written as 115
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K(t, s) ≡ β L(β|t− s|). The explicit formula for L is

L(t) ≡

m
2
−1∑

k=0

e−µkt
{
ck cos(ωkt) + dk sin(ωkt)

}
, (14)

for an even m, and

L(t) ≡ c0 e
−t +

(m−1)/2∑
k=1

e−µkt
{
ck cos(ωkt) + dk sin(ωkt)

}
, (15)

for an odd m. Similar to Proposition 2, the coefficients ck, dk can be uniquely determined from
the following conditions:

L(k)(t)
∣∣
t=0

= 0 (k = 1, 3, . . . , 2m− 3) and L(2m−1)(t)
∣∣
t=0

=
(−1)m

2
. (16)

Define120

P (t, s) = β ϱ(s) Q′
β(s) L

{
β|Qβ(t)−Qβ(s)|

}
, (17)

where ϱ(s) = 1 +O(β−1) holds uniformly in s ∈ [0, 1]. It is easy to verify that P (t, s) in (17)
satisfies the conditions in Proposition 2. Therefore, it is the Green’s function for (10).

The homogeneous differential equation (11) has 2m linearly independent solutions:

Ck1(t) = e−βµkQβ(t) cos{βωkQβ(t)}, Ck2(t) = e−βµkQβ(t) sin{βωkQβ(t)}, (18)

Ck3(t) = e−βµk{Qβ(1)−Qβ(t)} cos{βωkQβ(t)}, Ck4(t) = e−βµk{Qβ(1)−Qβ(t)} sin{βωkQβ(t)},

where k = 0, . . . ,m/2− 1 when m is even or k = 0, . . . , (m− 1)/2 when m is odd. These so-
lutions, together with the 2m boundary conditions for (10) F (k)(0) = 0 and F (k)(1) = G(k)(1),125

k = 0, 1, . . . ,m− 1, yield:

LEMMA 4. The solution to (10) subject to the boundary conditions can be written as

F (t) =

∫ 1

0
P (t, s)G(s)ds+

∑
k

{
ak1Ck1(t) + ak2Ck2(t) + ak3Ck3(t) + ak4Ck4(t)

}
, (19)

where the Green’s function P (t, s) is given in (17), and the coefficients ak1, ak2, ak3, ak4 are
unique and bounded for all β sufficiently large.

Proof. Consider an even m; the case of an odd m is similar and is omitted. For notational130

convenience, let

χj+1 = −µj + ıωj (j = 0, . . . ,
m

2
− 1),

where each µj > 0 and ωj > 0, and γ(t) = {w(t)r(t)}−1/(2m). Let λ2j−1(t) = χjγ(t),
λ2j(t) = χjγ(t)(t) (j = 1, . . . ,m/2), where χj denotes the conjugate of χj . Let hk(t) =
exp

{
β(

∫ t
0 λk(s){1 +O(β−1)}ds)

}
be the corresponding m fundamental solutions. Similarly,

define gk(t) = exp
[
β{

∫ 1
t λk(s)(1 +O(β−1))ds}

]
. Hence, for each odd k, hk+1(t) is the conju-135

gate of hk(t). Define the complex number pk = bk1 + ıbk2, p+k = b+k1 + ıb+k2 (k = 1, 3, . . . ,m−
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1). Therefore, F (t) can be written as

F (t) = F0(t) +

m/2∑
j=1

{
p2j−1h2j−1(t) + p2j−1h2j(t) + p+2j−1g2j−1(t) + p+2j−1g2j(t)

}
,

where bkj , b+kj are to be determined. Define b =
(
b11, b12, . . . , bm

2
1, bm

2
1, b

+
11, b

+
12, . . . , b

+
m
2
1, b

+
m
2
1

)
∥G∥, and G =

(
∥G∥, G(1), G′(1), . . . , G(m−1)(1)

)
. It is easy to verify that the coefficients

ak1, ak2, ak3, ak4 are unique and bounded for all β sufficiently large if and only if b is so. The 140

boundary conditions lead to the linear equation DBb̃ = v, where

b̃ = (p1, p1, p3, p3, . . . , pm/2−1, pm/2−1, p
+
1 , p

+
1 , p

+
3 , p

+
3 , . . . , p

+
m/2−1, p

+
m/2−1) ∈ C2m,

vT = [v0, v1] with

v0 =
[
− F0(0), −

F ′
0(0)

β
, . . . , −F

(m−1)
0 (0)

βm−1

]
,

v1 =
[
− F0(1) +G(1),

−F ′
0(1) +G′(1)

β
, . . . ,

−F (m−1)
0 (1) +G(m−1)(1)

βm−1

]
,

and the matrices D ∈ R2m×2m and B ∈ C2m×2m are

D = diag
(
1, γ(0), γ2(0), . . . , γm−1(0), 1, γ(1), γ2(1), . . . , γm−1(1)

)
,

and

B =

[
B11 B12

B21 B22

]
,

where the matrix blocks Bij ∈ Cm×m are obtained from the derivatives of h2j−1 at t = 0 given
in Lemma 3: 145

B11 =


1 1 1 1 · · · 1 1
χ1 χ1 χ2 χ2 · · · χm

2
χm

2

χ2
1 χ2

1 χ2
2 χ2

2 · · · χ2
m
2

χ2
m
2

...
...

...
... · · ·

...
...

χm−1
1 χm−1

1 χm−1
2 χm−1

2 · · · χm−1
m
2

χm−1
m
2

 ,

and B22 has the similar structure, and each entry of B12, B21 is of order O(e−β). Therefore, B11

is a Vandermonde matrix and is invertible, and there is a uniform bound on the entries of the
inverse of B11 for all large β. The similar argument can be applied to B22. Consequently, B and
D are invertible and the elements of B−1, D−1 are uniformly bounded. Furthermore, using the
argument in Proposition 2 and uniform bounds on the derivatives of γ(t) up to the (m− 1)th 150

order, it can be shown that for t∗ = 0 or 1,∣∣F (j)
0 (t∗)

∣∣
βj

≤ 2mκ

∫ 1

0
βe−βϱτdτ ∥G∥ ≤ (2mκ/ϱ) ∥G∥ (j = 1, . . . ,m− 1).

for some suitable constants κ, ϱ > 0. As a result, the equation DBx = v has a unique solution b̃
that satisfies the desired bound. This also holds true for b. �
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PROOF OF THEOREM 3
It follows from Assumption 2 that ũ(t) = f

(2m)
0 (t) ∈ L2[0, 1]. Letting x̃0 =155 {

f
(m)
0 (0), . . . , f

(2m−2)
0 (0), f

(2m−1)
0 (0)

}T ∈ Rm, we have z(t) = f
(m)
0 (t) such that (ũ, x̃0) ∈ P

for a large µ > 0 and a small ε > 0. This shows that P is nonempty. It is also straightforward to
verify that P is convex based on the strict convexity of the function (·)−1/(2m) on (0,∞).

LEMMA 5. The objective functional J is strictly convex over the set P ⊆ L2[0, 1]× Rm.

Proof. The lemma holds true even if the upper and lower bounds specified in Assumption 6160

are removed. For each (u, x0) ∈ P , let ρ denote z(t)/f (m)
0 (t) for z(t) generated from (u, x0),

recalling that we require ρ(t) > 0 once t ∈ N . Denote the set of such ρ’s by S . It is clear that ρ
is strictly positive and ρ−1/(2m) is Lebesgue integrable on [0, 1]. Noting that ρ shares the same
convex combination relation with (u, x0), the set S is convex and it suffices to show that Π(ρ) is
strictly convex on S. Write Π in (14) as Π(ρ) = Π1(ρ) + Π2(ρ), where165

Π1(ρ) =

∫ 1

0
r2(t)

[{
ρ(t)f

(m)
0 (t)

}(m)
]2
dt, Π2(ρ) =

∫ 1

0
L0r(t)

1−1/(2m) ρ(t)−1/(2m)dt.

Obviously, Π1 is convex on S . We show next that Π2(ρ) is strictly convex on S. Using the
fact that the function (·)−1/(2m) is strictly convex on (0,∞), we have, for any ρ1, ρ2 ∈ S with
ρ1 ̸= ρ2 and any α ∈ (0, 1),{
αρ1(t) + (1− α)ρ2(t)

}−1/(2m)
< α

{
ρ1(t)

}−1/(2m)
+ (1− α)

{
ρ2(t)

}−1/(2m)
, t ∈ [0, 1].

Hence, g(t) = α
{
ρ1(t)

}−1/(2m)
+ (1− α)

{
ρ2(t)

}−1/(2m) −
{
αρ1(t) + (1−

α)ρ2(t)
}−1/(2m) is strictly positive on [0, 1]. Therefore, L0r(t)

1−1/(2m)g(t) > 0, t ∈ [0, 1].170

Since
{
ρ1(t)

}−1/(2m) and
{
ρ2(t)

}−1/(2m) are Lebesgue integrable, so is g(t). Further-
more, it follows from Assumption 2 that r(t) is strictly positive and continuous on [0, 1].
Hence, there exists a positive constant κ such that 0 < r(t) ≤ κ, t ∈ [0, 1]. In view of this,
we deduce that L0r(t)

1−1/(2m)g(t) is Lebesgue integrable. Thus it is easy to show that
Π2(αρ1 + (1− α)ρ2) < αΠ2(ρ1) + (1− α)Π2(ρ2), leading to the strict convexity of Π2. By175

this result, we further have, for any ρ1, ρ2 ∈ S with ρ1 ̸= ρ2 and any α ∈ (0, 1),

Π(αρ1 + (1− α)ρ2) = Π1(αρ1 + (1− α)ρ2) + Π2(αρ1 + (1− α)ρ2),

where Π1(αρ1 + (1− α)ρ2) ≤ αΠ1(ρ1) + (1− α)Π1(ρ2) and Π2(αρ1 + (1− α)ρ2) <
αΠ2(ρ1) + (1− α)Π2(ρ2). Hence, Π(αρ1 + (1− α)ρ2) < αΠ(ρ1) + (1− α)Π(ρ2). This
shows that Π(ρ) is strictly convex on S , so is J(u, x0) on P . �

Next, we use this lemma to derive the proof of Theorem 3.180

Proof. The first part of the proof follows from a standard argument in functional analysis.
Consider the Hilbert space L2[0, 1]× Rm endowed with the standard inner product and norm.
Since P is nonempty, pick an arbitrary (ũ, x̃) ∈ P and define the level set L = {(u, x) ∈ P :
J(u, x) ≤ J(ũ, x̃)}. It follows from the condition ∥x0∥ ≤ µ and the structure of J that L is
bounded. Further, due to the convexity of J , the set L is also convex. Since the space L2[0, 1]×185

Rm is reflexive and self-dual, it follows from the Banach–Alaoglu Theorem that an arbitrary
sequence {(un, xn)} in L has a subsequence {(u′n, x′n)} that attains a weak*, thus weak, limit
(u∗, x∗) ∈ L2[0, 1]× Rm.

In the next, we show that (u∗, x∗) ∈ L. Let z(u,x)(t) denote z(t) generated from (u, x). Since
u ∈ L2[0, 1], it belongs to L1[0, 1]. In view of z(u,x)(t) defined in (15), we see that z(u,x)(·) is190
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absolutely continuous on [0, 1] for any (u, x) ∈ L2[0, 1]× Rm and m ∈ N. Obviously, ∥x∗∥ ≤
µ. Furthermore, for any t ∈ [0, 1],∣∣∣∣∫ t

0
u′n(s)ds−

∫ t

0
u∗(s)ds

∣∣∣∣ ≤ ∫ t

0
|u′n(s)− u∗(s)|ds ≤

∫ 1

0
|u′n(s)− u∗(s)|ds ≤ ∥u′n − u∗∥L2 ,

where ∥ · ∥L2 denotes the L2-norm on L2[0, 1]. Together with the convergence of x′n to x∗,
we deduce that z(u′

n,x
′
n)
(·) converges to z(u∗,x∗)(·) pointwise on [0, 1]. Therefore, we have

z(u∗,x∗)(t)/f
(m)
0 (t) ≥ ε, t ∈ [0, 1]. Moreover, a similar argument based on the property of r as in 195

Lemma 5 shows that r(t)1−1/(2m)
{
z(u′

n,x
′
n)
(t)/f

(m)
0 (t)

}−1/(2m) is Lebesgue integrable for all n.

In addition 0 ≤
{
z(u′

n,x
′
n)
(t)/f

(m)
0 (t)

}−1/(2m) ≤ ε−1/(2m), t ∈ [0, 1]. This implies that for all n,

|r(t)1−1/(2m)
{
z(u′

n,x
′
n)
(t)/f

(m)
0 (t)

}−1/(2m)| ≤ r(t)1−1/(2m)ε−1/(2m) on [0, 1], where the latter
function is clearly Lebesgue integrable since r(·) is continuous. By Lebesgue’s Dominated Con-
vergence Theorem, r(t)1−1/(2m)

{
z(u∗,x∗)(t)/f

(m)
0 (t)

}−1/(2m) is Lebesgue integrable on [0, 1] 200

and as n→ ∞,∫ 1

0
r(t)1−1/(2m)

{
z(u′

n,x
′
n)
(t)

f
(m)
0 (t)

}−1/(2m)

dt −→
∫ 1

0
r(t)1−1/(2m)

{
z(u∗,x∗)(t)

f
(m)
0 (t)

}−1/(2m)

dt.

(20)
This shows that (u∗, x∗) ∈ P . Using the property of r(t) deduced from Assumption 1 again, we
obtain a positive constant κ′ such that for any ϵ > 0,∫ 1

0
r2(t)

∣∣(u′n)2(t)− (u∗)2(t)
∣∣dt ≤ κ′

∫ 1

0

∣∣(u′n)2(t)− (u∗)2(t)
∣∣dt ≤ κ′∥u′n − u∗∥L2∥u′n + u∗∥L2

≤ κ′∥u′n − u∗∥L2(2∥u∗∥L2 + ϵ)

for all n sufficiently large, where the Cauchy–Schwarz and triangle inequalities are used. To-
gether with (20), we see that J(u′n, x

′
n) converges to J(u∗, x∗) as n→ ∞. 205

Consequently, we have J(u∗, x∗) ≤ J(ũ, x̃) such that (u∗, x∗) ∈ L. This shows that L is
weakly compact. In view of the continuity of J , we see that a global optimal solution exists
on L (Luenberger, 1969, Section 5.10, Theorem 2), and thus on P . Finally, since J is strictly
convex on the convex set P , the optimal solution is unique. �
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