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Abstract

A dumbbell-shaped rigid body can be used to represent certain large spacecraft or
asteroids with bimodal mass distributions. Such a dumbbell body is modeled here as
two identical mass particles connected by a rigid, massless link. Equations of motion
for the five degrees of freedom of the dumbbell body in a central gravitational field
are obtained. The equations of motion characterize three orbit degrees of freedom,
two attitude degrees of freedom, and the coupling between them. The system has
a continuous symmetry due to a cyclic variable associated with the angle of right
ascension of the dumbbell body. Reduction with respect to this symmetry gives a

reduced system with four degrees of freedom. Relative equilibria, corresponding to
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circular orbits, are obtained from these reduced equations of motion; stability of these

relative equilibria is assessed. It is shown that unstable relative equilibria can be

stabilized by suitable attitude feedback control of the dumbbell.

Nomenclature

€1, €2, €3

2l

radial distance from origin to center of mass of dumbbell body

angle of right ascension of center of mass of dumbbell body

angle of declination of center of mass of dumbbell body

unit vector along local vertical (radial) direction

unit vector along direction of increasing v

unit vector along direction of increasing A

unit vector along longitudinal axis of dumbbell

orthogonal unit vectors spanning plane perpendicular to dumbbell axis
angular velocity vector of LVLH coordinate frame with respect to inertial
frame

angular velocity vector of body-fixed coordinate frame with respect to
inertial frame

standard basis column vectors of R?

mass of each end mass of dumbbell-shaped body

length of rigid link connecting the two end masses of the dumbbell

gravitational force constant



SO(3) = group of rigid-body rotations in R?
R € SO(3) = rotation matrix from body-fixed frame to LVLH frame
50(3) = Lie algebra of SO(3), identified with R?
w € 50(3) = angular velocity of dumbbell body with respect to LVLH frame
|-|| = Euclidean norm, or two-norm in R?
(-) = adjoint representation of s0(3) as 3 x 3 skew-symmetric matrices
Q = configuration manifold for dumbbell body in central gravity
TQ = velocity state space for dumbbell body in central gravity

S = the one-dimensional circle, or R/{27}

1 Introduction

Equations of motion are derived for a dumbbell-shaped body in a central gravitational field.
The equations of motion describe the translational or orbit dynamics and the rotational or
attitude dynamics, and their coupling. The dumbbell consists of two ideal mass particles of
identical mass m connected by a rigid, massless link of length 2/. The dumbbell can rotate
and translate in three dimensions under the action of gravity forces. A gravity force acts
on each individual mass particle of the dumbbell. The differential gravity effects about the

dumbbell’s center of mass play a crucial role in its dynamics.

This model is similar to the dumbbell spacecraft models in [1, 2], which treat dynamics
and control of an elastic dumbbell restricted to planar motion. The full dynamics of this

model is treated in [1], while the reduced dynamics is treated in [2], assuming attitude and



shape actuation only. These cited models include flexibility effects in the link connecting
the two mass particles. For simplicity, flexibility effects are not included in the models de-
veloped in this paper. The models here are also similar to the dumbbell spacecraft model
in [3], which treats the orbit and attitude dynamics of a dumbbell spacecraft moving in a
plane. The dumbbell can also be considered as a special case of a “full body” treated in [4].
In this paper, we treat both the full and the reduced dynamics of a dumbbell body in three

spatial dimensions.

The dumbbell can also be viewed as a model of a tethered spacecraft. Typical assump-
tions for tethered spacecraft include negligible elastic effects, and a taut tether corresponding
to a positive tension force in the tether. Due to its relevance, some of this prior work is now
described. Deployment, station keeping, and retrieval of tethers have been studied in [5].
Attitude dynamics issues for tethered spacecraft have been treated in [6, 7, 8]. Orbital dy-
namics issues for tethered spacecraft have been treated in [9, 10]. None of these papers
provides a comprehensive model that includes both orbit and attitude degrees of freedom.

This paper makes a contribution to this problem for the simplified dumbbell model.

The dumbbell model is simple, but effective in demonstrating complex dynamics that can
arise when it is in orbit about a massive central spherical body. It provides a framework for
studying the orbital degrees of freedom, the attitude degrees of freedom, and the coupling
between them. The dynamics of large extended bodies in central gravity present significant
analytical challenges. In this paper, we introduce new orbital and attitude problems that
have not been previously studied in the published literature. We obtain relative equilibria for

the full dynamics of the dumbbell body in a central gravitational field; these correspond to



the equilibria of the reduced dynamics. The reduced dynamics are obtained by the process
of Routh reduction ([11, 12]), and stability properties of the relative equilibria are obtained
from the reduced dynamics. Control laws based on potential shaping ([13, 14, 15]), using
attitude feedback for stabilization of the unstable relative relative equilibria, are also devel-

oped and presented.

The present paper can also be viewed as an extension of [16]. In that paper coupling
between translational and rotational degrees of freedom was studied. However, [16] did not
include a central body gravity field, so the results in that paper are not directly applicable

to the problems considered here.

2 Equations of Motion

An inertial coordinate frame is chosen such that its origin is at the center of a large spherical
central body, e.g. the Earth. This inertial coordinate frame is defined by three mutually-
orthogonal axes. It is convenient to express the orbital motion in terms of spherical coordi-
nates r, v, and A, for the position of the center of mass of the dumbbell in the inertial frame,
as shown in Figure 1. This spherical coordinate frame is also termed the Local Vertical Local
Horizontal (LVLH) coordinate frame. In the LVLH coordinate frame, €;, ¢, and é; form a

mutually orthogonal right-handed set of unit vectors.

Figure 1 gives a graphical illustration of the dumbbell in the inertial and LVLH coordi-
nate frames. In addition, a coordinate frame is introduced that is fixed to the dumbbell; its

origin is at the dumbbell center of mass. The unit vectors €3, €, and €. form a mutually



orthogonal, body-fixed, right-handed set of unit vectors. Hence, there are three different
coordinate frames, each of which consists of mutually-orthogonal axes consistent with the
right hand rule. In the subsequent development, substantial care must be taken when rep-

resentations in R3 are used to express a vector in one of these coordinate frames.

Figure 1: Dumbbell in Local Vertical Local Horizontal coordinate frame.

The angular velocity vector of the LVLH coordinate frame with respect to the inertial

frame is
Jr, = Usin A€, — A€, + 1 cos A€). (1)

The angular velocity vector of the body-fixed coordinate frame with respect to the inertial

frame is denoted by wj. The position vectors of the two end masses are given by

1:f+l€_5;,
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where 2/ is the length of the dumbbell.

The inertial velocities of the end masses in the LVLH frame are

The kinetic energy is given by

m., . - R
T = S (130" + 1727)-

Using the expressions for x;’l and 9?2 we have
T = m(]FP + i x &))2) )
Since ¥ = re,., it follows that
I = 76+ xé)
= €. + 1 cos AG, + TAE)
and
1Z2]|? = 72 + 12(0% cos® A + A?).

In the subsequent development, we represent J; and Z in terms of column vectors wy and
x in R? with respect to the basis vectors €,, €, and &) in the LVLH frame. The notation
wp in R3 is used to express the components of the angular velocity vector «; in the body-
fixed coordinate frame. The standard basis vectors in R? are denoted by e; = [1 0 0],
e =10 1 0]" and e3 = [0 0 1]7. We also introduce the rotation matrix, denoted by

R € SO(3), that maps the representation of a vector in the body-fixed coordinate frame



into the representation in the LVLH frame. We use the notation ~ : s0(3) — so0(3) or

() : 50(3) — s0(3) to denote the adjoint representation of s0(3) (identified with R?), given

by
Ul 0 —Uus (5)
U= U9 , U= us 0 —Up
U3 —Uus Uy 0

This allows us to write
|07 X &7 = wpél | Ewp = wh (s — ere] Jwg,

so that the kinetic energy is

1
T = §m[ﬂj;1 + &g @9 = [mi "3 + whJwg),
where
J =mil*(I5 — eie]) (3)

is the constant inertia matrix of the dumbbell. The definition of the dumbbell as a rigid
connection of two ideal mass particles leads to the fact that rank(J) = 2. The implications

of this assumption are discussed in a later section.

We use w to denote the components of the angular velocity of the body fixed frame

relative to the LVLH frame, expressed in the body fixed frame. Thus
wp=R'w; +w
and the kinetic energy can be written as

T =m[i? 4+ r?? cos’ A\ + A% + (R w4+ w) " J(RTwy, + w). (4)

8



The exact potential energy of the two mass particles that define the dumbbell is

wm wm

23] [l

where

|21 = \/7”2 + 2rle] Rey + 12, |23 = \/7"2 — 2rle] Rey + I2.

. . 2rle] Req+1?
In our subsequent analysis, we assume r > 0 and % < 1. Since Teﬂq*fﬁ < 1 and

T _J2
Zriey Rer 17 1, we can use the second order approximation for the gravitational potential

energy
m 12
xg:—%f@—;ﬂl—aQqun. (5)

Note that the potential energy of the dumbbell depends only on the radial position r of the
center of mass of the dumbbell and the direction of the dumbbell axis Re; in the LVLH

frame. The Lagrangian is thus obtained as

L(r, M\ R, 7,0, \w) =T — V, = m[r? + 72 cos> A + \?)]

+{RTwL+u0TJUfa@—%w)+£ﬁ2<2—Z;@——3@IRQ)%> (6)

T r

The attitude kinematics of the dumbbell is given by
R = RO. (7)

The orbital equations of motion are given by the ordinary Euler-Lagrange equations ob-
tained from the Lagrangian (6) for these degrees of freedom. The configuration manifold of
the system is denoted by Q. The configuration is specified by the translation, represented

by the local coordinates (r, v, \), and the attitude, represented by the rotation matrix R.



We define

f(A) =sin Aeg + cos Aes, g(A\) = cos Ae; — sin Aes,

so that:
8wL_ d /0wy, o 8WL_.
E—f@‘)» £<$> = Ag(N), N —Vg()\)-

The orbital equations of motion can be expressed as

- 3l
i — % cos? A — rA2 + 7% - 2L7~4(1 — 3(e] Rey)?) = 0, (8)

m[(r?v cos A 4 27w cos A — 2r2Asin A) cos A] + Ag(A) T RJ(R wy, 4+ w)+

fFO)'ROJ(R wp +w) + fON)TRI(RTép + & — R w) =0, (9)

m[r(rA 4 2r\ + 12 sin Acos \)| — eg ROJ(R wy, + w) 4 eg RJ(@R w, — Ry — &)

—g(\)TRJ(R"wy, +w) =0. (10)

In each of these scalar equations, the first set of terms are Keplerian terms expressed in
spherical coordinates. The additional terms represent perturbations that arise from the at-

titude dynamics.

The attitude equations of motion are obtained as a modification of the Euler-Poincaré
equations, obtained by applying the variational principle to the Lagrangian (6), as in [11, 12].
If we define the conjugate momentum

1= (%)T —2J(RTwr, +w),

then the attitude equation of motion is given by

6umi>

I+ (w+ Rwp) x 1T — =

(e Rei)er x (R'er) = 0. (11)

10



Substituting for II, we obtain the following attitude equation of motion

— 3uml?

J+R"op —OR w) + (@4 RTwp)J(w+ Rwr) — T( [Re1)&iR e1 =0, (12)

The derivation of equation (11) is given in Appendix A. This vector equation describes the
attitude dynamics including perturbations that arise from the orbit dynamics. In particular,
the last term in equation (12) is the familiar gravity gradient term. Equations of motion

(8)-(10), along with equation (11) or (12) describe the full dynamics of the system in TQ.

The total energy

E=T+V, =m[F? + 2% cos® A + \?)]

H(RTwr +w) J(RTwy, +w) - 2 (2 - ﬁ(1 - 3(61361)2)> (13)

r r?
is conserved along the flow defined by equations (8)-(10) and (12), as shown in Appendix B.
Also note that the variable v € S is a cyclic variable for the Lagrangian (6), and corresponds

to a symmetry in the system. This gives rise to the following result.

Proposition 1. : The conjugate momentum

p= ?)_f =2mr*vcos’ A+ 2f(\)  RJ(R wy, + w) (14)

is conserved along the flow defined by equations (8)-(10) and (12).

It is easy to differentiate p with respect to time, and confirm that p = 0 is equivalent to

equation (9).

The complexity of the above equations reflects the complex coupling that arises between
the orbit and attitude degrees of freedom for the physically simple dumbbell body. These

11



equations of motion are especially suited for analysis of the full body dynamics of dumbbell-

like asteroids or dumbbell-like spacecraft.

3 Routh Reduction and Reduced Equations of Motion

In this section, we obtain the reduced equations of motion obtained by eliminating the degree
of freedom associated with the (cyclic) symmetry variable v € S. Stability analysis of the
relative equilibira of the system is done using the reduced dynamics, since they correspond
to the equilibria of the reduced dynamics. Let S, denote the momentum level set in the
configuration space of the dumbbell, corresponding to the constant angular momentum value
p. The classical Routhian [11, 12] is obtained from the Lagrangian in (6) by the partial

Legendre transform
R\ R, \w) = {L— l)p}|s :

where 7 is obtained from (14) for constant p. Carrying out this substitution to eliminate ,

we obtain the following expression for the Routhian:

R(r,\, R, 7, A, w) = m[i? + 17202 + (w — AR ey) " J(w — AR ey)

—(F(NTRI(w — AR e3)) Up(r, \, R) + pf(\)TRJ(w — AR e2)U, (7, A\, R)

—V,(r, \, R), (15)
where V,(r, A\, R) is the amended potential energy given by

2
V,(r,\, R) = V,(r, R) + %Up(r, \R), (16)

and Vj is the gravitational potential expressed as in (5). The function U,(r, A, R) is given by

1
mr2cos? A+ f(A)TRJRT f(\)

Up(r,\,R) =

12



F)TRIRTF(N)

We assume that e
mr? cos? \

< 1 and the declination angle A is bounded away from +7

radians. Then we can approximate U, as

Uy(r,\, R) = {sec A —f( YTRIRT f()) sec4/\}. (17)

mr?

We use this approximation for the function U,(r, A\, R) in equations (15) and (16). The
configuration space for the reduced dynamics is Q/S, and the configuration is represented
by (r, A) for the orbital motion, and the rotation matrix R for the attitude. The equations
of motion for the orbital degrees of freedom are obtained by using the Routhian in place
of the Lagrangian in the Euler-Lagrange equations of motion. The attitude equations of
motion are obtained from the variational principle by substituting the Routhian in place of

the Lagrangian.

The orbital equations of motion for the reduced dynamics are obtained as

2mi — 2mrA? + (f(\) " RJ(w — MRTeg))QaaL —pf(N)"RI(w - AR%)%

+2’7f;” 3“:'1[2(1 —3(e] Rey)?) + ;%—Z =0, (18)
and

man(r, A, R)A + miy, (1, A, R)w + ag?m ;ag? A2+ mf (N R ww + I i,

—i—p{%f +m(r, A, R,w)} - %wT a](;/[:ww - pa;n;ww % =0, (19)

where
ma(r, A, R) = 2mr? + 2¢] RIR ey — 2(f(\)TRJR ¢5) U, (r, \, R),
Myw(r, A, R) = —2e5 RJ 4 2U,(r, A\, R)(f(A\)TRJR e3) f(A) " R,
Mo,(A\, R) =2J —2JRT f(A) f(\)TRJU,(r, \, R),

13



mpn(r, \, R) = f(\)TRIR  exU, (1, \, R),
Mo (1, A, R) = f(N) T RJU,(r, \, R),

and af(r,\, R,w) = & a(r, A, R) denotes the time derivative obtained by varying R and

dt ()

holding r» and A constant.

The attitude equations of motion for the reduced system are expressed in terms of

Il = (%)T =2Jw =20\ R e + (p = 2f(N) TR (w = AR e5)) JRT f(A)U.

One can verify that
=11, .

In terms of this momentum ﬁ, the attitude equations of motion are

M+ (w— AR ea) x T {p—2f(\) T RI(w—AR" e2) }RT f(N)J(w— AR e2)U,+b" =0, (20)

where

2

p
4m?2rt

~ o —

o = Sl FOVTR{(JRTF(N)) = JRT F(\)} sec* \.

r3

(ef Re1)e; Réy +

The derivation of this equation is provided in Appendix A. Equations (18)-(20) describe the

reduced dynamics of the system in T(Q/S).

4 Relative Equilibria for the Orbit and Attitude Dy-

namics

In this section, we study certain dynamics of the orbit and attitude degrees of freedom of
the dumbbell. Three categories of relative equilibria are identified. Stability of each relative

14



equilibrium is studied.

We first identify the natural relative equilibria that correspond to circular orbits in a
fixed orbital plane for the dumbbell. The relative equilibria are equilibria for the reduced

equations, and satisfy :

We assume that the inclination of the orbital plane, A = 0. We use the subscript ‘e’ to denote
quantities evaluated at a relative equilibrium. Substituting into the reduced equations of
motion we obtained in the last section, we see that the relative equilibria are zeros of the

gradient of the modified potential, namely:

oVp
or

= 8Vp —
V= | o | =0, (21)

UT

The radial part of the gradient of the modified potential (21) gives:

2 2

(1 —3(e] Rey)?) LA p—eTReJReTeg =0, (22)

2um  3umi?
2mr3  m2rd

2 4

T T

at a relative equilibrium, using (17) to approximate U,(r, A, R). This can also be expressed
in terms of the orbtial rate at the relative equilibrium, .. The horizontal equation of motion
(9) at a relative equilibrium is trivially satisfied. The second term of equation (21), at a
relative equilibrium, gives:

2

P cTR.JRIes =0, (23)

2mite] ReJR) e3 = ———
2m2r;

using (17) to approximate U,(r, A\, R). The third term of equation (21), when evaluated at

15



a relative equilibrium, gives:

6uml?
,u:g (el Re€1)€1Re e1 277];2 4R6T€3JR263, (24)

using (17) to approximate U,(r, A\, R). This again, can also be expressed in terms of the

orbtial rate at the relative equilibrium, ..

Let R, denote the attitude at a relative equilibrium and R = [u; uy us], where u] u; = 1
and u]u; = 0 for i # j, 4,5 € {1,2,3}. Then substituting for J from equation (3) into
equations (23) and (24), we obtain three different conditions for relative equilibria of the

dumbbell body in orbit:
(a) wy;p =0 and uz; =0, OR
(b) Uz = €1, OR

(¢) up =ey,

where u; = [uy; w2 uis]" and ug = [us; uss uss]". The only rotation matrices that satisfy

at least one of these conditions are given by:

1 0 0 0 cosa sina
1)Re= |0 cosa —sina |» 2) Re=1]1 0 0 )
0 sina cosw 0 —sina cos«

0 cosa —sin«
and 3.) Re= | 0 sina cosa |

1 0 0

where « is an arbitrary angle which represents rotations about the longitudinal axis of the

dumbbell. This gives us three different types of relative equilibria for this body. We now

16



look at how the relative equilibrium conditions (22) simplify at these three types of relative
equilibria. Note that, since the longitudinal axis is an axis of symmetry for the dumbbell
body, arbitrary rotations about this axis at any relative equilibrium also gives another rel-
ative equilibrium of the same type. Also note that due to the equal masses at the ends
of the dumbbell body, there is a discrete (Z?) symmetry. An instantaneous rotation by 7
radians about an axis perpendicular to the longitudinal axis of the dumbbell does not affect
the dynamics. Hence, there are only three relative equilibria, instead of a possible six in the

case of the end masses being unequal.

The first type of relative equilibria corresponds to an orientation in which the dumbbell
has its longitudinal axis aligned with the local vertical (radial) direction. This class of relative

equilibria satisfies:

, 3ul?
Reey = e, and 2 = f—g + f—B (25)

The constant angular rate at which the dumbbell revolves around the central body is given

by 7.

The second type of relative equilibria corresponds to the longitudinal axis of the dumbbell
being aligned with the local horizontal direction in the plane of the orbit. This class of relative

equilibria satisfies:

) 3ul?
Ree; = ey, and i7” = % - QLTE’ (26)

where 7, is the constant angular rate at which the dumbbell revolves around the central body.

17



The third type of relative equilibria corresponds to the longitudinal axis of the dumbbell

orthogonal to the orbital plane. This class of relative equilibria satisfies:

. pwo 3ul?
Ree; = dii=51 -2 27
€1 €3, and v, ’I“Z’ 27“2 5 ( )

where 7, is the constant angular rate at which the dumbbell revolves around the central body.

Each of the above relative equilibrium solutions corresponds to a particular attitude of
the dumbbell body with respect to the LVLH frame, and an orbital frequency that differs
from the Keplerian orbital frequency by a factor dependent on the size of the dumbbell body

and its attitude.

4.1 Stability of the Relative Equilibria

A sufficient condition for the stability of a relative equilibrium of the dumbbell is given by
the Routh stability criterion, which is based on the energy-momentum method (see [11, 12]).
This result is based on the reduced dynamics obtained from Routh reduction.

Stability of a relative equilibrium of the dumbbell is expressed in terms of a modification

of the Hessian of the amended potential, given by

9%V, 9%V, v
or? orox or

VAV, (r, M, R)=| 2% 2V o | (28)
Orox N2 )

(2 (&) v

where
Yy S BT e TRE — (TReER @] + —L— [T TN O
= 713 |:€]_ 6161 €1 — (61 61)61 el:| + 2m2r4 |: f( ) f( )
- (JRTf()\))ARfo)] sec? \. (29)

18



Note that the rank of the matrix V is at most two for the inertia matrix J given by (3),
which also has rank two, since e; is an eigenvector with zero eigenvalue. The computation

of this Hessian is shown in Appendix C.

The following theorem is based on the Routh stability criterion.

Theorem 1. A relative equilibrium is stable if the modification of the Hessian of the amended
potential given by (29), evaluated at the relative equilibrium, is positive semi-definite with

rank deficiency one. It is unstable if this Hessian has negative eigenvalue(s).

The kernel of 621/1, has dimension of at least one, and its third row and column are
zero. The first statement of the theorem follows from Routh’s stability criterion. Note that
if the quantity 62‘/;, evaluated at a relative equilibrium has negative eigenvalues, then the
linearization of the reduced dynamics is unstable. Hence the system is formally unstable

(see [11], pp. 39-42) in this case.

Using Theorem 1 above, we verify the stability of relative equilibria of the dumbbell,
when the axis of the dumbbell is aligned with the local vertical. We have:

3ul?
Reev=er, 2= 5+ F and p? = am? (r. +

5ul2>.

e

Corollary 1. The first class of relative equilibria of the dumbbell, where the axis of the

dumbbell 1s aligned with the local vertical, is stable.

The modified Hessian evaluated at such a relative equilibrium is

m m2
2¢—§ B 147"5[ 0 01><3
62% = 0 2m<rﬁ + 5;‘—5) (1 - 7{—2) —omi? (7% n 5%2)6; (30)
03%1 —le2<% + 5:_%[2)62 2ml? (% + 51/%2)E1 _ 6#;7512512



where
~9 ~~D ~
E; = —é3” — é3e17¢é3.

This modified Hessian has one zero eigenvalue (the third row and third column are zeros),
and the remaining eigenvalues are always positive since r—le < 1, according to symbolic cal-
culations using Mathematica. This proves that the first class of relative equilibria given by

(25), with the axis of the dumbbell aligned with the local radial direction, is stable.

Now we assess the stability of relative equilibria of the dumbbell, when the axis of the
dumbbell is aligned with the local horizontal direction in the plane of a circular orbit. For

the second class of relative equilibria, we have:

3ul? 12
Reep = e, Dez _ Ko , and 102 = 2m? <2w“e _k )
Tg’ 2’/”2 Te

Corollary 2. The second class of relative equilibria of the dumbbell, where the axis of the
dumbbell is aligned with the local horizontal direction in the plane of a circular orbit, is

unstable.

The modified Hessian evaluated at such a relative equilibrium is

2um 5uml?
P I 0 01><3
2 — 2um 3uml?
\Y ‘/p 9 - 0 'LTL—E — ur—f 01><3 ) (31)
2uml? uml? 6uml> T
0 0 < o . Ey — 3 €269
€ € €
where
~2 o~ D~
E2 = —€9 — €2€1 €9.

This modified Hessian has one zero eigenvalue (the third row and third column are zeros),
and there is a negative eigenvalue, namely %3””2. Using Theorem 1, we conclude that the

20



second class of relative equilibria given by (26), with the dumbbell axis aligned to the local

in-plane horizontal, is unstable.

The stability of the third class of relative equilibria of the the dumbbell, when the axis
of the dumbbell is aligned to be orthogonal to the plane of a circular orbit, can be assessed

using Theorem 1. For the third class of relative equilibria, we have:

3ul?
Ree; = e3, Dg = % — %, and p2 = 2m? (2/17"5 —
re re

3ul? >

e

Corollary 3. The third class of relative equilibria of the dumbbell, with the axis of the

dumbbell aligned to be orthogonal to the plane of the circular orbit, is unstable.

The modified Hessian evaluated at such a relative equilibrium is

2um 3uml?
Tg, + rg 0 01><3
2 2 2 4
VV. | = 2um  Suml 2umi?  3upml T . 32
P|, 0 e T T T )es (32)
2umi? 3umit 6uml? T 2umi? 3umit \ ~4
0351 ( o R S L= R urzs €363 — R L
e e e e €

This modified Hessian has one zero eigenvalue (the third row and third column are zeros),

. 2 2 4\ . . . .
and the eigenvalue — <“r—"§l — 3‘;—7}) is negative since TL < 1. Using Theorem 1, we conclude
e e e

that the third class of relative equilibria given by (27) is unstable.

5 Stabilization of Unstable Relative Equilibria

In this section we assume the attitude of the dumbbell body can be controlled through a
moment vector expressed in the body fixed coordinate frame. Based on this control assump-

tion, the conjugate momentum corresponding to the cyclic variable v remains conserved.
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Consequently, the reduced equations can be obtained as previously, resulting in

o2mit — 2mr A\ + (f()x)TRJ(w — )'\RTeQ))Q% —pfN) R (w — )‘\RTQ)%

+2‘7f;” - 3’“‘;?2 (1 — 3(e] Rer)?) + %2% —0, (33)
man(r, A, R)A + ma (1, A, R)io + 87;}%& n %agAM 2 mB (AR w)w + 2,

+p{ ag;f”f‘ +m(r, A, R,w)} — %wT a]gﬁ\“ww — pa?;ww + % =0, (34)

and
I+ (w— AR es) x T—{p—2f(\) T RJ(w—ARTe2) YRT F(N)J(w— AR e)U,+0" =7, (35)

where 7 is the control moment vector. This control moment can be used to influence the

attitude dynamics and, indirectly, the orbit dynamics of the dumbbell.

The control moment is used here to stabilize the relative equilibria that, if uncontrolled,
would be unstable. The approach is to select the control moment to modify the amended
potential so that the unstable relative equilibria are made Lyapunov stable. This approach
is referred to as potential shaping. Note that the feedback control moment depends on only

attitude feedback.

The idea of potential shaping is not new, and [13] and [14] consider the interesting case of
asymptotic stabilization of underactuated Hamiltonian systems. Potential shaping has also
been used in conjunction with controlled Lagrangian techniques in [15] to asymptotically
stabilize equilibria of Hamiltonian systems. In our application, we use this technique to
modify the amended potential to stabilize unstable relative equilibria of the reduced system
of the dumbbell in three-dimensional motion in a central gravitational field. The feedback
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moment maintains the Hamiltonian structure of the system, so the feedback system is also
conservative, and we obtain Lyapunov stability, which can be verified by applying the Routh
stability criterion (Theorem 1). In addition to the potential shaping attitude feedback con-
trol presented here, one may apply Rayleigh dissipation to the system by angular velocity

feedback, to make the system asymptotically stable.

5.1 Potential Shaping for Dumbbell in Space

We observe, from equations (31) and (32), that the unstable modes at the unstable relative
equilibria (26) and (27) are due to the attitude degrees of freedom only. Therefore, a feedback
control law that stabilizes an unstable relative equilibrium may be obtained by adding an
artificial potential V,(R), that depends on the attitude only, so that the Hessian of the total
amended potential V(r, A\, R) = V,(r, A, R) + V,(R), is positive semi-definite with one zero
eigenvalue corresponding to the eigenvector representing the axial direction of the dumbbell
body in the body frame. This property of the Hessian of the total potential, also ensures
that the feedback does not create a moment about this axial direction. The attitude feed-
back stabilizing control law, 7(R), is then obtained from the first variation of the artificial
potential V,(R). Note that, this artificial potential does not break the symmetry due to the
cyclic variable v, since it does not depend on it, and hence does not act on the v dynamics.
This is unlike the application in [15], where potential shaping is carried out to break existing

symmetries in a mechanical system.

The artificial potential is chosen to be of the form

1 1
Vo(R) = —icTRJRTC + §m1277(61TR€1)27 (36)
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where ¢ € R3 is a constant vector and 7 is a constant non-negative real scalar. Note that
the vector ¢ has units of angular velocity, and can be thought of as an “artificial angular ve-
locity” induced by the feedback control. The first term in (36) can therefore be described as
an “artificial amended potential.” The second term can clearly be described as an “artificial

gravity potential,” when compared with the natural gravitational potential in (5).

With this choice of artificial potential, the total potential V (1, A, R) = V,,(r, A\, R)+V,(R),

has a Hessian whose structure is given by

9%V, 9%V, o
or2 Oro or

V2V (AR =| % &% o (37)
oroX o\2 oA

(%) (&) vew

with zeros in the third row and third column, corresponding to a single zero eigenvalue. Here

V), is the Hessian of the artificial potential, and it is obtained from the second variation of
the artificial potential (36). From the given form of the artificial potential (36), we obtain

the feedback control moment
T=RIcJR ¢+ mi®n(e| Re1)e R ey, (38)

and the Hessian

/-_l_\

V.=R C[Jf/ZT\C — m} + ml%[(elTRel)eAlﬁ — é\lRTelelTRé\l]. (39)

The derivation of these quantities is shown in Appendix C.

The closed-loop dynamics of the dumbbell in a central gravitational potential is also
Hamiltonian. Hence, we can apply the Routh stability criterion (Theorem 1) to the closed-
loop dynamics of the dummbbell body. If the quantity V2V evaluated at a relative equi-
librium has negative eigenvalues, then the linearization of the closed-loop reduced dynamics
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is unstable. We now apply Theorem 1 to stabilize the unstable relative equilibria of the

dumbbell body in space using attitude feedback.

5.2 Stabilization of Horizontal In-Plane Relative Equilibria

For the unstable relative equilibria given by (26) with the dumbbell axis pointing along the

horizontal in-plane direction, we have from (31) for the free dynamics

v (2,uml2 B uml4)( 9 A,\z/\) B 6uml®> -

— €2 — €261 €2
3 5
re Te

In matrix form,

0 00
6 20 pl?
_ 2 _ _
V=m0 n 0 7n__r_§7 Q—<T—§—E>~ (40)
0 0 ¢

We choose an artificial potential of the form (36) with ¢ given by

c = c1e1 + cses,

where ¢; and c3 are real scalars, and 1 = 0. The control law obtained from this artificial

potential using (38) is

C1 C1
r=R"| g | xJR"| o |. (41)
C3 C3

The Hessian of the artificial potential, evaluated using (39), is

Vo = [ﬁT\cJ — m]ﬁT\c, c=lc10cs)". (42)
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Evaluated at the relative equilibria given by (26), this Hessian gives

Va = ml2 0 C% —C1C3 : (43>

2
0 —cics o3

The closed-loop system is obtained by using the feedback control moment (41) as an
input to the attitude equation of motion (35) for the reduced dynamics. The following result

gives a sufficient condition for the stability of the closed-loop system based on Theorem 1.

Corollary 4. The second class of relative equilibria of the dumbbell, given by equation (26),

is stable with the feedback control moment given by (41) if

ng+nca+qci >0 and g +n+c2 +c3 >0, (44)
where

o 6p 2u pl?

= =)

In this case, one can verify that
V+V, >0, and Ker(V+V,) = {e1 }.

This makes the Hessian of the total potential, (37), positive semi-definite with one zero

eignevalue, and the result follows. If we choose the specific constants

[9u | ul?
G T_g” and C3 = 2—7027 (45)

which satisfy (44), then we obtain a control law from (41) that stabilizes the unstable hor-
izontal in-plane relative equilibrium of the dumbbell body, given by r = r., A = 0, and

R = R, such that R.e; = es.
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5.3 Stabilization of Horizontal Out-of-Plane Relative Equilibria

At the unstable relative equilibria given by (27) with the dumbbell axis pointing along

the horizontal out-of-plane direction, the attitude submatrix of the Hessian matrix of the

modified potential is given by (32) as

Vo _Guml® o <2,uml2 B S/Lml‘l) .

€36, — e .
3 3 3 5
7/.6 7"6 re

In matrix form,

0 0 0
2u  3pl? Su  3ul?
om0 o e ) e ()

0 O N9

We choose an artificial potential of the form (36) with ¢ given by

Cc = c1€1 + Coe9,

where ¢; and ¢y are real scalars, and n > 0. The control law obtained from this artificial

potential is obtained using (38) as

1 &

r=R" e | X JR" e |+ ml2'r](elTRel)el x Re;.

0 0

The Hessian of the artificial potential is evaluated using (39) as

(47)

V, = [E\TCJ — J/R?C]E-\TC + ml%[(eIRel)ﬁeﬁ — eAlRTelelTReAl},

c=lci e 0], n>0.

(48)

Evaluated at the relative equilibria given by (27), this Hessian gives

0 0 0

o
Va=ml" 1 0 & —ce

0 —C1Co C%"’U

27
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The closed-loop system is obtained by using the feedback control moment (47) as an
input to the attitude equation of motion (35) for the reduced dynamics. The following result

gives a sufficient condition for the stability of the closed-loop system based on Theorem 1.

Corollary 5. Assume c2, ¢z and n are all of the order of L. The third class of relative

equilibria of the dumbbell, given by equation (27), is stable with the feedback control moment

given by (47) if
ning + nics +nacs +n(ng +¢c3) >0 and ny +ny + ¢ +c3+n >0, (50)

where

e (). e (%)

r3 2 r3 2
In this case, both the modes obtained from the attitude degrees of freedom at relative
equilibria given by (27) are unstable. With the feedback control torque given by (47), we

can verify that
V+V, >0, and Ker(V +V,) = {e1}.

The 3 x 3 submatrix of the Hessian (37) of the feedback system, obtained by eliminating the

first and third rows and columns, given by

b 0 —1ny

ml* |0 py 4 0 ;

—ny 0 ng+ci+n

where p = f? — 2—3, is positive definite, which makes the Hessian (37) positive semi-definite

with one zero eigenvalue. If we make the specific choices

I U T _ 2p
= r_g" Co = T—gandn—r—g, (51)
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which satisfy (50), we obtain a control law from (47) that stabilizes the unstable horizontal
out-of-plane relative equilibrium of the dumbbell body, given by r = r., A =0, and R = R,

such that R.e; = e3.

6 Conclusions

We have extended some of the results of our earlier work, which treat the dynamics of a
dumbbell-shaped body in planar motion in a central gravitational field, to motion in three
dimensional space. The system of the dumbbell body in three-dimensional motion in a cen-
tral gravity field consists of three orbital degrees of freedom and two attitude degrees of
freedom, since the inertia about the longitudinal axis of the dumbbell is ignored. We repre-
sent the orbital degrees of freedom using spherical coordinates, defined by the Local Vertical
Local Horizontal (LVLH) coordinates; the attitude is represented globally by a rotation ma-
trix from a body-fixed coordinate frame to the LVLH frame. We obtain the equations of

motion representing the full orbit and attitude dynamics.

We obtain the equations of motion representing the reduced dynamics using Routh re-
duction. The reduced system has four degrees of freedom; the orbit degrees of freedom are
represented by the radial distance and the angle of declination. The attitude is represented
by the rotation matrix from the body-fixed frame to the LVLH frame. We obtain the rela-
tive equilibria, which correspond to local extrema of the modified potential for the reduced
dynamics. These relative equilibria correspond to circular orbits, with fixed orbital rate and

fixed attitude.
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Since the two end masses of the dumbbell model are equal, the system also has a discrete
symmetry. This gives rise to three types of relative equilibria: one in which the dumbbell
axis is aligned with the radial (local vertical) direction, another in which the axis is aligned
with the local horizontal direction in the plane of the circular orbit, and a third in which
the axis is aligned with the local horizontal direction out of the plane of the orbit. The
first two types are identical to those obtained for the dumbbell in planar motion, dealt with
in our previous work. We analyze the stability of these three types of relative equilibria
using the Routh stability criterion. The first type of relative equilibria is found to be locally

(Lyapunov) stable, while the other two types of relative equilibria are unstable.

In the final part of the paper, we use attitude feedback control based on potential shaping
to stabilize the unstable relative equilibria of the dumbbell body. This is based on the fact
that the unstable modes at the unstable relative equilibria are due to the attitude, rather
than the orbital degrees of freedom. Hence, potential shaping with attitude feedback is
adequate for stabilizing these relative equilibria. To do this, we create an artificial potential
depending on the attitude, that is similar to the modified potential of the natural reduced
dynamics of the dumbbell in central gravity. This artificial potential has two terms, one of
which is similar to the gravity potential, and the other is similar to the amendment in the
modified potential. The feedback torques for stabilization of an unstable relative equilibrium
are obtained by computing the first variation of this artificial potential with respect to the
attitude. The stability of the feedback controlled system is analyzed by applying the Routh
stability criterion to the the Hessian of the total potential, which is the sum of the modified
and artificial potentials, at that relative equilibrium. We find that to stabilize the unstable

relative equilibria where the axis is aligned with the local horizontal direction in the plane
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of the circular orbit, we need to use feedback control based only the term of the artificial
potential that is similar to the amendment. However, to stabilize the unstable relative
equilibria where the axis is aligned with the local horizontal direction out of the plane of the

circular orbit, we need to use feedback control based on both terms of the artificial potential.
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Appendices

Appendix A

Here we show the derivation of the attitude equations of motion for the full and reduced
dynamics of the dumbbell body in central gravity. We define the quantity 3 € so(3) (given

in [11, 12]) so that the attitude and angular velocity variations are
SR=RY, dw=3+0%.

We then apply standard variational arguments to the Lagrangian of the full dynamics, as-

suming zero initial and final values of 3. This leads to the equation

d <8£,> oL

E a—w —6—ww+t, (A)

where t is the s0(3)-valued one-form obtained such that

5t 3)

is the variation of the Lagrangian with respect to the rotation matrix R, holding other

quantities constant. Here ((-,-)) denotes the Killing form in so(3) [17, 18], given by
({a,¢)) = trace( ac).

We denote one-forms like v € s0(3)* by row vectors, to distinguish them from elements in
50(3), which are denoted by column vectors. Substituting the Lagrangian £ given by equa-
Ow

.
tion (6) into equation (A), and defining the conjugate momentum IT = <%> , we obtain

equation (11) for the attitude dynamics of the dumbbell body.

The reduced equations of motion are obtained by applying standard variational tech-
niques to the Routhian, instead of the Lagrangian. Hence, we obtain the following equation,
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which is similar to equation (A):

O

B
dt ts (B)

where s is the s0(3)-valued one-form obtained such that —3((s,¥)) is the variation of the
Routhian with respect to the rotation matrix R, holding other quantities constant. The

one-form s for the Routhian R given by equation (15), is expressed as the row vector

s = —2\w—ARTes) JR ey — {p—2f(\) RJ(w — ARTex) M (w — ARTex) TJRT £(N)
| TpIpT Gumi® . + T~ D
—Af(A\)'RJR e} U, — = (e1 Rei)e, Réy — T

= —AI"RTey — {p—2f(\) RJ(w—ARTex)Hw — AR ) TJRT fF(NU, — v,

- T
where II = (%) is the restriction of the angular momentum II to the conjugate momentum
level set S, and u and v are so(3)-valued one-forms, with

5 2 1 S
= O T Rey)el RE + %u, w=—— N R{(JRF(N) — JRT (N} sec’ A

r3
as defined in Section 3, and —1((v,X)) is the variation of the amended potential V}, with
respect to R. Substituting the Routhian R given by equation (15) into equation (B), and

using the above expression for s, we obtain equation (20) for the attitude dynamics of the

~ T
dumbbell body in terms of T = (22) .

Appendix B

To show that the total energy for the dumbbell system in central gravity, given by (13), is
conserved, we evaluate its time derivative along the flow of the system. We write the energy

expression again as

. 12
E=m[r?+7* (% cos? A+ A+ (R wp +w) " J(R wp +w) — @ (2 — (1- 3(€1TR61)2)> :
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We have

wp = R'wy, + w.

The time derivative of E is then given by

dE
= m[2rr + 2r7(% cos? A + A2) 4 2% (0 cos? A + AN\ — 2 A cos Asin )] 4 2wpJwp
2pml?y 6uml?
( — (1= 3] Rea?) ) ~ u:i " (1 - 3(e] Rer)?) — %(QIRQ)QIR@Q
‘ 2
= 2mr [r — 7“(1)2 cos® A+ \?) + ﬂ - %(1 - 3(61TR61)2)] + 2mp[r?i cos® A
r

+2r71 cos? X — 22\ sin ) cos Al + 2m}\[r25\ + 277\ + 22 sin \ cos Al + 2wpJwpg

6imil>
+22

(ef Re1)e Réjw. (C)

3
On substituting the equations of motion (8), (9), and (10) into the right hand side of equation

(C), we obtain

dF . .
- = —20[Ag(\) " RJwp + f(N)TRGJwp + f(N) T RJWp] — 2\[—eg ROJwp — eq RJWp
6ml?
—0g(\) " RJwp] + 2whJop — “Ti?? (e/ Rey)w G R ey

= —2(0f(\) — Aex) ' RGJwp — 20 f(N) — Aey) T RJwp + 2wh Jwg

6uml? N
— Mg (elTRel)wTelRTel
~ Grml? ~
= 2wng)B — QwIR(waB + Jwg) — 'uri?(elTRel)wTelRTel
T7- THT, = 6uml*  + T~pT
= 2wpJwp+2w R wLJwB——3(61 Rel)w e1R' e
r
3umi?

= 2w’ (Jd)B + (0+ }?Tw\L)JwB — = (elTRel)é\lRTq)

p—y O’

using equation (12) at the last step.
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Appendix C

Here we obtain equations (28) and (29), which give the Hessian of the amended potential
of the reduced dynamics, as well as the equations for feedback torque (38) and Hessian (39)
obtained from the artificial potential. The top left 2 x 2 submatrix of the Hessian (28) is
obtained from the second pertial derivatives and mixed derivative of the amended potential
with respect to the coordinates r and A. In Appendix A, we obtained the one-form v from
the first variation of the amended potential V,,(r, A, R). For convenience, we write down this
expression again

(e] Rey)e] Ré + v FOVTR{(JRT f(N)) — JRT F(N)} sec’ \.

b — 6pml?
N 4 m2rd

3
The partial derivatives of v with respect to r and A give the (1,3), (3,1), (2,3) and (3,2)

blocks of the Hessian matrix in (28). The (3,3) block, which is obtained from the second

variation of V,, with respect to the attitude R, is given by the matrix V), such that
(VE, %)) = 2V (r, A\, R, %), (D)

and V;)RQ(T, A, R, Y) is the second variation of V,, holding  and A constant and varying R.

The quantity V is also given by
2TV =of(r, A\, R, %),

the first variation of v with respect to R. For the amended potential V), given by (16), we

can use (D) or the above result to evaluate V. We then obtain V as given by equation (29).

The artificial potential is given by (36), which we write down below for convenience

1 1
Vu(R) = —ECTRJRTC + Emlzn(elTRel)Q.
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The first variation of this gives the feedback torque 7 as follows:

V(R %)

1 N = ~
= 3 [CTRJERTC - CTREJRTC} +mi*n(e] Rei)e] R¥e
1 — —
= 3 [ZTRTCJRTC — CTRJRTCE] — mi*n(e] Rey)e] R&Y
— 1
= —c' RJRTcY — mi*n(e] Rey)e] RY = —§<<T, )

= 7=RcJR c+mi®n(e] Re )&iR ey,

as given in equation (38). The second variation of the artificial potential (36) gives the

Hessian V, in (39), as follows:

VI (R, %)

1
- ()
= ¢'RJISRTc— ¢ RSJR ¢+ mi*n [elTRf]el(eAlRTel) - (elTRel)eAlf]RTel]
= cTRiﬁi’?c + STRTeJR ¢ +miPn2’ [(elTRel)é\llﬁ — eAlRTelelTReAl]
— YTRTeJR ¢+ S RTeJR e+ minsT [(eIRel)aﬁT\el - aRTeleIRa}

= VY, = }é?cﬁ-%T\c + ﬁT\cJ}?T\c + mi®n [(elTRel)é\l}?TE - é\lRTelelTRé\l} )
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