Supplementary Material for "Smoothing Splines with Varying Smoothing Parameter"

By XIAO WANG
Department of Statistics, Purdue University, 250 N. University Street, West Lafayette, Indiana, 47907, USA
wangxiao@purdue.edu

PANG DU

Department of Statistics, Virginia Tech, 406-A Hutcheson Hall Blacksburg, Virginia 24061, USA
pangdu@vt.edu
AND JINGLAI SHEN
Department of Mathematics and Statistics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
shenj@umbc.edu

Proof of Theorem 1

For any $f, g \in W_{2}^{m}$ and $\delta \in \mathbb{R}$,

$$
\begin{equation*}
\psi(f+\delta g)-\psi(f)=2 \delta \psi_{1}(f, g)+\delta^{2}\left[\int_{0}^{1} g^{2}(t) d \omega_{n}(t)+\lambda \int_{0}^{1} \rho(t)\left\{g^{(m)}(t)\right\}^{2} d t\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}(f, g)=\int_{0}^{1} \sigma^{-2}(t)\{f(t)-h(t)\} g(t) d \omega_{n}(t)+\lambda \int_{0}^{1} \rho(t) f^{(m)}(t) g^{(m)}(t) d t \tag{2}
\end{equation*}
$$

LEMMA 1. $f \in W_{2}^{m}$ minimizes $\psi(f)$ in (2), if and only if, $\psi_{1}(f, g)=0$ for all $g \in W_{2}^{m}$.
Proof. If $f \in W_{2}^{m}$ minimizes $\psi(f), \psi(f+\delta g)-\psi(f) \geq 0$ for all $g \in W_{2}^{m}$ and any $\delta \in \mathbb{R}$. Then $\psi_{1}(f, g)=0$ follows since δ can be either negative or positive. On the other hand, if ${ }_{20}$ $\psi_{1}(f, g)=0$, we have $\psi(f+\delta g)-\psi(f) \geq 0$ by (1). Thus, f minimizes $\psi(f)$.

Let $g(t)=t^{k}(k=0, \ldots, m-1)$ in (2). An application of Lemma 1 shows that if f minimizes $\psi(f)$, then

$$
\int_{0}^{1} \sigma^{-2}(t)\{f(t)-h(t)\} t^{k} d \omega_{n}(t)=0(k=0,1, \ldots, m-1)
$$

We first have

$$
\check{l}_{1}(f, 1)-\check{l}_{1}(h, 1)=\int_{0}^{1} \sigma^{-2}(t)\{f(t)-h(t)\} d \omega_{n}(t)=0
$$

Further,
$\check{l}_{2}(f, 1)-\check{l}_{2}(h, 1)=\int_{0}^{1} \int_{0}^{s} \sigma^{-2}(t)\{f(t)-h(t)\} d \omega_{n}(t) d s=\int_{0}^{1} \sigma^{-2}(t)\{f(t)-h(t)\} t d \omega_{n}(t)=0$.
Similarly, it is shown that $\check{l}_{k}(f, 1)=\check{l}_{k}(h, 1)(k=1, \ldots, m)$.
Lemma 2. If $f \in W_{2}^{m}$ satisfies $\check{l}_{k}(f, 1)=\check{l}_{k}(h, 1)(k=1, \ldots, m)$, then for all $g \in W_{2}^{m}$,

$$
\begin{equation*}
\psi_{1}(f, g)=\int_{0}^{1} \psi_{2}(f) g^{(m)}(t) d t \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{2}(f)=\lambda \rho(t) f^{(m)}(t)+(-1)^{m}\left\{\check{l}_{m}(f, t)-\check{l}_{m}(h, t)\right\} . \tag{4}
\end{equation*}
$$

Proofs of Theorem 2 and Corollary 1

It follows from (9) that $r^{-1}(t) \hat{f}(t)=V_{1}(t)+V_{2}(t)+V_{3}(t)+V_{4}(t)$, where

$$
\begin{aligned}
V_{1}(t) & =\frac{d^{m}}{d t^{m}} \int_{0}^{1} P(t, s) l_{m}\left(f_{0}, s\right) d s \\
V_{2}(t) & =\frac{d^{m}}{d t^{m}} \int_{0}^{1} P(t, s)\left\{\check{l}_{m}(h, s)-\check{l}_{m}\left(f_{0}, s\right)\right\} d s \\
V_{3}(t) & =\frac{d^{m}}{d t^{m}} \int_{0}^{1} P(t, s)\left\{l_{m}\left(\hat{f}-f_{0}, s\right)-\check{l}_{m}\left(\hat{f}-f_{0}, s\right)\right\} d s
\end{aligned}
$$

and $V_{4}(t)=\sum_{k=1}^{2 m} a_{k} C_{k}^{(m)}(t)$. Let \bar{f} be the minimizer of the functional

$$
\int_{0}^{1} r^{-1}(s)\left\{f(s)-f_{0}(s)\right\}^{2} d s+\lambda \int_{0}^{1} \rho(t)\left\{f^{(m)}(s)\right\}^{2} d s
$$

Similar to Theorem 1, we have

$$
\begin{equation*}
(-1)^{m} \lambda \rho(t) \bar{f}^{(m)}(t)+l_{m}(\bar{f}, t)=l_{m}\left(f_{0}, t\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{m}(\bar{f}, t)=\int_{0}^{1} P(t, s) l_{m}\left(f_{0}, s\right) d s \tag{6}
\end{equation*}
$$

Hence, $V_{1}(t)=r^{-1}(t) \bar{f}(t)$. Taking the m th derivative of both sides of (5), we get

$$
(-1)^{m} \lambda\left\{\rho(t) \bar{f}^{(m)}(t)\right\}^{(m)}+r^{-1}(t) \bar{f}(t)=r^{-1}(t) f_{0}(t)
$$

Recall that f_{0} is $2 m$ times continuously differentiable and $\beta=\lambda^{-1 /(2 m)}$. Combining this with (6), it is easy to show that $\bar{f}^{(k)}(t) \rightarrow f_{0}^{(k)}(t)(k=1, \ldots, 2 m)$ as $\beta \rightarrow \infty$. Therefore,

$$
V_{1}(t)=r^{-1}(t) f_{0}(t)+(-1)^{m-1} \lambda\left\{\rho(t) f_{0}^{(m)}(t)\right\}^{(m)}+o(\lambda)
$$

Proposition 1. Assume that a function $\tilde{J}(t, s)$ satisfies

$$
(-1)^{m} \frac{\partial^{m}}{\partial s^{m}} \tilde{J}(t, s)=\frac{\partial^{m}}{\partial t^{m}} P(t, s), \quad t, s \in[0,1]
$$

Then,

$$
\tilde{J}(t, s)+\sum_{k=0}^{m-1}(-1)^{k} \zeta_{k+1}(s) \tilde{J}_{k}(t)=\frac{r(s)}{r(t)} J(t, s)
$$

where

$$
\zeta_{k}(s)=\int_{s}^{1} \cdots \int_{s_{k-3}}^{1} \int_{s_{k-2}}^{1} d s_{k-1} d s_{k-2} \cdots d s_{1}, \quad \tilde{J}_{k}(t)=\left.\frac{\partial^{k}}{\partial s^{k}} \tilde{J}(t, s)\right|_{s=1}
$$

and $J(t, s)$ is the Green's function for

$$
\begin{equation*}
(-1)^{m} \lambda r(t)\left\{\rho(t) u^{(m)}(t)\right\}^{(m)}+u(t)=0 \tag{7}
\end{equation*}
$$

Proof. Consider the integral equation $(-1)^{m} \lambda \rho(t) f^{(m)}(t)+l_{m}(f, t)=l_{m}(g, t)$. If we write $\quad{ }_{40}$ this equation as a differential equation for f, we have

$$
\begin{equation*}
(-1)^{m} \lambda\left\{\rho(t) f^{(m)}(t)\right\}^{(m)}+r^{-1}(t) f(t)=r^{-1}(t) g(t) \tag{8}
\end{equation*}
$$

Further writing (8) as a differential equation for $l_{m}(f, t)$, we obtain

$$
\begin{equation*}
(-1)^{m} \lambda \rho(t) \frac{d^{m}}{d t^{m}}\left\{r(t) \frac{d^{m}}{d t^{m}} l_{m}(f, t)\right\}+l_{m}(f, t)=l_{m}(g, t) \tag{9}
\end{equation*}
$$

It follows from (9) that $l_{m}(f, t)=\int_{0}^{1} P(t, s) l_{m}(g, s) d s$. Hence,

$$
\begin{aligned}
r^{-1}(t) f(t) & =\frac{d^{m}}{d t^{m}} l_{m}(f, t)=\int_{0}^{1} \frac{\partial^{m}}{\partial t^{m}} P(t, s) l_{m}(g, s) d s=(-1)^{m} \int_{0}^{1} \frac{\partial^{m}}{\partial s^{m}} \tilde{J}(t, s) l_{m}(g, s) d s \\
& =(-1)^{m} \sum_{k=1}^{m}(-1)^{k+1} l_{m-k+1}(g, 1) \tilde{J}_{m-k}(t)+\int_{0}^{1} \tilde{J}(t, s) r^{-1}(s) g(s) d s \\
& =\int_{0}^{1}\left\{\sum_{k=0}^{m-1}(-1)^{k} \zeta_{k+1}(s) \tilde{J}_{k}(t)+\tilde{J}(t, s)\right\} r^{-1}(s) g(s) d s
\end{aligned}
$$

From (7) and (8), we have $f(t)=\int_{0}^{1} J(t, s) g(s) d s$. Thus,

$$
\int_{0}^{1}\left[r^{-1}(t) J(t, s)-\left\{\sum_{k=0}^{m-1}(-1)^{k} \zeta_{k+1}(s) \tilde{J}_{k}(t)+\tilde{J}(t, s)\right\} r^{-1}(s)\right] g(s) d s=0
$$

Since the above equation is true for all $g \in L_{2}[0,1]$, the proposition follows.
${ }_{45} \quad$ By applying Proposition 1 , we have, for any $t \in(0,1)$,

$$
\begin{aligned}
V_{2}(t) & =\int_{0}^{1}(-1)^{m} \frac{\partial^{m}}{\partial s^{m}} \tilde{J}(t, s) \check{l}_{m}\left(h-f_{0}, s\right) d s \\
& =\int_{0}^{1} \tilde{J}(t, s) d\left\{\check{l}_{1}\left(h-f_{0}, s\right)\right\}+(-1)^{m} \sum_{k=1}^{m-1}(-1)^{k-1} \tilde{J}_{m-k}(t) \check{l}_{m-k+1}\left(h-f_{0}, 1\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{r\left(t_{i}\right)}{r(t)} J\left(t, t_{i}\right) \sigma^{-1}\left(t_{i}\right) \epsilon_{i}+\text { higher order terms } .
\end{aligned}
$$

Eggermont \& LaRiccia (2006) established the uniform error bounds for regular smoothing splines. We adopt the same approach as in Eggermont \& LaRiccia (2006) for adaptive smoothing splines; the details are omitted here. For $\lambda \ll\left(n^{-1} \log n\right)^{2 m /(1+4 m)}$, we obtain

$$
\left\|\hat{f}-f_{0}\right\|=O\left[\frac{\max \left(\{\log 1 / \lambda\}^{1 / 2},\{\log \log n\}^{1 / 2}\right)}{n^{1 / 2} \lambda^{1 /(4 m)}}\right]
$$

Therefore, $\left\|V_{3}\right\| \leq O\left(\beta^{m}\right) D_{n}\left\|\hat{f}-f_{0}\right\|$. Finally, it follows from Lemma 4 in next section that $\left\|V_{4}\right\|$ is of order $O\left(\beta^{m}\right) \exp \left\{-\beta Q_{\beta}(t)\left\{Q_{\beta}(1)-Q_{\beta}(t)\right\}\right\}$, and thus a negligible term in the asymptotic expansion of $r^{-1}(t) \hat{f}(t)$. This completes the representation for \hat{f}.

Proof of Corollary 1. Define $U_{\beta}(t)=\frac{1}{n} \sum_{i=1}^{n}\left\{\sigma\left(t_{i}\right) / q\left(t_{i}\right)\right\} J\left(t, t_{i}\right) \epsilon_{i}$. For any $t \in(0,1)$, the variance of $U_{\beta}(t)$ is given by

$$
E\left\{U_{\beta}^{2}(t)\right\}=\frac{1}{n} \int_{0}^{1} \frac{\sigma^{2}(s)}{q^{2}(s)} J^{2}(t, s) d \omega_{n}(s)
$$

$=\frac{\beta^{2}}{n} \int_{0}^{1} \frac{\sigma^{2}(s)}{q^{2}(s)} \varrho(s)^{2}\left\{Q_{\beta}^{\prime}(s)\right\}^{2} L^{2}\left\{\beta\left|Q_{\beta}(t)-Q_{\beta}(s)\right|\right\} d \omega_{n}(s)$ $=\frac{\beta^{2}}{n} \int_{0}^{1} r(s)\left\{Q_{\beta}^{\prime}(s)\right\}^{2} L^{2}\left\{\beta\left|Q_{\beta}(t)-Q_{\beta}(s)\right|\right\} d s+$ higher order terms $=\frac{\beta}{n} \int_{-\beta\left\{Q_{\beta}(1)-Q_{\beta}(t)\right\}}^{\beta Q_{\beta}(t)} r\left[\Upsilon_{\beta}\left\{Q_{\beta}(t)-\frac{x}{\beta}\right\}\right] Q^{\prime}\left[\Upsilon_{\beta}\left\{Q_{\beta}(t)-\frac{x}{\beta}\right\}\right] L^{2}(|x|) d x+$ higher order terms $=\frac{\beta}{n} r(t) Q^{\prime}(t) \int_{-\infty}^{\infty} L^{2}(|x|) d x+$ higher order terms
where Υ_{β} is the inverse function of Q_{β}, the second last equality is obtained by letting $\beta\left\{Q_{\beta}(t)-Q_{\beta}(s)\right\}=x$, and the last equality is from a simple Taylor expansion. We invoke the Lindeberg-Lévy Central Limit Theorem to verify that $(n / \beta)^{1 / 2} U_{\beta}(t)$ converges in distribution to $N\left\{0, r(t)^{1-1 /(2 m)} \rho(t)^{-1 /(2 m)} L_{0}\right\}$. Lindeberg's condition is easily satisfied if the ϵ_{i} have the finite fourth moment. The corollary follows by incorporating the bias term from Theorem 2.

Green's Functions

A critical step in the representation of the adaptive smoothing spline estimator is to use the Green's function to solve a two-point boundary value problem with a large parameter. This step is of independent technical interest. In this section, we derive the Green's functions for the timevarying ordinary differential equation

$$
\begin{equation*}
(-1)^{m} \lambda w(t)\left\{r(t) F^{(m)}(t)\right\}^{(m)}+F(t)=G(t), \quad t \in[0,1] \tag{10}
\end{equation*}
$$

subject to the natural boundary conditions.
We firstly focus on the homogeneous equation with a large parameter $\beta=\lambda^{-1 /(2 m)}$:

$$
\begin{equation*}
(-1)^{m} w(t)\left\{r(t) F^{(m)}(t)\right\}^{(m)}+\beta^{2 m} F(t)=0, \quad t \in[0,1] . \tag{11}
\end{equation*}
$$

We exploit the techniques in Coddington \& Levinson (1955) to establish approximations to its fundamental solutions and their derivatives up to the $(m-1)$ th order. Let

$$
\mu_{k}=\cos \left\{\frac{(1+2 k) \pi}{2 m}\right\}, \omega_{k}=\sin \left\{\frac{(1+2 k) \pi}{2 m}\right\}\left(k=0, \ldots, \frac{m}{2}-1\right)
$$

when m is even, and let

$$
\mu_{k}=\cos \left(\frac{k \pi}{m}\right), \omega_{k}=\sin \left(\frac{k \pi}{m}\right)\left(k=1, \ldots, \frac{m-1}{2}\right)
$$

when m is odd.
Lemma 3. Given an m, suppose that $w(\cdot)$ and $r(\cdot)$ are positive functions in $C^{m+1}[0,1]$. Denote $\gamma(t)=\{w(t) r(t)\}^{-1 /(2 m)}$. Then, for all β sufficiently large, a fundamental solution of (11) is given by

$$
h_{k}(t)=\exp \left\{\beta\left(\pm \mu_{k} \pm \imath \omega_{k}\right) Q_{\beta}(t)\right\}
$$

for any k defined above (corresponding to either an even m or an odd m), where

$$
Q_{\beta}(s)=\int_{0}^{t} \gamma(s)\left\{1+O\left(\beta^{-1}\right)\right\} d s
$$

Furthermore, for each k and $\ell=1, \ldots, m-1$,

$$
h_{k}^{(\ell)}(t)=\left\{\beta\left(\pm \mu_{k} \pm \imath \omega_{k}\right) \gamma(t)\right\}^{\ell} \exp \left[\beta\left(\pm \mu_{k} \pm \imath \omega_{k}\right) \int_{0}^{t} \gamma(s)\left\{1+O\left(\beta^{-1}\right)\right\} d s\right]
$$

Proof. We exploit the techniques in Coddington \& Levinson (1955) to establish approximations to its fundamental solutions of (10) and their derivatives up to the $(m-1)$ th order. The homogeneous ordinary differential equation (11) can be written as

$$
(-1)^{m} w(t)\left\{r(t) F^{(2 m)}(t)+m r^{\prime}(t) F^{(2 m-1)}(t)+\cdots+r^{(m)}(t) F^{(m)}(t)\right\}+\beta^{2 m} F(t)=0
$$

Since $w(t) r(t)>0$ on $[0,1]$, we have

$$
\begin{equation*}
F^{(2 m)}(t)+\beta a_{1}(t, \beta) F^{(2 m-1)}(t)+\beta^{2} a_{2}(t, \beta) F^{(2 m-2)}(t)+\cdots+\beta^{2 m} a_{2 m}(t, \beta) F(t)=0 \tag{12}
\end{equation*}
$$

where

$$
a_{1}(t, \beta)=(-1)^{m-1} \frac{m r^{\prime}(t)}{\beta r(t)}, \ldots, \quad a_{m}(t, \beta)=(-1)^{m-1} \frac{r^{(m)}(t)}{\beta^{m} r(t)}
$$

$$
a_{\ell}(t, \beta) \equiv 0(\ell=m+1, \ldots, 2 m-1), \quad a_{2 m}(t, \beta)=\frac{(-1)^{m-1}}{w(t) r(t)}
$$

In particular, $a_{i}(t, \beta)=(-1)^{m-1} p_{i}(t) /\left\{\beta^{i} w(t) r(t)\right\}(i=1, \ldots, 2 m-1)$, where $p_{i}(t)$ is a linear combination of finite products of $w(t)$ and the derivatives of $r(t)$ up to the m th order. Hence each $a_{i}(t, \beta)$ can be written as $a_{i}(t, \beta)=\sum_{j=0}^{m} a_{i j}(t) \beta^{-j}$ for suitable functions $a_{i j}(t)$ which are at least in $C^{1}[0,1]$. Therefore, $a_{i}(t, \beta) \rightarrow 0(i=1, \ldots, 2 m-1)$ uniformly in t on $[0,1]$ as ${ }_{85} \beta \rightarrow \infty$. Let $x_{1}(t) \equiv F(t)$ and $x_{i+1}(t) \equiv x_{i}^{\prime}(t) / \beta(i=1, \ldots, 2 m-1)$. Then the ordinary differential equation (12) can be written as

$$
\begin{equation*}
x_{i}^{\prime}=\beta x_{i+1},(i=1, \ldots, 2 m-1), \quad x_{2 m}^{\prime}=-\beta\left\{a_{2 m}(t, \beta) x_{1}+\cdots+a_{1}(t, \beta) x_{2 m}\right\} \tag{13}
\end{equation*}
$$

Let $x=\left(x_{1}, \ldots, x_{2 m}\right)^{\mathrm{T}} \in \mathbb{R}^{2 m}$. The ordinary differential equation (13) becomes $\dot{x}=$ $\beta A(t, \beta) x$, where

$$
A(t, \beta)=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
& & & \ddots & & \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{2 m}(t, \beta)-a_{2 m-1}(t, \beta) & \cdots & \cdots & -a_{2}(t, \beta)-a_{1}(t, \beta)
\end{array}\right]=\sum_{k=0}^{2 m-1} \beta^{-k} A_{k}(t)
$$

Here

$$
A_{0}(t)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0
\end{array}\right]
$$

where $a_{2 m, 0}(t)=(-1)^{m-1} /\{w(t) r(t)\}$, and $A_{k}(t)(k=0, \cdots, 2 m-1)$ are at least of the class $C^{1}[0,1]$. Note that for each $t \in[0,1], A_{0}(t)$ has $2 m$ distinct eigenvalues given by $\left(\pm \mu_{k} \pm\right.$ $\left.\imath \omega_{k}\right) /\{w(t) r(t)\}^{1 / 2 m}$, where μ_{k} and ω_{k} are defined before this proposition. Since the angle between any two distinct roots of the equation $(-1)^{m} x^{2 m}+1=0$ is given by $\pm q \pi / m$, where $q \in$ $\{1, \cdots, m\}$, it follows from the similar argument in Abramovich \& Grinshtein (1999) that the hypothesis of Coddington \& Levinson (1955) holds. Let $\left\{\lambda_{k}(t)\right\}$ represent the $2 m$ distinct eigenvalues of $A_{0}(t)$ (or equivalently the distinct roots of $(-1)^{m} x^{2 m}+1=0$). Consequently, by using Coddington \& Levinson (1955), we conclude that the fundamental solution $X(t) \in \mathbb{R}^{2 m \times 2 m}$ of the homogeneous ordinary differential equation $\dot{X}(t)=\beta A(t, \beta) X(t)$ can be represented as $X(t)=B_{0}(t) \widehat{P}(t, \beta) e^{\beta Q_{0}(t)+Q_{1}(t)}+O\left(\beta^{-1}\right)$, where $Q_{0}^{\prime}(t)=\operatorname{diag}\left(\lambda_{1}(t), \cdots, \lambda_{2 m}(t)\right)$ with $Q(0)=0, Q_{1}^{\prime}(t)$ is a diagonal matrix whose diagonal entries are bounded on $[0,1]$ with $Q_{1}(0)=$ 0 ,

$$
\widehat{P}(t, \beta)=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
& & & \ddots & & \\
0 & 0 & 0 & \cdots & 1 & 0 \\
O\left(\beta^{-1}\right) & \cdots & \cdots & \cdots & O\left(\beta^{-1}\right) 1+O\left(\beta^{-1}\right)
\end{array}\right]
$$

and

$$
B_{0}(t)=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
\lambda_{1}(t) & \cdots & \lambda_{2 m}(t) \\
\lambda_{1}^{2}(t) & \cdots & \lambda_{2 m}^{2}(t) \\
\vdots & \cdots & \vdots \\
\lambda_{1}^{2 m-1}(t) & \cdots & \lambda_{2 m}^{2 m-1}(t)
\end{array}\right]
$$

Recall that $F^{(\ell)}=\beta^{\ell} x_{\ell+1}$ and each $\lambda_{k}(t)$ is continuous and bounded away from 0 on $[0,1]$. These results, together with the discussion in (Coddington \& Levinson, 1955, Section 6.5), show that the ℓ th derivative of each fundamental solution is of the form $\left\{\beta \lambda_{k}(t)\right\}^{\ell} \exp \left[\beta\left(\int_{0}^{t} \lambda_{k}(s)\left\{1+O\left(\beta^{-1}\right)\right\} d s\right)\right](\ell=0, \ldots, m-1)$. Hence, the lemma follows. \square

The functions represented by $O\left(\beta^{-1}\right)$ in Lemma 3 might be different, although they have the same order.

Proposition 2. Let $P(t, s)$ be the Green's function for (10). Let $P(t, s)$ equal to $P_{1}(t, s)$ when $t>s$ and $P_{2}(t, s)$ when $t<s$. If

$$
\left.\frac{\partial^{k}}{\partial t^{k}} P_{1}(t, s)\right|_{s=t}=\left.\frac{\partial^{k}}{\partial t^{k}} P_{2}(t, s)\right|_{s=t}(k=0,1, \ldots, 2 m-2)
$$

and

$$
\left.\frac{\partial^{2 m-1}}{\partial t^{2 m-1}} P_{1}(t, s)\right|_{s=t}-\left.\frac{\partial^{2 m-1}}{\partial t^{2 m-1}} P_{2}(t, s)\right|_{s=t}=\frac{1}{(-1)^{m} \lambda w(t) r(t)}
$$

then $F_{0}(t)=\int_{0}^{1} P(t, s) G(s)$ is a solution of (10).
Proof. We write $F_{0}(t)=\int_{0}^{t} P_{1}(t, s) G(s) d s+\int_{t}^{1} P_{2}(t, s) G(s) d s$ for all $t \in[0,1]$. Since $\partial^{k} P(t, s) / \partial t^{k}(k=0,1, \ldots, 2 m-1)$ is continuous at $s=t$, we have

$$
F_{0}^{(k)}(t)=\int_{0}^{1} \frac{\partial^{k}}{\partial t^{k}} P(t, s) G(s) d s \quad(k=1,2, \ldots, 2 m-1)
$$

Furthermore, due to the jump of $\partial^{2 m-1} P(t, s) / \partial t^{2 m-1}$ at $s=t$, we have

$$
F_{0}^{(2 m)}(t)=\frac{G(t)}{(-1)^{m} \lambda w(t) r(t)}+\int_{0}^{1} \frac{\partial^{2 m}}{\partial t^{2 m}} P(t, s) G(s) d s
$$

For any fixed $s, P(t, s)$ is a solution of the homogeneous differential equation (11). This verifies that $F_{0}(t)=\int_{0}^{1} P(t, s) G(s) d s$ is a solution of (10).

Now consider a special case when $w(t) \equiv 1$ and $r(t) \equiv 1$ for $t \in[0,1]$. This leads to the timeinvariant ordinary differential equation

$$
(-1)^{m} \lambda F^{(2 m)}(t)+F(t)=G(t), \quad t \in[0,1]
$$

Under this circumstance, the Green's function has been obtained explicitly before, see Berlinet \& Thomas-Agnan (2004) and Wang et al. (2010). The homogeneous differential equation $\lambda F^{(2 m)}(t)+F(t)=0$ has $2 m$ solutions $\exp \left\{\left(\pm \mu_{k} \pm \imath \omega_{k}\right) \beta t\right\}$. Let $K(t, s)$ be the corresponding Green's function. It turns out that $K(t, s)$ is a function of $|t-s|$ and can be written as

[^0]and

Furhermore, due to jump of $\partial^{2 m-1}(t, s) / \partial t$ at $s=t$, we have
$K(t, s) \equiv \beta L(\beta|t-s|)$. The explicit formula for L is

$$
\begin{equation*}
L(t) \equiv \sum_{k=0}^{\frac{m}{2}-1} e^{-\mu_{k} t}\left\{c_{k} \cos \left(\omega_{k} t\right)+d_{k} \sin \left(\omega_{k} t\right)\right\} \tag{14}
\end{equation*}
$$

for an even m, and

$$
\begin{equation*}
L(t) \equiv c_{0} e^{-t}+\sum_{k=1}^{(m-1) / 2} e^{-\mu_{k} t}\left\{c_{k} \cos \left(\omega_{k} t\right)+d_{k} \sin \left(\omega_{k} t\right)\right\} \tag{15}
\end{equation*}
$$

for an odd m. Similar to Proposition 2, the coefficients c_{k}, d_{k} can be uniquely determined from the following conditions:

$$
\begin{equation*}
\left.L^{(k)}(t)\right|_{t=0}=0 \quad(k=1,3, \ldots, 2 m-3) \quad \text { and }\left.\quad L^{(2 m-1)}(t)\right|_{t=0}=\frac{(-1)^{m}}{2} \tag{16}
\end{equation*}
$$

Define

$$
\begin{equation*}
P(t, s)=\beta \varrho(s) Q_{\beta}^{\prime}(s) L\left\{\beta\left|Q_{\beta}(t)-Q_{\beta}(s)\right|\right\} \tag{17}
\end{equation*}
$$

where $\varrho(s)=1+O\left(\beta^{-1}\right)$ holds uniformly in $s \in[0,1]$. It is easy to verify that $P(t, s)$ in (17) satisfies the conditions in Proposition 2. Therefore, it is the Green's function for (10).

The homogeneous differential equation (11) has $2 m$ linearly independent solutions:

$$
\begin{align*}
& C_{k 1}(t)=e^{-\beta \mu_{k} Q_{\beta}(t)} \cos \left\{\beta \omega_{k} Q_{\beta}(t)\right\}, \quad C_{k 2}(t)=e^{-\beta \mu_{k} Q_{\beta}(t)} \sin \left\{\beta \omega_{k} Q_{\beta}(t)\right\} \tag{18}\\
& C_{k 3}(t)=e^{-\beta \mu_{k}\left\{Q_{\beta}(1)-Q_{\beta}(t)\right\}} \cos \left\{\beta \omega_{k} Q_{\beta}(t)\right\}, \quad C_{k 4}(t)=e^{-\beta \mu_{k}\left\{Q_{\beta}(1)-Q_{\beta}(t)\right\}} \sin \left\{\beta \omega_{k} Q_{\beta}(t)\right\},
\end{align*}
$$

where $k=0, \ldots, m / 2-1$ when m is even or $k=0, \ldots,(m-1) / 2$ when m is odd. These solutions, together with the $2 m$ boundary conditions for (10) $F^{(k)}(0)=0$ and $F^{(k)}(1)=G^{(k)}(1)$, $k=0,1, \ldots, m-1$, yield:

LEMMA 4. The solution to (10) subject to the boundary conditions can be written as

$$
\begin{equation*}
F(t)=\int_{0}^{1} P(t, s) G(s) d s+\sum_{k}\left\{a_{k 1} C_{k 1}(t)+a_{k 2} C_{k 2}(t)+a_{k 3} C_{k 3}(t)+a_{k 4} C_{k 4}(t)\right\} \tag{19}
\end{equation*}
$$

where the Green's function $P(t, s)$ is given in (17), and the coefficients $a_{k 1}, a_{k 2}, a_{k 3}, a_{k 4}$ are unique and bounded for all β sufficiently large.

Proof. Consider an even m; the case of an odd m is similar and is omitted. For notational convenience, let

$$
\chi_{j+1}=-\mu_{j}+\imath \omega_{j}\left(j=0, \ldots, \frac{m}{2}-1\right)
$$

where each $\mu_{j}>0$ and $\omega_{j}>0$, and $\gamma(t)=\{w(t) r(t)\}^{-1 /(2 m)}$. Let $\lambda_{2 j-1}(t)=\chi_{j} \gamma(t)$, $\lambda_{2 j}(t)=\bar{\chi}_{j} \gamma(t)(t)(j=1, \ldots, m / 2)$, where $\bar{\chi}_{j}$ denotes the conjugate of χ_{j}. Let $h_{k}(t)=$ $\exp \left\{\beta\left(\int_{0}^{t} \lambda_{k}(s)\left\{1+O\left(\beta^{-1}\right)\right\} d s\right)\right\}$ be the corresponding m fundamental solutions. Similarly, define $g_{k}(t)=\exp \left[\beta\left\{\int_{t}^{1} \lambda_{k}(s)\left(1+O\left(\beta^{-1}\right)\right) d s\right\}\right]$. Hence, for each odd $k, h_{k+1}(t)$ is the conjugate of $h_{k}(t)$. Define the complex number $p_{k}=b_{k 1}+\imath b_{k 2}, p_{k}^{+}=b_{k 1}^{+}+\imath b_{k 2}^{+}(k=1,3, \ldots, m-$
1). Therefore, $F(t)$ can be written as

$$
F(t)=F_{0}(t)+\sum_{j=1}^{m / 2}\left\{p_{2 j-1} h_{2 j-1}(t)+\bar{p}_{2 j-1} h_{2 j}(t)+p_{2 j-1}^{+} g_{2 j-1}(t)+\bar{p}_{2 j-1}^{+} g_{2 j}(t)\right\}
$$

where $b_{k j}, b_{k j}^{+}$are to be determined. Define $b=\left(b_{11}, b_{12}, \ldots, b_{\frac{m}{2} 1}, b_{\frac{m}{2} 1}, b_{11}^{+}, b_{12}^{+}, \ldots, b_{\frac{m}{2} 1}^{+}, b_{\frac{m}{2} 1}^{+}\right)$ $\|G\|$, and $G=\left(\|G\|, G(1), G^{\prime}(1), \ldots, G^{(m-1)}(1)\right)$. It is easy to verify that the coefficients $a_{k 1}, a_{k 2}, a_{k 3}, a_{k 4}$ are unique and bounded for all β sufficiently large if and only if b is so. The boundary conditions lead to the linear equation $D \vec{B}=v$, where

$$
\widetilde{b}=\left(p_{1}, \bar{p}_{1}, p_{3}, \bar{p}_{3}, \ldots, p_{m / 2-1}, \bar{p}_{m / 2-1}, p_{1}^{+}, \bar{p}_{1}^{+}, p_{3}^{+}, \bar{p}_{3}^{+}, \ldots, p_{m / 2-1}^{+}, \bar{p}_{m / 2-1}^{+}\right) \in \mathbb{C}^{2 m}
$$

$v^{\mathrm{T}}=\left[v_{0}, v_{1}\right]$ with

$$
\begin{gathered}
v_{0}=\left[-F_{0}(0),-\frac{F_{0}^{\prime}(0)}{\beta}, \ldots,-\frac{F_{0}^{(m-1)}(0)}{\beta^{m-1}}\right] \\
v_{1}=\left[-F_{0}(1)+G(1), \frac{-F_{0}^{\prime}(1)+G^{\prime}(1)}{\beta}, \ldots, \frac{-F_{0}^{(m-1)}(1)+G^{(m-1)}(1)}{\beta^{m-1}}\right],
\end{gathered}
$$

and the matrices $D \in \mathbb{R}^{2 m \times 2 m}$ and $B \in \mathbb{C}^{2 m \times 2 m}$ are

$$
D=\operatorname{diag}\left(1, \gamma(0), \gamma^{2}(0), \ldots, \gamma^{m-1}(0), 1, \gamma(1), \gamma^{2}(1), \ldots, \gamma^{m-1}(1)\right)
$$

and

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

where the matrix blocks $B_{i j} \in \mathbb{C}^{m \times m}$ are obtained from the derivatives of $h_{2 j-1}$ at $t=0$ given in Lemma 3:

$$
B_{11}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
\chi_{1} & \bar{\chi}_{1} & \chi_{2} & \bar{\chi}_{2} & \cdots & \chi_{\frac{m}{2}} & \bar{\chi}_{\frac{m}{2}} \\
\chi_{1}^{2} & \bar{\chi}_{1}^{2} & \chi_{2}^{2} & \bar{\chi}_{2}^{2} & \cdots & \chi_{\frac{m}{2}}^{2} & \bar{\chi}_{\frac{m}{2}}^{2} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\chi_{1}^{m-1} & \bar{\chi}_{1}^{m-1} & \chi_{2}^{m-1} & \bar{\chi}_{2}^{m-1} & \cdots & \chi_{\frac{m}{2}}^{m-1} & \bar{\chi}_{\frac{m}{2}}^{m-1}
\end{array}\right]
$$

and B_{22} has the similar structure, and each entry of B_{12}, B_{21} is of order $O\left(e^{-\beta}\right)$. Therefore, B_{11} is a Vandermonde matrix and is invertible, and there is a uniform bound on the entries of the inverse of B_{11} for all large β. The similar argument can be applied to B_{22}. Consequently, B and D are invertible and the elements of B^{-1}, D^{-1} are uniformly bounded. Furthermore, using the argument in Proposition 2 and uniform bounds on the derivatives of $\gamma(t)$ up to the $(m-1)$ th order, it can be shown that for $t_{*}=0$ or 1 ,

$$
\frac{\left|F_{0}^{(j)}\left(t_{*}\right)\right|}{\beta^{j}} \leq 2 m \kappa \int_{0}^{1} \beta e^{-\beta \varrho \tau} d \tau\|G\| \leq(2 m \kappa / \varrho)\|G\|(j=1, \ldots, m-1)
$$

for some suitable constants $\kappa, \varrho>0$. As a result, the equation $D B x=\mathbf{v}$ has a unique solution \widetilde{b} that satisfies the desired bound. This also holds true for b.

Proof of Theorem 3

It follows from Assumption 2 that $\widetilde{u}(t)=f_{0}^{(2 m)}(t) \in L_{2}[0,1]$. Letting $\widetilde{x}_{0}=$ $\left\{f_{0}^{(m)}(0), \ldots, f_{0}^{(2 m-2)}(0), f_{0}^{(2 m-1)}(0)\right\}^{\mathrm{T}} \in \mathbb{R}^{m}$, we have $z(t)=f_{0}^{(m)}(t)$ such that $\left(\widetilde{u}, \widetilde{x}_{0}\right) \in \mathcal{P}$ for a large $\mu>0$ and a small $\varepsilon>0$. This shows that \mathcal{P} is nonempty. It is also straightforward to verify that \mathcal{P} is convex based on the strict convexity of the function $(\cdot)^{-1 /(2 m)}$ on $(0, \infty)$.

Lemma 5. The objective functional J is strictly convex over the set $\mathcal{P} \subseteq L_{2}[0,1] \times \mathbb{R}^{m}$.
Proof. The lemma holds true even if the upper and lower bounds specified in Assumption 6 are removed. For each $\left(u, x_{0}\right) \in \mathcal{P}$, let ρ denote $z(t) / f_{0}^{(m)}(t)$ for $z(t)$ generated from $\left(u, x_{0}\right)$, recalling that we require $\rho(t)>0$ once $t \in \mathcal{N}$. Denote the set of such ρ 's by \mathcal{S}. It is clear that ρ is strictly positive and $\rho^{-1 /(2 m)}$ is Lebesgue integrable on $[0,1]$. Noting that ρ shares the same convex combination relation with $\left(u, x_{0}\right)$, the set \mathcal{S} is convex and it suffices to show that $\Pi(\rho)$ is strictly convex on \mathcal{S}. Write Π in (14) as $\Pi(\rho)=\Pi_{1}(\rho)+\Pi_{2}(\rho)$, where

$$
\Pi_{1}(\rho)=\int_{0}^{1} r^{2}(t)\left[\left\{\rho(t) f_{0}^{(m)}(t)\right\}^{(m)}\right]^{2} d t, \quad \Pi_{2}(\rho)=\int_{0}^{1} L_{0} r(t)^{1-1 /(2 m)} \rho(t)^{-1 /(2 m)} d t
$$

Obviously, Π_{1} is convex on \mathcal{S}. We show next that $\Pi_{2}(\rho)$ is strictly convex on \mathcal{S}. Using the fact that the function $(\cdot)^{-1 /(2 m)}$ is strictly convex on $(0, \infty)$, we have, for any $\rho_{1}, \rho_{2} \in \mathcal{S}$ with $\rho_{1} \neq \rho_{2}$ and any $\alpha \in(0,1)$,

$$
\left\{\alpha \rho_{1}(t)+(1-\alpha) \rho_{2}(t)\right\}^{-1 /(2 m)}<\alpha\left\{\rho_{1}(t)\right\}^{-1 /(2 m)}+(1-\alpha)\left\{\rho_{2}(t)\right\}^{-1 /(2 m)}, t \in[0,1]
$$

Hence,

$$
g(t)=\alpha\left\{\rho_{1}(t)\right\}^{-1 /(2 m)}+(1-\alpha)\left\{\rho_{2}(t)\right\}^{-1 /(2 m)}-\left\{\alpha \rho_{1}(t)+(1-\right.
$$

$\left.\alpha) \rho_{2}(t)\right\}^{-1 /(2 m)}$ is strictly positive on $[0,1]$. Therefore, $L_{0} r(t)^{1-1 /(2 m)} g(t)>0, t \in[0,1]$. Since $\left\{\rho_{1}(t)\right\}^{-1 /(2 m)}$ and $\left\{\rho_{2}(t)\right\}^{-1 /(2 m)}$ are Lebesgue integrable, so is $g(t)$. Furthermore, it follows from Assumption 2 that $r(t)$ is strictly positive and continuous on $[0,1]$. Hence, there exists a positive constant κ such that $0<r(t) \leq \kappa, t \in[0,1]$. In view of this, we deduce that $L_{0} r(t)^{1-1 /(2 m)} g(t)$ is Lebesgue integrable. Thus it is easy to show that $\Pi_{2}\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)<\alpha \Pi_{2}\left(\rho_{1}\right)+(1-\alpha) \Pi_{2}\left(\rho_{2}\right)$, leading to the strict convexity of Π_{2}. By this result, we further have, for any $\rho_{1}, \rho_{2} \in \mathcal{S}$ with $\rho_{1} \neq \rho_{2}$ and any $\alpha \in(0,1)$,

$$
\Pi\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)=\Pi_{1}\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)+\Pi_{2}\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)
$$

where $\quad \Pi_{1}\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right) \leq \alpha \Pi_{1}\left(\rho_{1}\right)+(1-\alpha) \Pi_{1}\left(\rho_{2}\right) \quad$ and $\quad \Pi_{2}\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)<$ $\alpha \Pi_{2}\left(\rho_{1}\right)+(1-\alpha) \Pi_{2}\left(\rho_{2}\right)$. Hence, $\Pi\left(\alpha \rho_{1}+(1-\alpha) \rho_{2}\right)<\alpha \Pi\left(\rho_{1}\right)+(1-\alpha) \Pi\left(\rho_{2}\right)$. This shows that $\Pi(\rho)$ is strictly convex on \mathcal{S}, so is $J\left(u, x_{0}\right)$ on \mathcal{P}.

Next, we use this lemma to derive the proof of Theorem 3.
Proof. The first part of the proof follows from a standard argument in functional analysis. Consider the Hilbert space $L_{2}[0,1] \times \mathbb{R}^{m}$ endowed with the standard inner product and norm. Since \mathcal{P} is nonempty, pick an arbitrary $(\widetilde{u}, \widetilde{x}) \in \mathcal{P}$ and define the level set $\mathcal{L}=\{(u, x) \in \mathcal{P}$: $J(u, x) \leq J(\widetilde{u}, \widetilde{x})\}$. It follows from the condition $\left\|x_{0}\right\| \leq \mu$ and the structure of J that \mathcal{L} is bounded. Further, due to the convexity of J, the set \mathcal{L} is also convex. Since the space $L_{2}[0,1] \times$ \mathbb{R}^{m} is reflexive and self-dual, it follows from the Banach-Alaoglu Theorem that an arbitrary sequence $\left\{\left(u_{n}, x_{n}\right)\right\}$ in \mathcal{L} has a subsequence $\left\{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)\right\}$ that attains a weak*, thus weak, limit $\left(u^{*}, x^{*}\right) \in L_{2}[0,1] \times \mathbb{R}^{m}$.

In the next, we show that $\left(u^{*}, x^{*}\right) \in \mathcal{L}$. Let $z_{(u, x)}(t)$ denote $z(t)$ generated from (u, x). Since $u \in L_{2}[0,1]$, it belongs to $L_{1}[0,1]$. In view of $z_{(u, x)}(t)$ defined in (15), we see that $z_{(u, x)}(\cdot)$ is
absolutely continuous on $[0,1]$ for any $(u, x) \in L_{2}[0,1] \times \mathbb{R}^{m}$ and $m \in \mathbb{N}$. Obviously, $\left\|x^{*}\right\| \leq$ μ. Furthermore, for any $t \in[0,1]$,
$\left|\int_{0}^{t} u_{n}^{\prime}(s) d s-\int_{0}^{t} u^{*}(s) d s\right| \leq \int_{0}^{t}\left|u_{n}^{\prime}(s)-u^{*}(s)\right| d s \leq \int_{0}^{1}\left|u_{n}^{\prime}(s)-u^{*}(s)\right| d s \leq\left\|u_{n}^{\prime}-u^{*}\right\|_{L_{2}}$,
where $\|\cdot\|_{L_{2}}$ denotes the L_{2}-norm on $L_{2}[0,1]$. Together with the convergence of x_{n}^{\prime} to x^{*}, we deduce that $z_{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)}(\cdot)$ converges to $z_{\left(u^{*}, x^{*}\right)}(\cdot)$ pointwise on $[0,1]$. Therefore, we have $z_{\left(u^{*}, x^{*}\right)}(t) / f_{0}^{(m)}(t) \geq \varepsilon, t \in[0,1]$. Moreover, a similar argument based on the property of r as in Lemma 5 shows that $r(t)^{1-1 /(2 m)}\left\{z_{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)}(t) / f_{0}^{(m)}(t)\right\}^{-1 /(2 m)}$ is Lebesgue integrable for all n. In addition $0 \leq\left\{z_{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)}(t) / f_{0}^{(m)}(t)\right\}^{-1 /(2 m)} \leq \varepsilon^{-1 /(2 m)}, t \in[0,1]$. This implies that for all n, $\left|r(t)^{1-1 /(2 m)}\left\{z_{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)}(t) / f_{0}^{(m)}(t)\right\}^{-1 /(2 m)}\right| \leq r(t)^{1-1 /(2 m)} \varepsilon^{-1 /(2 m)}$ on $[0,1]$, where the latter function is clearly Lebesgue integrable since $r(\cdot)$ is continuous. By Lebesgue's Dominated Convergence Theorem, $r(t)^{1-1 /(2 m)}\left\{z_{\left(u^{*}, x^{*}\right)}(t) / f_{0}^{(m)}(t)\right\}^{-1 /(2 m)}$ is Lebesgue integrable on $[0,1]$ and as $n \rightarrow \infty$,

$$
\begin{equation*}
\int_{0}^{1} r(t)^{1-1 /(2 m)}\left\{\frac{z_{\left(u_{n}^{\prime}, x_{n}^{\prime}\right)}(t)}{f_{0}^{(m)}(t)}\right\}^{-1 /(2 m)} d t \longrightarrow \int_{0}^{1} r(t)^{1-1 /(2 m)}\left\{\frac{z_{\left(u^{*}, x^{*}\right)}(t)}{f_{0}^{(m)}(t)}\right\}^{-1 /(2 m)} d t \tag{20}
\end{equation*}
$$

This shows that $\left(u^{*}, x^{*}\right) \in \mathcal{P}$. Using the property of $r(t)$ deduced from Assumption 1 again, we obtain a positive constant κ^{\prime} such that for any $\epsilon>0$,

$$
\begin{aligned}
\int_{0}^{1} r^{2}(t)\left|\left(u_{n}^{\prime}\right)^{2}(t)-\left(u^{*}\right)^{2}(t)\right| d t & \leq \kappa^{\prime} \int_{0}^{1}\left|\left(u_{n}^{\prime}\right)^{2}(t)-\left(u^{*}\right)^{2}(t)\right| d t \leq \kappa^{\prime}\left\|u_{n}^{\prime}-u^{*}\right\|_{L_{2}}\left\|u_{n}^{\prime}+u^{*}\right\|_{L_{2}} \\
& \leq \kappa^{\prime}\left\|u_{n}^{\prime}-u^{*}\right\|_{L_{2}}\left(2\left\|u^{*}\right\|_{L_{2}}+\epsilon\right)
\end{aligned}
$$

for all n sufficiently large, where the Cauchy-Schwarz and triangle inequalities are used. Together with (20), we see that $J\left(u_{n}^{\prime}, x_{n}^{\prime}\right)$ converges to $J\left(u^{*}, x^{*}\right)$ as $n \rightarrow \infty$.

Consequently, we have $J\left(u^{*}, x^{*}\right) \leq J(\widetilde{u}, \widetilde{x})$ such that $\left(u^{*}, x^{*}\right) \in \mathcal{L}$. This shows that \mathcal{L} is weakly compact. In view of the continuity of J, we see that a global optimal solution exists on \mathcal{L} (Luenberger, 1969, Section 5.10 , Theorem 2), and thus on \mathcal{P}. Finally, since J is strictly convex on the convex set \mathcal{P}, the optimal solution is unique.

References

Abramovich, F. \& Grinshtein, V. (1999). Derivation of an equivalent kernel for general spline smoothing: a systematic approach. Bernoulli 5, 359-79.
Berlinet, A. \& Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer: Wiley.
Coddington, E. A. \& Levinson, N. (1955). Theory of Ordinary Differential Equations. New York: McGraw-Hill. EgGermont, P. P. B. \& LaRiccia, V. N.(2006). Uniform error bounds for smoothing splines. IMS Lecture NotesMonograph Series: High Dimensional Probability 51, 220-37.
Luenberger, D. G. (1969). Optimization by Vector Space Methods. John Wiley \& Sons Inc.
Wang, X., Shen, J. \& Ruppert, D.(2010). Local asymptotics of P-splines. Electr. J. Statist. 5, 1-17.

[^0]: 5

