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Abstract

Shape restricted smoothing splines receive considerable attention, motivated by a wide range

of important applications in science and engineering. In this paper, we consider smoothing

splines subject to general linear dynamics and control constraints, and formulate them as finite-

horizon constrained linear optimal control problems with unknown initial state and control. By

exploring techniques from functional and variational analysis, optimality conditions are devel-

oped in terms of variational inequalities. Due to the control constraints, the optimality conditions

give rise to a nonsmooth B-differentiable equation of an optimal initial condition, whose unique

solution completely determines the shape restricted smoothing spline. A modified nonsmooth

Newton’s algorithm with line search is used to solve this equation; detailed convergence analysis

of the proposed algorithm is presented. In particular, using techniques from nonsmooth analy-

sis, polyhedral theory, and switching systems, we show the global convergence of the algorithm

when a shape restricted smoothing spline is subject to a general polyhedral control constraint.

1 Introduction

Spline models are extensively studied in approximation theory, numerical analysis, and statistics

with broad applications in science and engineering. Informally speaking, a univariate spline model

gives a piecewise polynomial curve that “best” fits a given set of data. Such a spline can be attained

via efficient numerical algorithms and enjoys favorable analytical and statistical properties [9]. A

number of variations and extensions of this model have been developed, e.g., penalized polynomial

splines [36] and smoothing splines [43]. Specifically, the smoothing spline model is a smooth function

f : [0, 1]→ R in a suitable function space that minimizes the following objective functional:

1

n

n∑
i=1

(
f(ti)− yi

)2
+ λ

∫ 1

0

(
f (m)(t)

)2
dt, (1)

where yi are data points at ti ∈ [0, 1], i = 1, . . . , n, f (m) denotes the m-th derivative of f , and λ > 0

is a penalty parameter that characterizes a tradeoff between data fidelity and the smoothness of f .

We refer the reader to [43] and references therein for statistical properties of smoothing splines.

From a control systems point of view, the smoothing spline model (1) is closely related to the

finite-horizon linear quadratic optimal control problem by treating f (m) as a control input [12].

This has led to a highly interesting spline model defined by a linear control system called a control
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theoretic spline [12]. It is shown in [12] and the references therein, e.g., [16, 40, 46], that a number of

smoothing, interpolation, and path planning problems can be incorporated into this paradigm and

studied using control theory and optimization techniques on Hilbert spaces with efficient numerical

schemes. Other relevant approaches include control theoretic wavelets [15].

Although many important results for unconstrained or equality constrained spline models are

available, various biological, engineering and economic systems contain functions whose shape

and/or dynamics are subject to inequality constraints, e.g., the monotone and convex constraints.

Examples include monotone regulatory functions in genetic networks [37] and a shape restricted

function in an attitude control system [30]. Other applications are found in reliability engi-

neering (e.g., survival/hazard functions), medicine (e.g., dose-response curves), finance (e.g., op-

tion/delivery price), and astronomy (e.g., galaxy mass functions). Incorporating the knowledge of

shape constraints into a construction procedure improves estimation efficiency and accuracy [29].

This has raised surging interest in the study of constrained splines and shape restricted estimation

in statistics and other related fields; see some recent results [23, 36, 38, 39, 44].

The present paper focuses on shape restricted smoothing splines formulated as constrained linear

optimal control problems with unknown initial state and control. Two types of constraints arise:

(i) control constraints; and (ii) state constraints. While several effective numerical methods have

been developed for state constrained optimal control problems in [14, 19, 45] (also see [18] for a

recent survey), we focus on control constraints in this paper, since a variety of shape constraints,

which may be imposed on derivatives of a function, can be easily formulated as control constraints.

It should be noted that a control constrained optimal control problem is inherently nonsmooth, and

thus is considerably different from a classical (unconstrained) linear optimal control problem such

as LQR. Moreover, the goal of the shape constrained spline problem is to find an optimal initial

condition and an open-loop like optimal control that “best” fit sample data instead of finding an

optimal state feedback as in LQR. Furthermore, most of the current literature on control constrained

smoothing splines focuses on relatively simpler linear dynamics and special control constraints,

e.g., [10, 12, 16, 23, 41], and many critical questions remain open in analysis and computation

when general dynamics and control constraints are taken into account. For example, a widely

used approach in the literature concentrates on shape restricted smoothing splines whose linear

dynamics are defined by certain nilpotent matrices, and whose control constraints are a cone in

R [11, 22]. In this case, the smoothing spline is a piecewise continuous polynomial with a known

degree. Hence the computation of the smoothing spline boils down to determining parameters of a

polynomial on each interval, which can be further reduced to a quadratic or semidefinite program

that attains efficient algorithms [10, 12]. However, this approach fails to handle general linear

dynamics and control constraints, since the solution form of a general shape restricted smoothing

spline is unknown a priori. Therefore new tools are needed to handle more general dynamics and

general control constraint induced nonsmoothness.

In this paper, we develop new analytical and numerical results for smoothing splines subject

to general dynamics and control constraints by using optimal control and nonsmooth optimization

techniques. The major contributions of the paper are summarized as follows:

1. Optimal control formulation and analysis. By using the Hilbert space method and variational

techniques, optimality conditions are established for shape restricted smoothing splines in the form

of variational inequalities. These optimality conditions yield a nonsmooth equation of an optimal

initial condition; it is shown that the unique solution of this equation completely determines an

optimal control and thus the desired smoothing spline (cf. Theorem 3.2 and Corollary 3.1).

2. Numerical computation and convergence analysis. To solve the above mentioned equation, we

show the B-differentiability and other nonsmooth properties of this equation. A modified nonsmooth

Newton’s algorithm with line search [24] is invoked to solve the equation. This algorithm does not
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require knowing the solution form of a smoothing spline a priori. However, the convergence of

the original nonsmooth Newton’s method in [24] relies on several critical assumptions, including

the boundedness of level sets and global existence of direction vectors for a related equation. The

verification of these assumptions for shape restricted smoothing splines turns out to be rather

nontrivial, due to dynamics and constraint induced complexities. By using various techniques from

nonsmooth analysis, polyhedral theory, and piecewise affine switching systems, we establish the

global convergence of the proposed algorithm for a general polyhedral control constraint under

mild technical conditions (cf. Theorems 5.1–5.2).

The paper is organized as follows. In Section 2, we formulate a shape restricted smoothing

spline as a constrained optimal control problem with optimality conditions developed in Section 3.

A nonsmooth Newton’s algorithm for the smoothing spline is proposed in Section 4; its convergence

analysis and numerical results are presented in Section 5 and Section 6 respectively, for polyhedral

control constraints. Finally, conclusions are made in Section 7.

Notation. We introduce the following notation used throughout the paper. Let 〈·, ·〉 denote the

inner product on the Euclidean space. Let IS denote the indicator function for a set S. Let ⊥
denote the orthogonality of two vectors in Rn, i.e., a ⊥ b implies aT b = 0. For a closed convex

set K in Rn, ΠK(z) denotes the Euclidean projection of z ∈ Rn onto K. It is known that ΠK(·) is

Lipschitz continuous on Rn with the Lipschitz constant L = 1 when the Euclidean norm is used

[13]. Throughout the paper, let
∫

be the Lebesgue integral. For a matrix M , Mj• denotes its jth

row and Ker(M) denotes the null space of M . Finally, for a function F : Rn → Rn and a closed

convex set K in Rn, let VI(K, F ) be the variational inequality problem whose solution is z∗ ∈ K if

〈z − z∗, F (z∗)〉 ≥ 0 for all z ∈ K. We shall use SOL(K, F ) to denote the solution set of VI(K, F ).

A VI is a highly nonlinear and nonsmooth problem, even if F is linear and K is polyhedral [13].

2 Shape Restricted Smoothing Splines: Constrained Optimal Con-

trol Formulation

Consider the linear control system on R` subject to control constraint:

ẋ = Ax+Bu, y = Cx, (2)

where A ∈ R`×`, B ∈ R`×m, and C ∈ Rp×`. Let Ω ⊆ Rm be a closed convex set. The control

constraint is given by u ∈ L2([0, 1];Rm) and u(t) ∈ Ω for almost all t ∈ [0, 1], where L2([0, 1];Rm) is

the space of square Rm-valued (Lebesgue) integrable functions. We denote this constrained linear

control system by Σ(A,B,C,Ω). Define the set of permissible controls, which is clearly convex:

W : =
{
u ∈ L2([0, 1];Rm) | u(t) ∈ Ω, a.e. [0, 1]

}
.

Let the underlying function f : [0, 1] → Rp be the output f(t) := Cx(t) for an absolutely

continuous trajectory x(t) of Σ(A,B,C,Ω), which can be completely determined by its initial state

and control. Consider the following (generalized) regression problem on the interval [0, 1]:

yi = f(ti) + εi, i = 0, 1, . . . , n, (3)

where ti’s are the pre-specified design points with 0 = t0 < t1 < · · · < tn = 1, yi ∈ Rp are samples,

and εi ∈ Rp are noise or errors. Given the sample observation (ti, yi)
n
i=0, and wi > 0, i = 1, . . . , n

such that
∑n

i=1wi = 1 (e.g., wi = ti − ti−1). Define the cost functional

J :=
n∑
i=1

wi
∥∥yi − Cx(ti)

∥∥2

2
+ λ

∫ 1

0
‖u(t)‖22dt, (4)

3



where λ > 0 is the penalty parameter. The goal of a shape restricted smoothing spline is to find

an absolutely continuous trajectory x(t) (which is determined by its initial state and control) that

minimizes the cost functional J subject to the dynamics of the linear control system Σ(A,B,C,Ω)

(2) and the control constraint u ∈ W.

Remark 2.1. Let R ∈ Rm×m be a symmetric positive definite matrix. A more general cost

functional

J :=

n∑
i=1

wi
∥∥yi − Cx(ti)

∥∥2

2
+ λ

∫ 1

0
uT (t)Ru(t)dt (5)

may be considered. However, a suitable control transformation will yield an equivalent problem

defined by the cost functional (4). In fact, let R = P TP for an invertible matrix P . Let v(t) = Pu(t),

Ω′ = PΩ, and W ′ : =
{
v ∈ L2([0, 1];Rm) | v(t) ∈ Ω′, a.e. [0, 1]

}
. Clearly, Ω′ remains closed and

convex, and W ′ is still convex. Therefore the constrained optimal control problem defined by (5)

for the linear control system Σ(A,B,C,Ω) is equivalent to that defined by (4) with u replaced by

v for the linear system Σ(A,BP−1, C,Ω′) subject to the constraint (v, x0) ∈ W ′ × R`.

Example 2.1. The constrained linear control model (2) covers a wide range of estimation problems

subject to shape and/or dynamical constraints. For instance, the standard monotone regression

problem is a special case of the model (2) by letting the scalars A = 0, B = C = 1, and Ω = R+.

Another case is the convex regression, for which

A =

[
0 1

0 0

]
∈ R2×2, B =

[
0

1

]
∈ R2, CT =

[
1

0

]
∈ R2, Ω = R+.

3 Optimality Conditions of Shape Restricted Smoothing Splines

This section develops optimality conditions for the finite-horizon constrained optimal control prob-

lem (4) using the Hilbert space techniques. We first introduce the following functions Pi : [0, 1]→
Rp×m inspired by [12]:

Pi(t) :=

{
CeA(ti−t)B, if t ∈ [0, ti]

0, if t > ti
, i = 1, . . . , n.

Hence,

f(ti) = Cx(ti) = CeAtix0 +

∫ 1

0
Pi(t)u(t)dt, i = 1, . . . , n,

where x0 denotes the initial state of x(t). Define the set P := W × R`. It is easy to verify that P
is convex. The constrained optimal control problem is formulated as

inf
(u,x0)∈P

J(u, x0), (6)

where J : P → R+ is given by

J(u, x0) :=

n∑
i=1

wi

∥∥∥∥CeAtix0 +

∫ 1

0
Pi(t)u(t)dt− yi

∥∥∥∥2

2

+ λ

∫ 1

0
‖u(t)‖22dt.

For given design points {ti}ni=1 in [0, 1], we introduce the following condition:

H.1 : rank


CeAt1

CeAt2

...

CeAtn

 = `.
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It is easy to see, via ti ∈ [0, 1] for all i, that if (C,A) is an observable pair, then the condition H.1

holds for all sufficiently large n. Under this condition, the existence and uniqueness of an optimal

solution can be shown via standard arguments in functional analysis, e.g., [2, 4, 6, 17, 21, 42]. We

present its proof in the following theorem for self-containment.

Theorem 3.1. Suppose {(ti, yi)}, {wi}, and λ > 0 are given. Under the condition H.1, the

optimization problem (6) has a unique optimal solution (u∗, x
∗
0) ∈ P.

Proof. Consider the Hilbert space L2([0, 1];Rm)×R` endowed with the inner product 〈(u, x), (v, z)〉 :=∫ 1
0 u

T (t)v(t)dt+xT z for any (u, x), (v, z) ∈ L2([0, 1];Rm)×R`. Its induced norm satisfies ‖(u, x)‖2 :=

‖u‖2L2
+ ‖x‖22, where ‖u‖L2 :=

( ∫ 1
0 u

T (t)u(t)dt
)1/2

for any u ∈ L2([0, 1];Rm) and ‖ · ‖2 is the Eu-

clidean norm on R`. The following properties of J : L2([0, 1];Rm)×R` → R+ can be easily verified

via the positive definiteness of the matrix
∑n

i=1wi(Ce
Ati)T (CeAti) ∈ R`×` due to H.1:

(i) J is coercive, i.e., for any sequence {(uk, xk)} with ‖(uk, xk)‖ → ∞ as k →∞, J(uk, xk)→∞
as k →∞.

(ii) J is strictly convex, i.e., for any (u, x), (v, z) ∈ L2([0, 1];Rm)×R`, J(α(u, x)+(1−α)(v, z)) <

αJ(u, x) + (1− α)J(v, z), ∀ α ∈ (0, 1).

Pick an arbitrary (ũ, x̃) ∈ P and define the level set S := {(u, x) ∈ P : J(u, x) ≤ J(ũ, x̃)}.
Due to the convexity and the coercive property of J , S is a convex and (L2-norm) bounded set in

L2([0, 1];Rm)×R`. Since the Hilbert space L2([0, 1];Rm)×R` is reflexive and self dual, it follows from

Banach-Alaoglu Theorem [21] that an arbitrary sequence {(uk, xk)} in S with uk ∈ W and xk ∈ R`
has a subsequence {(u′k, x′k)} that attains a weak*, thus weak, limit (u∗, x

∗) ∈ L2([0, 1];Rm)× R`.
Clearly, x∗ ∈ R`. Without loss of generality, we assume that for each u′k, u

′
k(t) ∈ Ω for all t ∈ [0, 1].

Therefore, CeAtix′k +
∫ 1

0 Pi(t)u
′
k(t)dt converges to CeAtix∗ +

∫ 1
0 Pi(t)u∗(t)dt for each i.

Next we show that u∗ ∈ W via the closedness and convexity of Ω. In view of the weak conver-

gence of (u′k) to u∗, it follows from Mazur’s Lemma [28, Lemma 10.19] that there exists a sequence

of convex combinations of (u′k), denoted by (vk), that converges to u∗ strongly in L2([0, 1];Rm), i.e.,

for each k, there exist an integer pk ≥ k and real numbers λk,j ≥ 0, k ≤ j ≤ pk with
∑pk

j=k λk,j = 1

such that vk =
∑pk

j=k λk,juk, and ‖vk − u∗‖L2 → 0 as k → ∞. Since each uk(t) ∈ Ω,∀ t ∈ [0, 1],

the same holds for each vk via the convexity of Ω. Furthermore, due to the strong convergence

of (vk) to u∗ (i.e., in the L2-norm), (vk) converges to u∗ in measure [3, pp. 69], and hence has a

subsequence that converges to u∗ pointwise almost everywhere on [0, 1] (cf. [3, Theorem 7.6] or [17,

Theorem 5.2]). Since Ω is closed, u∗(t) ∈ Ω for almost all t ∈ [0, 1]. This shows that u∗ ∈ W.

Furthermore, by using the (L2-norm) boundedness of (u′k) and the triangle inequality for the L2-

norm, it is easy to show that for any η > 0, there exists K ∈ N such that ‖u∗‖2L2
≤ ‖u′k‖2L2

+η,∀ k ≥
K. These results imply that for any ε > 0, J(u∗, x

∗) ≤ J(u′k, x
′
k) + ε for all k sufficiently large.

Consequently, J(u∗, x
∗) ≤ J(ũ, x̃) such that (u∗, x

∗) ∈ S. This thus shows that S is sequentially

compact. In view of the (strong) continuity of J , we see that a global optimal solution exists on S
[21, Section 5.10, Theorem 2], and thus on P. Moreover, since J is strictly convex in (u, x0) and

the set P is convex, the optimal solution (u∗, x
∗
0) must be unique.

The next result provides the necessary and sufficient optimality conditions in terms of varia-

tional inequalities. In particular, the optimality conditions yield two equations: (7) and (8). It is

shown in Corollary 3.1 that equation (7) implies that if x∗0 is known, then the smoothing spline

can be determined inductively. Furthermore, the optimal initial state x∗0 can be solved from the

(nonsmooth) equation (8), for which a nonsmooth Newton’s method will be used (cf. Section 4).
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Theorem 3.2. The pair (u∗, x
∗
0) ∈ P is an optimal solution to (6) if and only if the following two

conditions hold:

u∗(t) = ΠΩ

(
−G(t, u∗(t), x

∗
0)/λ

)
, a.e. [0, 1], (7)

L(u∗, x
∗
0) = 0, (8)

where

G(t, u∗(t), x
∗
0) :=

n∑
i=1

wiP
T
i (t)

(
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi

)
, (9)

and

L(u∗, x
∗
0) :=

n∑
i=1

wi
(
CeAti

)T(
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi

)
.

Proof. Let (u′, x′) ∈ P be arbitrary. Due to the convexity of P, (u∗, x
∗
0)+ε[(u′, x′)−(u∗, x

∗
0)] ∈ P for

all ε ∈ [0, 1]. Further, since (u∗, x
∗
0) is a global optimizer, we have J((u∗, x

∗
0)+ε[(u′, x′)−(u∗, x

∗
0)]) ≥

J(u∗, x
∗
0) for all ε ∈ [0, 1]. Therefore

0 ≤ lim
ε↓0

J((u∗, x
∗
0) + ε[(u′, x′)− (u∗, x

∗
0)])− J(u∗, x

∗
0)

ε

= 2

[
n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi, CeAti(x′ − x∗0) +

∫ 1

0
Pi(t)

(
u′(t)− u∗(t)

)
dt

〉

+λ

∫ 1

0
u∗(t)

T
(
u′(t)− u∗(t)

)
dt

]
.

This thus yields the necessary optimality condition: for all (u′, x′) ∈ P,

n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi, CeAti(x′ − x∗0) +

∫ 1

0
Pi(t)

(
u′(t)− u∗(t)

)
dt

〉
+ λ

∫ 1

0
u∗(t)

T
(
u′(t)− u∗(t)

)
dt ≥ 0. (10)

This condition is also sufficient in light of the following inequality due to the convexity of J :

J(u′, x′)− J(u∗, x
∗
0) ≥ lim

ε↓0

J((u∗, x
∗
0) + ε[(u′, x′)− (u∗, x

∗
0)])− J(u∗, x

∗
0)

ε
, ∀ (u′, x′) ∈ P.

We now show that the optimality condition (10) is equivalent to〈
u′(t)− u∗(t), λu∗(t) +G(t, u∗(t), x

∗
0)
〉
≥ 0, a.e. [0, 1], ∀ u′ ∈ W, (11)

where G(t, u∗(t), x
∗
0) is given in (9), and〈

L(u∗, x
∗
0), x′ − x∗0

〉
≥ 0, ∀x′ ∈ R`. (12)

Clearly, if (11) and (12) hold, then (10) holds. Conversely, by setting u′ = u∗, we have from (10)

that
n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi, CeAti(x′ − x∗0)

〉
≥ 0, ∀ x′ ∈ R`.
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Since x′ is arbitrary in R`, this yields (12) and thus (8). Furthermore, the condition (10) is reduced

to ∫ 1

0

〈
u′(t)− u∗(t), λu∗(t) +G(t, u∗(t), x

∗
0)
〉
dt ≥ 0, ∀ u′ ∈ W.

Let G̃(t, u∗(t), x
∗
0) := λu∗(t) +G(t, u∗(t), x

∗
0). Since G̃ ∈ L2([0, 1];Rm), u′ ∈ L2([0, 1];Rm), and Ω is

closed and convex, it follows from [26, Section 2.1] that the above integral inequality is equivalent to

the variational inequality (11), which is further equivalent to u∗(t) ∈ SOL
(
Ω, G̃(t, ·, x∗0)

)
, a.e. [0, 1].

Hence, for almost all t ∈ [0, 1],〈
w − u∗(t), u∗(t) +G(t, u∗(t), x

∗
0)/λ

〉
≥ 0, ∀ w ∈ Ω.

This shows u∗(t) = ΠΩ(−G(t, u∗(t), x
∗
0)/λ) a.e. [0, 1].

Let f̂(t, x∗0) denote the shape restricted smoothing spline for the given {yi}, i.e.,

f̂(t, x∗0) := CeAtx∗0 +

∫ 1

0
CeA(t−s)Bu∗(s, x

∗
0)ds,

where u∗ is the optimal control, and x∗0 is the optimal initial state.

Corollary 3.1. The shape restricted smoothing spline f̂(t, x∗0) satisfies

n∑
i=1

wi
(
CeAti

)T (
f̂(ti, x

∗
0)− yi

)
= 0, (13)

and G(t, u∗(t), x
∗
0) in (9) is given by

G(t, u∗(t), x
∗
0) =


0, ∀ t ∈ [0, t1)

−
k∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, x

∗
0)− yi

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1

(14)

Proof. Note that f̂(ti, x
∗
0) = CeAtix∗0 +

∫ 1
0 Pi(s)u∗(s, x

∗
0)ds for i = 1, . . . , n. In light of (8) and the

definition of L(u∗, x
∗
0), we obtain (13). To establish (14), we see from (13) that

n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
I[0,ti]

=


0, ∀ t ∈ [0, t1)

−
k∑
i=1

wi
(
CeAti

)T (
f̂(ti, x

∗
0)− yi

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1

. (15)

Moreover, it follows from (9) and the definition of Pi that

G(t, u∗(t), x
∗
0) =

n∑
i=1

wi

(
CeA(ti−t)B · I[0,ti]

)T(
f̂(ti, x

∗
0)− yi

)
=

n∑
i=1

wi

(
CeAtie−AtB

)T
· I[0,ti] ·

(
f̂(ti, x

∗
0)− yi

)
=

(
e−AtB

)T n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
I[0,ti].

By virtue of this and (15), we obtain (14).
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This corollary shows that if the optimal initial condition x∗0 is known, then the smoothing spline

f̂(t, x∗0) can be determined inductively. In fact, on each interval [tk, tk+1), G(t, u∗(t), x
∗
0), and thus

u∗(t), depends on f̂(ti, x
∗
0) with ti ≤ tk only. This property will be exploited to compute the shape

constrained smoothing splines in Section 4.

We mention a few special cases of particular interest as follows. If K is a closed convex cone C,
then z ∈ SOL(K, F ) if and only if C 3 z ⊥ F (z) ∈ C∗, where C∗ is the dual cone of C. In particular,

if K is the nonnegative orthant Rn+, then z ∈ SOL(K, F ) if and only if 0 ≤ z ⊥ F (z) ≥ 0, where

the latter is called the complementarity problem (cf. [8, 13] for details). Especially, when F (z) is

affine, i.e., F (z) = Mz+q for a square matrix M and a vector q, then the complementarity problem

becomes the linear complementarity problem (LCP). Another special case of significant interest is

when K is a polyhedron, namely, K = {z ∈ Rn |Dz ≥ b, Ez = d}, where D ∈ Rr×n, E ∈ Rq×n,

and b ∈ Rr, d ∈ Rq. In this case, it is well known that z ∈ SOL(K, F ) if and only if there exist

multipliers χ ∈ Rr, µ ∈ Rq such that F (z)−DTχ+ETµ = 0, 0 ≤ χ ⊥ Dz− b ≥ 0, Ez− d = 0 [13,

Proposition 1.2.1]. Along with these results, we obtain the following optimality condition for u∗ in

terms of a complementarity problem when Ω is polyhedral.

Proposition 3.1. Let Ω = {w ∈ Rm |Dw ≥ b} be a (nonempty) polyhedron with D ∈ Rr×m and

b ∈ Rr. Then

u∗(t) =
[
−G(t, u∗(t), x

∗
0) +DTχ(G(t, u∗(t), x

∗
0))
]
/λ, a.e. [0, 1],

where DTχ : Rm → Rm is a continuous piecewise affine function defined by the solution of the

linear complementarity problem: 0 ≤ χ ⊥ λ−1DDTχ− λ−1Dz − b ≥ 0.

Proof. It follows from u∗ ∈ SOL(Ω, G̃(t, ·, x∗0)) a.e. [0, 1], where G̃(t, u∗(t), x
∗
0) = λu∗+G(u∗(t), x

∗),

and the above discussions that u∗ is the optimal control if and only if for almost all t ∈ [0, 1], there

exists χ ∈ Rr such that

λu∗(t) +G(u∗(t), x
∗
0)−DTχ = 0, and 0 ≤ χ ⊥ Du∗(t)− b ≥ 0.

This is equivalent to the linear complementarity problem

0 ≤ χ ⊥ λ−1DDTχ− λ−1z − b ≥ 0, (16)

where z := G(u∗(t), x
∗
0). Due to the positive semidefinite plus (PSD-plus) structure [35], it follows

from complementarity theory [8] that for any z ∈ Rm, the LCP (16) has a solution χ(z), and

DTχ(z) is unique, which further implies that DTχ(·) is continuous and piecewise affine [35].

4 Computation of Shape Restricted Smoothing Splines via Nons-

mooth Newton’s Method

In this section, we discuss the numerical issues of the shape restricted smoothing splines. As

indicated below Corollary 3.1, in order to determine the smoothing spline f̂(t, x∗0), it suffices to find

the optimal initial state x∗0, since once x∗0 is known, u∗ and f̂ can be computed recursively. In fact,

it follows from Corollary 3.1 that f̂(t, x∗0) is given by

f̂(t, x∗0) = CeAtx∗0 +

∫ t

0
CeA(t−s)Bu∗(s, x

∗
0)ds, (17)
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where

u∗(t, x
∗
0) =


ΠΩ(0), ∀ t ∈ [0, t1)

ΠΩ

(
λ−1

k∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, x

∗
0)− yi

))
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1

and f̂(t, x∗0) satisfies

Hy,n(x∗0) :=

n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
= 0. (18)

To compute the optimal initial state x∗0, we consider the equation Hy,n(z) = 0, where f̂(t, z) in

Hy,n(z) is defined by (17) with x∗0 replaced by z. The following lemma is a direct consequence of

Theorem 3.1 and the definition of f̂ .

Lemma 4.1. For any given {(ti, yi)}, {wi}, and λ > 0 satisfying H.1, the equation Hy,n(z) = 0 has

a unique solution, which corresponds to the optimal initial state x∗0 of the smoothing spline f̂(t, x∗0).

It should be noted that the function Hy,n : R` → R` is nonsmooth in general, due to the

constraint induced nonsmoothness of u∗(t, x
∗
0) in x∗0. However, the following proposition shows the

B(ouligand)-differentiability of f̂(t, z) in z [13, Section 3.1]. Recall that a function G : R` → R` is

B-differentiable if it is Lipschitz continuous and directionally differentiable on R`, namely, for any

z ∈ R` and any direction vector d ∈ R`, the following (one-sided) directional derivative exists

G′(z; d) := lim
τ↓0

G(z + τd)−G(z)

τ
.

Proposition 4.1. Assume that ΠΩ : Rm → Rm is directionally differentiable on Rm. For any given

{(ti, yi)}, {wi}, λ > 0, and z ∈ R`, f̂(t, z) is B-differentiable in z for any fixed t ∈ [0, 1].

Proof. We prove the B-differentiability of f̂(t, z) in z by induction on the intervals [tk, tk+1], k =

0, 1, . . . , n− 1. Consider t ∈ [0, t1] first. Since u∗(t, z) = ΠΩ(0), ∀ t ∈ [0, t1) and f̂(t, z) is continuous

in t, f̂(t, z) = CeAtz +
∫ t

0 Ce
A(t−s)BΠΩ(0)ds,∀ t ∈ [0, t1], which is clearly Lipschitz continuous and

directionally differentiable, thus B-differentiable, in z for any fixed t ∈ [0, t1].

Now assume that f̂(t, ·) is B-differentiable for all t ∈ [0, t1] ∪ · · · ∪ [tk−1, tk], and consider the

interval [tk, tk+1]. Note that for any t ∈ [tk, tk+1), the optimal control

u∗(t, z) = ΠΩ

(
λ−1

k∑
i=1

wi

(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
. (19)

Since the functions ΠΩ(·) and f̂(ti, ·), i = 1, . . . , k are all B-differentiable, it follows from [13,

Proposition 3.1.6] that the composition given in u∗(t, z) remains B-differentiable in z for each fixed

t ∈ [tk, tk+1). For a given direction vector d ∈ R` and a given τ ≥ 0, u∗(t, z+ τd) is continuous in t

on [tk, tk+1). Therefore, u∗(t, z+ τd) is (Borel) measurable on [tk, tk+1) for any fixed τ and d. Since

u′∗(t, z; d) = lim
τ↓0

u∗(t, z + τd)− u∗(t, z)
τ

,

the function u′∗(t, z; d) is also (Borel) measurable on [tk, tk+1) for any fixed z and d [3, Corollary 2.10

or Corollary 5.9]. It follows from the non-expansive property of ΠΩ with respect to the Euclidean

norm ‖ · ‖2 [13] that for any given τ > 0,

‖u∗(t, z + τd)− u∗(t, z)‖2
τ

≤ 1

λ · τ

k∑
i=1

wi

∥∥∥(CeA(ti−t)B
)T∥∥∥

2
·
∥∥∥f̂(ti, z + τd)− f̂(ti, z)

∥∥∥
2
.
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This shows that for each t ∈ [tk, tk+1), ‖u∗(t,z+τd)−u∗(t,z)‖2
τ ≤

∑k
i=1

wiL(ti)‖d‖2
λ

∥∥(CeA(ti−t)B)T
∥∥

2
,

where L(ti) > 0 is the Lipschitz constant of f̂(ti, ·). Hence, it is easy to see that u′∗(t, z; d) is

bounded on the interval [tk, tk+1), i.e., there exists %k > 0 such that ‖u′∗(t, z; d)‖2 ≤ %k for all

t ∈ [tk, tk+1). This shows that u′∗(t, z; d) is (Lebesgue) integrable in t on [tk, tk+1]. In view of the

above results and the Lebesgue Dominated Convergence Theorem [3, Theorem 5.6 or Corollary 5.9],

we have f̂ ′(t, z; d) = CeAtd+
∫ t

0 Ce
A(t−s)Bu′∗(s, z; d)ds for all t ∈ [tk, tk+1]. This shows that f̂(t, ·) is

directionally differentiable for each t ∈ [tk, tk+1]. Furthermore, since ‖ΠΩ(z)−ΠΩ(z′)‖2 ≤ ‖z− z′‖2
for all z, z′ ∈ R`, and u∗(t, z) depends on finitely many f̂(ti, z) on the interval [tj , tj+1) with

j = 1, . . . , k (cf. (19)), it can be shown that for each j = 1, . . . , k, there exists a uniform Lipschitz

constant Lj > 0 (independent of t) such that for any t ∈ [tj , tj+1), ‖u∗(t, z)−u∗(t, z′)‖2 ≤ Lj‖z−z′‖2
for all z, z′ ∈ R`. In view of f̂(t, z) = CeAtz +

∫ t
0 Ce

A(t−s)Bu∗(s, z)ds, the continuity of f̂ in t, and

the induction hypothesis, we deduce the Lipschitz continuity of f̂(t, ·) for each fixed t ∈ [tk, tk+1].

Therefore, the proposition follows by the induction principle.

Clearly, the assumption of global directional differentiability of the Euclidean projector ΠΩ is

critical to Proposition 4.1. In what follows, we identify a few important cases where this assump-

tion holds. One of the most important cases is when Ω is polyhedral. In this case, as shown in

Proposition 3.1, ΠΩ(·) is a continuous piecewise affine function, and its directional derivative is

given by a piecewise linear function of a direction vector d (cf. [13, Section 4.1] or [31]). When

Ω is non-polyhedral, we consider a finitely generated convex set, i.e., Ω = {w ∈ Rm |G(w) ≤ 0},
where G : Rm → Rp1 is such that each component function Gi is twice continuously differentiable

and convex for i = 1, . . . , p1. It is known that if, for each w ∈ Rm, the set Ω satisfies either sequen-

tially bounded constraint qualification (SBCQ) or constant rank constraint qualification (CRCQ)

at ΠΩ(w), then ΠΩ is directionally differentiable; see [13, Sections 4.4-4.5] for detailed discussions.

More differential properties can be obtained for f̂(t, z). Motivated by [27, Theorem 8], we

consider semismoothness of f̂ . A function G : Rn → Rm is said to be semismooth at z∗ ∈ Rn [13] if

G is B-differentiable at all points in a neighborhood of z∗ and satisfies

lim
z∗ 6=z→z∗

G ′(z; z − z∗)−G ′(z∗; z − z∗)
‖z − z∗‖

= 0.

Semismooth functions play an important role in nonsmooth analysis and optimization; see [13] and

the references therein for details.

Lemma 4.2. Assume that ΠΩ : Rm → Rm is directionally differentiable on Rm. For any given

{(ti, yi)}, {wi}, λ > 0, and z ∈ R`, if u∗(t, ·) is semismooth at z for each fixed t ∈ [0, 1], so is f̂(t, ·).

Proof. Fix {(ti, yi)}, {wi}, λ > 0, and z ∈ R`. It suffices to prove that x̂(t, ·) is semismooth at z

for each fixed t ∈ [0, 1], where x̂(t, z) satisfies the ODE: ẋ(t) = Ax(t) + Bu∗(t, z), t ∈ [0, 1] with

x(0) = z. It follows from the proof of Proposition 4.1 that x̂(t, z) is B-differential in z on [0, 1] and

for a given d ∈ R` and t ∈ [0, 1],

x̂′(t, z; d) = eAtd+

∫ t

0
eA(t−s)Bu′∗(s, z; d)ds.

In view of this, it is easy to verify that for a fixed t ∈ [0, 1] and any z̃ ∈ R`,

x̂′(t, z̃; z̃ − z)− x̂′(t, z; z̃ − z) =

∫ t

0
eA(t−s)B

(
u′∗(s, z̃; z̃ − z)− u′∗(s, z; z − z̃)

)
ds.

By the semismoothness of u∗(s, ·) at z, we have for each fixed s ∈ [0, t],

lim
z 6=z̃→z

u′∗(s, z̃; z̃ − z)− u′∗(s, z; z̃ − z)
‖z̃ − z‖

= 0.
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Furthermore, it is shown in the proof of Proposition 4.1 that u′∗(s, z̃; z̃ − z) and u′∗(s, z; z̃ − z)

are Lebesgue integrable and bounded on [0, 1]. Therefore, it follows from Lebesgue Dominated

Convergence Theorem [3, Theorem 5.6 or Corollary 5.9] that

lim
z 6=z̃→z

x̂′(t, z̃; z̃ − z)− x̂′(t, z; z̃ − z)
‖z̃ − z‖

= 0.

This shows that x̂(t, z) is semismooth at z for each t ∈ [0, 1].

Proposition 4.2. If ΠΩ is semimsooth at any point in Rm, then for any z ∈ R`, f̂(t, ·) is semis-

mooth at z for each t ∈ [0, 1]. In particular, this holds true if Ω is polyhedral.

Proof. Note that semimsoothness implies B-differentiability. Furthermore, f̂(t, ·) is clearly semis-

mooth in z on [0, t1]. Now assume that f̂(t, z) is semismooth in z for all t ∈ [0, tk]. By the induction

hypothesis and (19), we see that for any fixed t ∈ [tk, tk+1], u∗(t, z) is a composition of ΠΩ and a

semismooth function of z. It follows from [13, Proposition 7.4.4] that u∗(t, ·) is semismooth at z

for any t ∈ [tk, tk+1]. In light of Lemma 4.2, f̂(t, ·) is semismooth at z on [tk, tk+1] and on [0, tk+1].

By the induction principle, f̂(t, ·) is semismooth at z for each t ∈ [0, 1]. Finally, if Ω is polyhedral,

then ΠΩ is continuous piecewise affine and hence (strongly) semismooth [13, Proposition 7.4.7].

It follows from the above results that Hy,n is a vector-valued B-differentiable function (pro-

vided that ΠΩ(·) is directionally differentiable). To solve the equation Hy,n(z) = 0, we consider a

nonsmooth Newton’s method with line search in [24]; its (unique) solution is the optimal initial

state x∗0 that completely determines the smoothing spline f̂(t, x∗0). It is worth pointing out that the

original nonsmooth Newton’s method in [24] assumes the existence of a direction vector d solving

the equation Hy,n(z) + H ′y,n(z; d) = 0 for any z. While this assumption is shown to be true for

almost all z in Theorem 5.1, it is highly difficult to show it for certain “degenerate” z; we refer

the reader to Section 5 for the definition of a degenerate z. To overcome this difficulty, we show

in Proposition 5.2 that a suitable small perturbation to a degenerate z yields a non-degenerate

vector for which the assumption is satisfied. This leads to a modified nonsmooth Newton’s method

for the constrained smoothing spline; we postpone the presentation of this modified algorithm to

Section 5 after all essential technical results are given. Moreover, it is noted that if f̂ is semis-

mooth, other nonsmooth Newton’s methods may be applied [13]. However, these methods require

computing multiple limiting Jacobians, which is usually numerically expensive. On the other hand,

the modified nonsmooth Newton’s method only requires computing directional derivatives (and a

single Jacobian) at a non-degenerate point.

Before ending this section, we show that for any given z∗ ∈ R`, the level set Sz∗ := {z ∈ R` :

‖Hy,n(z)‖ ≤ ‖Hy,n(z∗)‖} is bounded. This boundedness property will be critical for convergence

analysis of the modified nonsmooth Newton’s method; see the proof of Theorem 5.2.

We introduce some technical preliminaries first. Recall that the recession cone of a closed convex

set K in Rn is defined by K∞ := {d ∈ Rn |x+µd ∈ K,∀µ ≥ 0} for some x ∈ K. It is known [1] that

in a finite dimensional space such as Rn, K∞ is equivalent to the asymptotic cone of K defined by{
d ∈ Rn | there exist 0 < µk →∞, xk ∈ K such that lim

k→∞

xk
µk

= d

}
.

Furthermore, K∞ is a closed convex cone, and K is bounded if and only if K∞ = {0}. More

equivalent definitions and properties of recession cones can be found in [1, Proposition 2.1.5]. We

give a lemma pertaining to the Euclidean projection onto a recession cone as follows.
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Lemma 4.3. Let Ω be a closed convex set in Rm, let (vk) be a sequence in Rm, and let (µk) be a

positive real sequence such that limk→∞ µk =∞ and limk→∞
vk
µk

= d for some d ∈ Rm. Then

lim
k→∞

ΠΩ(vk)

µk
= ΠΩ∞(d),

where Ω∞ is the recession cone of Ω.

Proof. It follows from a similar argument as in [13, Lemma 6.3.13] that

lim
µ→∞

ΠΩ(µd)

µ
= ΠΩ∞(d).

Therefore, it suffices to show limk→∞
ΠΩ(vk)
µk

= limk→∞
ΠΩ(µkd)

µk
. Without loss of generality, we

let the vector norm ‖ · ‖ be the Euclidean norm. By virtue of the non-expansive property of the

Euclidean projector with respect to the Euclidean norm, we have∥∥ΠΩ(vk)−ΠΩ(µkd)
∥∥

µk
≤
∥∥vk − µkd∥∥

µk
=

∥∥∥∥ vkµk − d
∥∥∥∥ −→ 0, as k →∞.

This shows the equivalence of the two limits, and hence completes the proof.

With the help of this lemma, we establish the following proposition.

Proposition 4.3. Let Ω be a closed convex set in Rm. Given any {(ti, yi)} satisfying the condition

H.1, {wi}, λ > 0, and z∗ ∈ R` , the level set Sz∗ is bounded.

Proof. We prove the boundedness of Sz∗ by contradiction. Suppose not. Then there exists a

sequence (zk) in Sz∗ such that ‖zk‖ → ∞ as k → ∞. Without loss of generality, we may assume

that (zk/‖zk‖) converges to v∗ ∈ R` with ‖v∗‖ = 1 by taking a suitable subsequence of (zk) if

necessary. Define the functions f̃ : [0, 1]× R` → Rp and ũ∗ : [0, 1]× R` → Rm as:

f̃(t, z) := CeAtz +

∫ t

0
CeA(t−s)Bũ∗(s, z) ds,

and

ũ∗(t, z) :=


ΠΩ∞(0), ∀ t ∈ [0, t1)

ΠΩ∞

(
λ−1

k∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, z)

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1

where Ω∞ is the recession cone of Ω. Note that f̃ can be treated as the shape restricted smoothing

spline obtained from the linear control system Σ(A,B,C,Ω∞) for the given ỹ := (ỹi)
n
i=1 = 0,

namely, the control constraint set Ω is replaced by its recession cone Ω∞ and y by the zero vector.

We claim that for each fixed t ∈ [0, 1],

lim
k→∞

f̂(t, zk)

‖zk‖
= f̃(t, v∗).

We prove this claim by induction on the intervals [tj , tj+1] for j = 0, 1, . . . , n− 1.

Consider the interval [0, t1] first. Recall that u∗(t, zk) = ΠΩ(0),∀ t ∈ [0, t1) such that f̂(t, zk) =

CeAtzk+
∫ t

0 Ce
A(t−s)BΠΩ(0)ds for all t ∈ [0, t1]. Hence, in view of ΠΩ∞(0) = 0 such that ũ∗(t, v

∗) =

0 and f̃(t, v∗) = CeAtv∗ for all t ∈ [0, t1], we have, for each fixed t ∈ [0, t1],

lim
k→∞

f̂(t, zk)

‖zk‖
= lim

k→∞
CeAt

zk
‖zk‖

= CeAtv∗ = f̃(t, v∗).
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Now suppose the claim holds true for all t ∈ [0, tj ] with j ∈ {1, . . . , n−2}, and consider [tj , tj+1].

Note that for each t ∈ [tj , tj+1),

u∗(t, z) = ΠΩ

(
λ−1

j∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
.

By the induction hypothesis and the boundedness of CeA(ti−t)B on [tj , tj+1] for all i = 1, . . . , j, we

have, for each fixed t ∈ [tj , tj+1),

lim
k→∞

λ−1
∑j

i=1wi
(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

)
‖zk‖

= λ−1
j∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, v

∗).

By Lemma 4.3, we further have, for each fixed t ∈ [ts, ts+1) with s ∈ {1, . . . , j},

lim
k→∞

u∗(t, zk)

‖zk‖
= lim

k→∞

ΠΩ

(
λ−1

∑s
i=1wi

(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
‖zk‖

= ΠΩ∞

(
λ−1

s∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, v

∗)

)
= ũ∗(t, v

∗).

Clearly, ũ∗(·, v∗) is Lebesgue integrable and uniformly bounded on [tj , tj+1]. Therefore, for each

fixed t ∈ [tj , tj+1],

lim
k→∞

f̂(t, zk)

‖zk‖
= lim

k→∞

CeAtzk +

∫ t

0
CeA(t−s)Bu∗(s, zk) ds

‖zk‖

= lim
k→∞

CeAtzk
‖zk‖

+

∫ t

0
CeA(t−s)B

(
lim
k→∞

u∗(s, zk)

‖zk‖

)
ds

= CeAtv∗ +

∫ t

0
CeA(t−s)Bũ∗(s, v

∗) ds

= f̃(t, v∗),

where the second equality follows from the Lebesgue Dominated Convergence Theorem [3, Theorem

5.6]. This establishes the claim by the induction principle.

In light of the claim and the definition of Hy,n in (18), we hence have

lim
k→∞

Hy,n(zk)

‖zk‖
=

n∑
i=1

wi
(
CeAti

)T
f̃(ti, v

∗) = H̃ỹ,n(v∗)
∣∣
ỹ=0

,

where H̃ỹ,n : R` → R` with ỹ = (ỹi)
n
i=1 is defined by

H̃ỹ,n(z) :=
n∑
i=1

wi
(
CeAti

)T(
f̃(ti, z)− ỹi

)
.

Since the smoothing spline f̃ is obtained from the linear control system Σ(A,B,C,Ω∞), and the

recession cone Ω∞ contains the zero vector, it is easy to verify that when ỹ = 0, the optimal solution

pair (ũ∗, x̃
∗
0) for f̃(t, x̃∗0) is x̃∗0 = 0 and ũ∗(t, x̃

∗
0) ≡ 0 on [0, 1] (such that f̃(t, x̃∗0) ≡ 0 on [0, 1]). Based
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on Lemma 4.1, we deduce that the equation H̃0,n(z) = 0 has a unique solution z = 0. Since v∗ 6= 0,

we must have H̃0,n(v∗) 6= 0. Consequently,

lim
k→∞

‖Hy,n(zk)‖
‖zk‖

=
∥∥H̃0,n(v∗)

∥∥ > 0.

This shows that ‖Hy,n(z)‖ is unbounded on Sz∗ , which yields a contradiction.

5 The Modified Nonsmooth Newton’s Method: Algorithm and

Convergence Analysis

In this section, we study the modified nonsmooth Newton’s method and its global convergence. In

particular, we focus on the case where the control constraint set Ω is polyhedral for the following

reasons: (i) the class of polyhedral Ω is already very broad and includes a number of important

applications; (ii) since any closed convex set is the intersection of all closed half-spaces containing

it, such a set can be approximated by a polyhedron with good precision; (iii) when Ω is polyhedral,

ΠΩ is globally B-differentiable, while this is not the case for a non-polyhedral Ω, unless certain

constraint qualifications are imposed globally. Furthermore, for a non-polyhedral Ω, the directional

derivatives of ΠΩ are much more difficult to characterize and compute.

Let Ω = {w ∈ Rm |Dw ≥ b} be a polyhedron with D ∈ Rr×m and b ∈ Rr. Proposition 3.1

shows that ΠΩ : Rm → Rm is a (Lipschitz) continuous and piecewise affine (PA) function. It follows

from (19) that for t ∈ [tk, tk+1) with k = 1, 2, . . . , n− 1, Bu∗(t, z) = BΠΩ

(
BT e−A

T tvk(z)
)
, where

vk(z) := λ−1
k∑
i=1

wi
(
CeAti

)T (
f̂(ti, z)− yi

)
∈ R`. (20)

Define the function F : R` → R` as F := B ◦ ΠΩ ◦ BT , which is also Lipschitz continuous and

piecewise affine. It follows from the theory of piecewise smooth functions (e.g., [31]) that such

a function admits an appealing geometric structure for its domain, which provides an alternative

representation of the function. Specifically, let Ξ be a finite family of polyhedra {Xi}m∗i=1, where

each Xi := { v ∈ R` | Giv ≥ hi } for a matrix Gi and a vector hi. We call Ξ a polyhedral subdivision

of R` [13, 31] if

(a) the union of all polyhedra in Ξ is equal to R`, i.e.,
⋃m∗
i=1Xi = R`,

(b) each polyhedron in Ξ has a nonempty interior (thus is of dimension `), and

(c) the intersection of any two polyhedra in Ξ is either empty or a common proper face of both

polyhedra, i.e., Xi ∩ Xj 6= ∅ =⇒
[
Xi ∩ Xj = Xi ∩ {v | (Giv − hi)α = 0} = Xj ∩ {v | (Gjv −

hj)β = 0} for nonempty index sets α and β with Xi ∩ {v | (Giv − hi)α = 0} 6= Xi and

Xj ∩ {v | (Gjv − hj)β = 0} 6= Xj
]
.

For a Lipschitz PA function F , one can always find a polyhedral subdivision of R` and finitely

many affine functions gi(v) ≡ Eiv+ li such that F coincides with one of the gi’s on each polyhedron

in Ξ [13, Proposition 4.2.1] or [31]. Therefore, an alternative representation of F is given by

F (v) = Eiv + li, ∀ v ∈ Xi, i = 1, . . . ,m∗,

and v ∈ Xi ∩ Xj =⇒ Eiv + li = Ejv + lj .

Given v ∈ R`, define the index set I(v) := {i | v ∈ Xi}. Moreover, given a direction vector d̃ ∈ R`,
there exists j ∈ I(v) (dependent on d̃) such that F ′(v; d̃) = Ej d̃. (A more precise characterization
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of the directional derivative of the Euclidean projection is defined by the critical cone [13, Theorem

4.1.1], which shows that for a fixed v, F ′(v; d̃) is continuous and piecewise linear (PL) in d̃.) In

view of this and (19), we have that, for each fixed t ∈ [tk, tk+1) with k = 1, . . . , n− 1, there exists

j ∈ I(e−A
T tvk(z)) (dependent on d) such that

Bu′∗(t, z; d) = Eje
−AT tv′k(z; d), where v′k(z; d) = λ−1

k∑
i=1

wi
(
CeAti

)T
f̂ ′(ti, z; d). (21)

For each fixed t, the matrix Ej not only depends on z, which is usually known, but also depends

on the direction vector d that is unknown a priori in a numerical algorithm. This leads to great

complexity and difficulty in solving the equation Hy,n(z) +H ′y,n(z; d) = 0 for a given z, where d is

the unknown. In what follows, we identify an important case where e−A
T tvk(z) is in the interior of

some polyhedron Xj such that the matrix Ej relies on z (and t) but is independent of d.

For notational convenience, define

q(t, v) := e−A
T tv, v ∈ R`,

which satisfies the linear ODE: q̇(t, v) = −AT q(t, v). For a polyhedron Xi = {v |Giv ≥ hi} in Ξ,

define Yi := {v ∈ R` | (Giv − hi, Gi(−AT )v,Gi(−AT )2v, . . . , Gi(−AT )`v) < 0}, where < denotes

the lexicographical nonnegative order. For a given v ∈ R`, let the index set J (v) := {i | v ∈ Yi}.
Clearly, J (v) ⊆ I(v) for any v. Furthermore, given a t∗, q(t, v) ∈ Xi for all t ∈ [t∗, t∗ + ε] for some

ε > 0 if and only if q(t∗, v) ∈ Yi. We introduce more concepts as follows.

Definition 5.1. Let q(t, v) and a time t∗ be given. If J (q(t∗, v)) 6= I(q(t∗, v)), then we call t∗ a

critical time along q(t, v) and its corresponding state q(t∗, v) a critical state. Furthermore, if there

exist ε > 0 and a polyhedron Xi in Ξ such that q(t, v) ∈ Xi, ∀ t ∈ [t∗ − ε, t∗ + ε], then we call t∗ a

non-switching-time along q(t, v); otherwise, we call t∗ a switching time along q(t, v).

It is known that a switching time must be a critical time but not vice versa [32]. Furthermore,

a critical state must be on the boundary of a polyhedron in Ξ. The following result, which is a

direct consequence of [32, Proposition 7], presents an extension of the so-called non-Zenoness of

piecewise affine or linear systems (e.g., [5, 25, 33, 34]).

Proposition 5.1. Consider q(t, v) and a compact time interval [t∗, t∗+T ] where T > 0. Then there

are finitely many critical times on [t∗, t∗ + T ] along q(t, v). Particularly, there exists a partition

t∗ = t̂0 < t̂1 < · · · < t̂M−1 < t̂M = t∗ + T such that for each i = 0, 1, . . . ,M − 1, I(q(t, v)) =

J (q(t, v)) = J (q(t′, v)),∀ t ∈ (t̂i, t̂i+1) for any t′ ∈ (t̂i, t̂i+1).

It follows from the above proposition that for any given v, there are finitely many critical times

on the compact time interval [tk, tk+1] along q(t, v), where k ≥ 1. We call q(t, v) non-degenerate on

[tk, tk+1] if, for any two consecutive critical times t̂j and t̂j+1 on [tk, tk+1], there exists an index i∗
(dependent on (t̂j , t̂j+1)) such that I(q(t, v)) = {i∗} for all t ∈ (t̂j , t̂j+1). In other words, q(t, v) is

non-degenerate if it is in the interior of some polyhedron of Ξ on the entire (t̂j , t̂j+1).

We introduce more notation and assumptions. First, it is clear that there exist constants ρ1 > 0

and ρ2 > 0 such that ‖CeA(t−s)‖∞ ≤ ρ1 for all t, s ∈ [0, 1] and maxi∈{1,...,m∗} ‖Ei‖∞ ≤ ρ2. In

addition, we assume that

H.2 there exist constants ρt > 0, µ ≥ ν > 0 such that for all n,

max
0≤i≤n−1

|ti+1 − ti| ≤
ρt
n
,

ν

n
≤ wi ≤

µ

n
, ∀ i.
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Theorem 5.1. Let Ω be a polyhedron in Rm. Assume that H.1−H.2 hold and λ ≥ µ2ρ2
1ρ2ρt/(4ν).

Given z ∈ R`, let vk(z) be defined as in (20). Suppose that q(t, vk(z)) = e−A
T tvk(z) is non-

degenerate on [tk, tk+1] for each k = 1, 2 . . . , n − 1. Then there exists a unique direction vector

d ∈ R` satisfying Hy,n(z) +H ′y,n(z; d) = 0.

Proof. It follows from the non-degeneracy of q(t, vk(z)) and Proposition 5.1 that, for the given z

and each [tk, tk+1] with k = 1, . . . , n− 1, there exists a partition tk = t̂k,0 < t̂k,1 < · · · < t̂k,Mk−1 <

t̂k,Mk
= tk+1 such that for each j = 0, . . . ,Mk − 1, q(t, vk(z)) is in the interior of some polyhedron

of Ξ for all t ∈ (t̂k,j , t̂k,j+1). It is easy to show via the continuity of f̂(t, z) in z that for each open

interval (t̂k,j , t̂k,j+1), there exists a matrix Ek,j ∈ {E1, . . . , Eq} such that for all t ∈ (t̂k,j , t̂k,j+1),

Bu′∗(t, z; d) = Ek,je
−AT tv′k(z; d). Letting w̃i := wi/λ, i = 1, . . . , n and by (21), we have, for r ≥ k+1,∫ tk+1

tk

CeA(tr−s)Bu′∗(s, z; d)ds =

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

 e−A
T sv′k(z; d)ds

=

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

 e−A
T s

k∑
i=1

w̃i
(
CeAti

)T
f̂ ′(ti, z; d)ds

=
k∑
i=1

w̃i


∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

(CeA(ti−s)
)T
ds

 f̂ ′(ti, z; d)

=
k∑
i=1

w̃i V(r,k,i),z f̂
′(ti, z; d),

where, for each i = 1, . . . , k,

V(r,k,i),z :=

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

(CeA(ti−s)
)T
ds ∈ Rp×p.

Note that for a fixed triple (r, k, i), V(r,k,i),z depends on z only and r > k ≥ i ≥ 1. For r > i ≥ 1,

define W(r,i),z := w̃i
∑r−1

j=i V(r,j,i),z. Therefore, for each k = 1, . . . , n− 1,

f̂ ′(tk+1, z; d) = CeAtk+1d+
k∑
j=1

∫ tj+1

tj

CeA(tk+1−s)Bu′∗(s, z; d)ds

= CeAtk+1d+

k∑
j=1

j∑
i=1

w̃i V(k+1,j,i),z f̂
′(ti, z; d) = CeAtk+1d+

k∑
i=1

W(k+1,i),z f̂
′(ti, z; d).

In what follows, we drop z in the subscript of W for notational simplicity. In view of f̂ ′(t1, z; d) =

CeAt1d, it can be shown via induction that for each k = 2, . . . , n,

f̂ ′(tk, z; d) = CeAtkd+W(k,k−1)Ce
Atk−1d+

(
W(k,k−2) +W(k,k−1)W(k−1,k−2)

)
CeAtk−2d

+ · · · · · · + · · · · · ·

+

(
W(k,1) +W(k,s)W(s,1) +

k−1∑
s1=3

s1−1∑
s2=2

W(k,s1)W(s1,s2)W(s2,1) + · · ·

· · · · · · · · · +W(k,k−1)W(k−1,k−2) · · ·W(3,2)W(2,1)

)
CeAt1d

=
k∑
j=1

W̃(k,j)Ce
Atjd,

16



where the matrices W̃(k,j) of order p are defined in terms of W(k,s) as shown above.

For a given r ∈ {1, . . . , n}, define

Cr :=


CeAt1

CeAt2

...

CeAtr

 ∈ Rrp×`, Wr := diag(w1Ip, . . . , wrIp)


Ip

W̃(2,1) Ip
W̃(3,1) W̃(3,2) Ip

...
...

. . .
. . .

W̃(r,1) W̃(r,2) · · · W̃(r,r−1) Ip

 ∈ Rrp×rp,

(22)

where Ip is the identity matrix of order p and Wr depends on z but is independent of d. Hence,

the directional derivative of
∑r

i=1wi(Ce
Ati)T

(
f̂(ti, z)− yi

)
along the direction vector d is given by

r∑
i=1

wi
(
CeAti

)T
f̂ ′(ti, z; d) = CT

r Wr Cr d.

Clearly, Wr is invertible for any r, and it can be easily verified via the property of W̃(k,j) that

W−1
r =


Ip

−W(2,1) Ip
−W(3,1) −W(3,2) Ip

...
...

. . .
. . .

−W(r,1) −W(r,2) · · · −W(r,r−1) Ip

diag(w−1
1 Ip, . . . , w

−1
r Ip).

Moreover, define the symmetric matrix

Vr :=
1

2

(
W−1

r +
(
W−1

r

)T)
=



Ip
w1

−W(2,1)

2w1
−W(3,1)

2w1
· · · −W(r,1)

2w1

−W(2,1)

2w1

Ip
w2

−W(3,2)

2w2
· · · −W(r,2)

2w2

−W(3,1)

2w1
−W(3,2)

2w2

Ip
w3

. . .
...

...
...

. . .
. . . −W(r,r−1)

2wr−1

−W(r,1)

2w1
−W(r,2)

2w2
· · · −W(r,r−1)

2wr−1

Ip
wr


.

It follows from assumption H.2 that maxi w̃i ≤ µ/(λn) and that for any 1 ≤ j < k,

‖W(k,j)‖∞ ≤
µ

λn

∫ tk

tj

ρ2
1ρ2dτ ≤

µρ2
1ρ2

λn
· ρt(k − j)

n
.

Furthermore, we deduce from H.2 that maxi,j
wi
wj
≤ µ/ν. Therefore, for any fixed k = 1, . . . , n,

wk

(
k−1∑
i=1

∥∥∥W(k,i)

2wi

∥∥∥
∞

+

n∑
i=k+1

∥∥∥W(i,k)

2wk

∥∥∥
∞

)
≤ µ2ρ2

1ρ2ρt
2λν n2

(
k−1∑
i=1

(k − i) +

n∑
i=k+1

(i− k)

)

≤ µ2ρ2
1ρ2ρt

2λν n2

n−1∑
i=1

i ≤ µ2ρ2
1ρ2ρt (n− 1)

4λν n
< 1,

where the last inequality follows from the assumption on λ. This implies that the symmetric matrix

Vr is strictly diagonally dominant for any r. Hence, for each r, Vr is positive definite, so are W−1
r

and Wr (although not symmetric).

Finally, note that H ′y,n(z; d) = CT
n Wn Cn d, and Cn has full column rank, in light of the

assumption H.1. Consequently, CT
n Wn Cn is positive definite such that the unique direction

vector d = −
(
CT
n Wn Cn

)−1
Hy,n(z) solves the equation Hy,n(z) +H ′y,n(z; d) = 0.
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The above result relies on the critical non-degenerate property of q(t, vk(z)). In what follows, we

consider the case where q(t, vk(z)) is degenerate on some sub-interval of [tk, tk+1]. Geometrically,

this implies that the trajectory of q(t, vk(z)) travels on a face of a polyhedron in Ξ for some time. It

shall be shown that under mild assumptions, a suitable small perturbation of z will lead to a non-

degenerate trajectory. Recall that each polyhedron Xi in the polyhedral subdivision Ξ is defined by

the matrix Gi ∈ Rmi and the vector hi ∈ Rmi . Since each Xi has non-empty interior, we assume,

without loss of generality, that for each j = 1, . . . ,mi, the set {v ∈ Xi | (Giv − hi)j = 0} represents

a (unique) facet of Xi (i.e., a (` − 1)-dimensional face of Xi) [31, Proposition 2.1.3], where (Gi)j•
denotes the jth row of Gi and satisfies ‖(Gi)Tj•‖2 = 1.

Proposition 5.2. Let Ω be a polyhedron in Rm. For a given z ∈ R`, suppose that q(t, vk(z)) is

degenerate on the interval [tk, tk+1] for some k ∈ {1, . . . , n − 1}, where vk(z) is defined in (20).

Assume that (C,A) is an observable pair, H.1 −H.2 hold, and λ ≥ µ2ρ2
1ρ2ρt/(4ν). Then for any

ε > 0, there exists d ∈ R` with 0 < ‖d‖ ≤ ε such that q(t, vk(z + d)) is non-degenerate on [tk, tk+1]

for each k = 1, . . . , n− 1.

Proof. Fix ε > 0. Define the set of vector-scalar pairs that represent all the facets of the polyhedra

in Ξ:

S :=
{(

(Gi)
T
j•, (hi)j

)
| i = 1, . . . ,m∗, j = 1, . . . ,mi

}
.

Note that if q(t, vk(z)) is degenerate on [tk, tk+1] for some k, then there exist a pair (g, α) ∈ S and

an open subinterval T ⊂ [tk, tk+1] such that gT q(t, vk(z)) − α = 0 for all t ∈ T , which is further

equivalent to gT q(t, vk(z))−α = 0 for all t ∈ [tk, tk+1] in view of q(t, vk(z)) = e−A
T tvk(z). Therefore,

we define for each k ∈ {1, . . . , n− 1}, Sz,k,D := {(g, α) ∈ S | gT q(t, vk(z)) = α, ∀ t ∈ [tk, tk+1]}.
Let k1 be the smallest k such that Sz,k,D is nonempty (or equivalently q(t, vk(z)) is degenerate on

[tk, tk+1]). Clearly, k ≥ 1. Since q(t, vk(z)) is non-degenerate on [tk, tk+1] for each k = 1, . . . , k1− 1,

it follows from a similar argument in the proof of Theorem 5.1 that v′k1
(z; d) = λ−1CT

k1
Wk1,z Ck1 d,

where we write Wk1 as Wk1,z to emphasize its dependence on z (but independent of d). Consider

the following two cases:

(i) (g, α) ∈ Sz,k1,D. It follows from the B-differentiability of vk1(·) that q(t, vk1(z + d)) =

q(t, vk1(z)) + q
(
t, v′k1

(z; d) + o(‖d‖)
)

for each t ∈ [tk1 , tk1+1] [13, Proposition 3.1.3]. Therefore,

using the fact that ‖g‖2 = 1, we have for each t ∈ [tk1 , tk1+1],

gT q(t, vk1(z+d))−α =
(
gT q(t, vk1(z))−α

)
+gT q

(
t, v′k1

(z; d)+o(‖d‖)
)

= gT q
(
t, v′k1

(z; d)
)
+o(‖d‖).

Furthermore, under H.2 and the assumption on λ, it is shown in Theorem 5.1 that Wk1,z is

positive definite. Let the observability matrix

Vg :=


gT

gTAT

...

gT (AT )`−1

 ∈ R`×`.

Since gT q(t, v′k1
(z; d)) = gT e−A

T tCT
k1

Wk1,z Ck2 d, we see that gT q(t, v′k1
(z; d)) is nonvanishing

on [tk1 , tk1+1] if and only if d /∈ Ker(VgC
T
k1

Wk1,z Ck1). Since g is nonzero, Wk1,z is positive

definite, and (C,A) is an observable pair, it is easy to show that VgC
T
k1

Wk1,z Ck1 6= 0 such

that Ker(VgC
T
k1

Wk1,z Ck1) is a proper subspace of R`. Hence there exists a scalar τ > 0

such that for any d /∈ Ker(VgC
T
k1

Wk1,z Ck1) with 0 < ‖d‖ ≤ τ , gT q(t, v′k1
(z; d)), and thus

gT q(t, vk1(z+d))−α, is nonvanishing on [tk1 , tk1+1], which further implies that gT q(t, vk1(z+

d))− α has at most finitely many zeros on [tk1 , tk1+1].
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Algorithm 1 Modified Nonsmooth Newton’s Method with Line Search

Choose scalars β ∈ (0, 1) and γ ∈ (0, 1
2);

Initialize k = 0 and choose an initial vector z0 ∈ R` such that q(t, vj(z
0)) is non-degenerate on

each [tj , tj+1];

repeat

k ← k + 1;

Find a direction vector dk such that Hy,n(zk−1) +H ′y,n(zk−1; dk) = 0;

Let mk be the first nonnegative integer m for which g(zk−1) − g(zk−1 + βmk d
k) ≥

−γβmk g′(zk−1; dk);

zk ← zk−1 + βmkdk;

if q(t, vj(z
k)) is degenerate on some [tj , tj+1] then

Choose d ′ ∈ R` with sufficiently small ‖d ′‖ > 0 such that q(t, vj(z
k + d ′)) is non-degenerate

on each [tj , tj+1];

zk ← zk + d ′;

end if

until g(zk) is sufficiently small

return zk

(ii) (g, α) ∈ S \ Sz,k1,D. This means that there exists t∗ ∈ [tk1 , tk1+1] such that gT q(t∗, vk1(z +

d)) − α 6= 0. Due to the continuity of vk1(z), we see that there exists τ > 0 such that if

‖d‖ ≤ τ , then gT q(t∗, vk1(z + d))− α 6= 0, which also implies that gT q(t, vk1(z + d))− α has

at most finitely many zeros on [tk1 , tk1+1]. Similarly, we see that for each k = 1, . . . , k1 − 1

and each (g, α) ∈ S, gT q(t, vk(z + d))− α has at most finitely many zeros on [tk1 , tk1+1].

By virtue of the finiteness of S and the above results, we obtain a finite union of proper

subspaces of R` denoted by S and a constant η > 0 such that for each (g, α) ∈ S and any d 6∈ S with

0 < ‖d‖ ≤ η, gT q(t, vk(z+d))−α has at most finitely many zeros on [tk, tk+1] for each k = 1, . . . , k1.

Since gT q(t, vk(z + d)) − α 6= 0 for all but finitely many times in [tk, tk+1] with k = 1, . . . , k1 for

all (g, α) ∈ S, we conclude that except finitely many times in [tk, tk+1], q(t, vk(z + d)) must be in

the interior of some polyhedron in Ξ at each t ∈ [tk, tk+1], where k = 1, . . . , k1 . This shows that

q(t, vk(z + d)) is non-degenerate on [tk, tk+1] for each k = 1, . . . , k1. In particular, we can choose a

nonzero vector d1 with ‖d1‖ ≤ ε/n satisfying this condition.

Now define z̃1 := z + d1, and let k2 be the smallest k such that Sz̃1,k,D is nonempty. Clearly,

k2 ≥ k1 + 1. By replacing z by z̃1 in the preceding proof, we deduce via a similar argument that

there exists a nonzero vector d2 with ‖d2‖ ≤ min(ε/n, ‖d1‖/4) such that q(t, vk(z̃
1 + d2)) is non-

degenerate on [tk, tk+1] for each k = 1, . . . , k2. Continuing this process and using induction, we

obtain at most (n− 1) nonzero vectors dj with ‖dj‖ ≤ min(ε/n, ‖d1‖/2j) for j ≥ 2 and d∗ :=
∑

j d
j

such that q(t, vk(z+d∗)) is non-degenerate on [tk, tk+1] for each k = 1, . . . , n−1. Obviously ‖d∗‖ ≤ ε.
Furthermore, by virue of ‖

∑
j≥2 d

j‖ ≤ ‖d1‖/2, we conclude that d∗ 6= 0.

We are now ready to present the modified nonsmooth Newton’s algorithm. Let the merit

function g : R` → R+ be g(z) := 1
2H

T
y,n(z)Hy,n(z). Then g is B-differentiable and g′(z; d) =

HT
y,n(z)H ′y,n(z; d). The numerical procedure of this algorithm is described in Algorithm 1.

Finally, we establish the global convergence of Algorithm 1 under suitable assumptions.

Theorem 5.2. Let Ω be a polyhedron in Rm. If (C,A) is an observable pair, the assumptions in

Theorem 5.1 hold, and lim infk β
mk > 0, then the sequence (zk) generated by Algorithm 1 has an

accumulation point that is a solution to the equation Hy,n(z) = 0.
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Proof. Let (zk) be a sequence generated by Algorithm 1 from an initial vector z0 ∈ R`; the existence

of (zk) is due to Theorem 5.1 and Proposition 5.2. Without loss of generality, we assume that

Hy,n(zk) 6= 0 for each k. Letting d ′ be the perturbation vector in the algorithm in case of degeneracy,

we have g(zk−1)− g(zk−d ′) ≥ σβmk‖Hy,n(zk−d ′)‖22. Since ‖d ′‖ can be arbitrarily small and Hy,n

and g are continuous, it follows from a similar argument as in the proof of [24, Theorem 4] that

g(zk−1)−g(zk) ≥ σβmk

(
‖Hy,n(zk)‖22+o(‖Hy,n(zk)‖22)

)
. Hence,

(
g(zk)

)
is a nonnegative and strictly

decreasing sequence. This also shows, in view of Proposition 4.3, that the sequence (zk) is bounded

and thus has an accumulation point. Furthermore,
(
g(zk)

)
converges and limk→∞(βmk‖Hy,n(zk)‖22+

εk) = 0, where each |εk| is arbitrarily small by choosing small ‖d ′‖. (For example, |εk| can be of

order o(‖Hy,n(zk)‖22) by choosing a suitable d ′.) Hence, if lim infk β
mk > 0, then an accumulation

point of (zk) is a desired solution to the B-differentiable equation Hy,n(z) = 0.

6 Numerical Examples

In this section, three nontrivial numerical examples are given to demonstrate the performance of the

shape restricted smoothing spline and the proposed nonsmooth Newton’s method. In each example,

the underlying true function f : [0, 1] → R is defined by A ∈ R2×2, B = (0, 1)T , C = (1, 0), a true

initial state x0, and a true control function u ∈ L2([0, 1],R) with the control constraint set Ω ⊂ R.

The sample data (yi) is generated by yi = f(ti) + εi, where (εi) is iid zero mean random error with

variance σ2. The weights wi are chosen as wi = 1/n for each i = 1, . . . , n in all cases. Furthermore,

different choices of possibly non-equally spaced design points (ti) are considered in order to illustrate

flexibility of the proposed algorithm.

In what follows, the true underlying function f , the corresponding matrix A, the true control u,

the design points ti, the true initial state x0, the guess of the initial condition z0 in the algorithm,

the variance σ, and the penalty parameter λ are given for each example. It is easy to verify that

(C,A) is an observable pair, and that the assumptions H.1 and H.2 hold in each example.

Example 6.1. The convex constraint with non-equally spaced designed points:

f(t) =
(

4
3 t

3 − t+ 1
)
· I[0, 1

2
) +
(
− 8

3 t
3 + 6t2 − 4t+ 3

2

)
· I[ 1

2
, 3
4

) +
(

1
2 t+ 3

8

)
· I[ 3

4
,1],

A =

[
0 1

0 0

]
, x0 = (1,−1)T , u(t) = 8t · I[0, 1

2
) + (12− 16t) · I[ 1

2
, 3
4

),

Ω = [0,∞), z0 = (2, 3)T , σ = 0.1, λ = 10−4, and the design points(
ti
)n
i=0

=
{

0,
1

2n
, . . . ,

1

20
,

1

20
+

4

3n
, . . . ,

9

20
,

9

20
+

1

2n
, . . . ,

11

20
,
11

20
+

1

2n
, . . . ,

19

20
,
19

20
+

1

2n
, . . . , 1

}
.

Example 6.2. The unbounded control constraint with non-equally spaced designed points:

f(t) =


11.610t(e−t + e−2t)− 27.219e−t + 25.219e−2t + 2 if t ∈ [0, 1

4)

−6.234e−t + 3.257e−2t + 3 if t ∈ [1
4 ,

1
2)

−11.610t(e−t + e−2t) + 18.222e−t − 21.692e−2t + 3 if t ∈ [1
2 ,

3
4)

−3.345e−t + 1.306e−2t + 2 if t ∈ [3
4 , 1]

A =

[
0 1

−2 −3

]
, x0 = (7/2,−7)T , u(t) =


23.219(e−t − e−2t) + 8 if t ∈ [0, 1

4)

12 if t ∈ [1
4 ,

1
2)

−38.282e−t + 63.117e−2t + 6 if t ∈ [1
2 ,

3
4)

8 if t ∈ [3
4 , 1]

Ω = [8,∞), z0 = (0, 1/2)T , σ = 0.2, λ = 10−4, and the design points(
ti
)n
i=0

=
{

0,
1

2n
,

2

2n
, . . . ,

1

20
,

1

20
+

9

8n
, . . . ,

19

20
,
19

20
+

1

2n
, . . . , 1

}
.
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Figure 1: Left column: spline performance of Examples 6.1 (top), 6.2 (middle), and 6.3 (bottom);

right column: the corresponding control performance of Examples 6.1–6.3.

Example 6.3. The bounded control constraint with equally spaced designed points:

f(t) =
(

4
3 t

3 + t2
)
· I[0, 1

2
) +
(
− 8

3 t
3 + 7t2 − 3t+ 1

2

)
· I[ 1

2
, 3
4

) +
(
t2 + 3

2 t−
5
8

)
· I[ 3

4
,1],

A =

[
0 1

0 0

]
, x0 = (0, 0)T , u(t) = (8t+ 2) · I[0, 1

2
) + (14− 16t) · I[ 1

2
, 3
4

) + 2 · I[ 3
4
,1],

Ω = [2, 6], z0 = (2, 3)T , σ = 0.3, λ = 10−4, and the equally spaced design points ti = i
n .

The proposed nonsmooth Newton’s algorithm is used to compute the shape restricted smoothing

splines for the three examples. In all cases, we choose β = 0.25 and γ = 0.1 in Algorithm 1 with the

terminating tolerance as 10−6. The numerical results for Example 6.1 with n = 50, Example 6.2 with

n = 25, and Example 6.3 with n = 25 are displayed in Figure 1. For comparison, the unconstrained

smoothing splines are also shown in Figure 1. The number of iterations for numerical convergence

of the proposed nonsmooth Newton’s algorithm ranges from a single digit to 160 with the median

between 9 and 34 (depending on system parameters, sample data and size, and initial state guesses).

It is observed that the proposed nonsmooth Newton’s algorithm converges superlinearly overall.

To further compare the performance of constrained smoothing splines and unconstrained smooth-

ing splines, simulations were run 200 times, and the average performance over these simulations was

recorded in each case. Three performance metrics are considered, namely, the L2-norm, the L∞-

norm, and the 2-norm of the difference between the true and computed initial conditions. Table 1

summarizes the spline performance of the two splines for different sample sizes, where f̂ denotes
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Table 1: Performance of Shape Restricted (constr.) Splines vs. Unconstrained Splines

‖f − f̂‖L2 ‖f − f̂‖L∞ ‖x0 − x̂0‖2
Example sample size constr. unconstr. constr. unconstr. constr. unconstr.

Ex. 6.1
n = 25 0.00696 0.00723 0.06809 0.07216 0.25985 0.30825

n = 50 0.00351 0.00362 0.04971 0.05218 0.19141 0.22549

n = 100 0.00177 0.00180 0.03487 0.03588 0.14021 0.15958

Ex. 6.2
n = 25 0.01302 0.01492 0.12639 0.15609 0.76778 1.45583

n = 50 0.00704 0.00791 0.09998 0.12474 0.70899 1.41832

n = 100 0.00387 0.00436 0.08048 0.10519 0.75410 1.54277

Ex. 6.3
n = 25 0.01728 0.02138 0.16761 0.22974 0.44519 0.97093

n = 50 0.00912 0.01074 0.13525 0.16891 0.36184 0.67901

n = 100 0.00463 0.00531 0.09601 0.12063 0.31549 0.61803

the computed smoothing splines and x̂0 denotes the computed initial condition. It is seen in the

above examples that the shape restricted smoothing spline usually outperforms its unconstrained

counterpart. It should be pointed out that the performance of shape restricted smoothing splines

critically depends on the penalty parameter λ, the weights wi, the control constraint set Ω, and

the function class that the true function belongs to. However, detailed discussions of performance

issues are beyond the scope of the current paper and will be addressed in the future.

7 Conclusion

Shape restricted smoothing splines subject to general linear dynamics and control constraints are

studied. Such a constrained smoothing spline is formulated as a finite-horizon constrained optimal

control problem with unknown initial state and control. Optimality conditions are derived using

the Hilbert space methods and variational techniques. To compute the constrained smoothing

spline, the optimality conditions are converted to a nonsmooth B-differentiable equation, and a

modified nonsmooth Newton’s algorithm with line search is proposed to solve the equation. Detailed

convergence analysis of this algorithm is given for a polyhedral control constraint, and numerical

examples show the effectiveness of the algorithm. A variety of extensions will be considered in future

research. One extension is a nonlinear system model for constrained splines. Another interesting

direction is the estimation of time-delay systems with a cost functional similar to (4) studied in

[7, 20]. Statistical performance analysis of constrained smoothing splines will also be addressed.
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