
Stability of Discrete-Time Conewise Linear Inclusions
and Switched Linear Systems

Jinglai Shen and Jianghai Hu

Abstract— This paper addresses the stability of discrete-time
conewise linear inclusions (CLIs) and its connection with that
of switched linear systems (SLSs). The CLIs form a class of
switched linear systems subject to state dependent switchings.
Strong and weak stability concepts of the CLIs are considered
and the equivalence of asymptotic and exponential stability is
established. To characterize stability of the CLIs, a Lyapunov
framework is developed and a converse Lyapunov theorem is
obtained. Furthermore, stability of general SLSs is studied and
is shown to be closely related to that of the CLIs through a
family of properly defined generating functions.

I. I NTRODUCTION

Stability analysis of hybrid and switched dynamical sys-
tems has received tremendous interest in the systems and
control community, driven by important applications in large
scale and complex systems with hierarchical and multi-modal
structure [8]. Switched dynamical systems can be roughly
divided into two groups: those subject to arbitrary, state
independent switchings, and those subject to state dependent
switchings. There is a large body of the literature on switched
systems of the first kind; and various stability criteria have
been proposed, e.g., the Lie-algebraic approach [7] and
the Lyapunov framework [11]. In the latter case, different
forms of Lyapunov functions have been considered, such as
common Lyapunov functions [9] and composite quadratic
Lyapunov functions [5]. The converse Lyapunov theorem
and stabilization issue have also been addressed for this
class of switched systems [2], [12]. In comparison, stability
of switched systems subject to state dependent switchings
receives relatively less attention, despite its importance in
robotics, dynamic optimization and other fields. This is
largely due to the fact that state-dependent switching usu-
ally complicates fundamental dynamic and control analysis.
Particularly it poses great difficulty in obtaining less conser-
vative and easily verified stability conditions.

The present paper addresses the stability of a class
of discrete-time, switched linear systems subject to state-
dependent switchings, i.e., conewise linear inclusions (CLIs).
Such a system partitions the state space into finitely many
cones; and the system dynamics is linear on each cone.
Switching occurs as a state trajectory exits from one cone and
enters another. The state dynamics may have multiple values
on the boundary of two cones, thus making the system a
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class of linear inclusions. In spite of its simple structure, the
stability knowledge of the CLIs is far from complete, except
a few results for some special conewise linear systems, e.g.,
[1] studies the planar case only and [10] focuses on a CLI
with a Lipschitz continuous right-hand side. In this paper, we
consider strong and weak stability concepts of the general
CLIs and establish the equivalence of (strong) asymptotic
and exponential stability. We then characterize the stability
of the CLIs from the Lyapunov perspective and develop
a converse Lyapunov result. Furthermore we establish a
connection between the stability of CLIs and that of SLSs.
Specifically, a new stability criterion for the stability of SLSs
is proposed based on generating functions. Stability of the
SLSs is shown to be equivalent to that of two families of
CLIs obtained from the SLSs using the generating functions.

The rest of the paper is organized as follows. In Section II,
we introduce the CLI and its strong and weak stability
concepts. It is shown that (strong) asymptotic stability is
equivalent to exponential stability. Subtle technical condi-
tions that yield such equivalence are discussed. Section III
focuses on Lyapunov characterization of strong and weak
exponential stability; both Lyapunov and converse Lyapunov
theorems are established. The latter theorem ensures the
existence of a piecewise quadratic Lyapunov function for
strong exponential stability. Section IV discusses stability of
SLSs. In contrast to Lyapunov approach, a novel generating
function based characterization is proposed for the stability
analysis of SLSs. It is further shown in Section V that
the exponential stability of such SLSs can be characterized
by the weak stability of certain CLIs defined by suitable
energy functions. This result provides a new perspective to
characterizing the stability of SLSs.

II. CONEWISEL INEAR INCLUSION AND STABILITY

Let Ξ ≡ {Xi}`
i=1 be a finite family of nonempty closed

cones whose union isRn, namely,∪`
i=1Xi = Rn. EachXi

is not necessarily polyhedral or even convex, and two cones
in Ξ may overlap. For a givenx ∈ Rn, let the index set
I(x) ≡ {i ∈ {1, · · · , `} |x ∈ Xi}. We assign to each cone
Xi an n× n matrix Ai that defines the linear mappingx 7→
Aix if x ∈ Xi. This gives rise to a linear set-valued mapping
f : Rn ⇒ Rn defined byf(x) = {Aix | i ∈ I(x)}. For the
given f , define the following discrete-time conewise linear
inclusion (CLI):

x(t + 1) ∈ f(x(t)), t ∈ Z+. (1)

For an initial statex0 ∈ Rn, let x(t, x0) denote its trajectory
of (1). It is noted that for a givenx0, there are possibly



multiple trajectories corresponding tox0 in general.

Definition 1 (Strong Stability of CLI) At xe = 0, the CLI
(1) is called

• (strongly) stablein the sense of Lyapunov if, for each
ε > 0, there is δε > 0 such that‖x0‖ ≤ δε ⇒
‖x(t, x0)‖ < ε,∀ t ∈ Z+ for any trajectoryx(t, x0)
starting fromx0;

• (strongly) asymptotically stableif it is (strongly) sta-
ble and δ > 0 exists such that‖x0‖ < δ ⇒
limt→∞ x(t, x0) = 0 for any trajectoryx(t, x0) starting
from x0;

• (strongly) exponentially stableif there existδ > 0, κ ≥
1, and ρ > 0 such that‖x0‖ < δ ⇒ ‖x(t, x0)‖ ≤
κ‖x0‖e−ρt,∀ t ∈ Z+ for anyx(t, x0) starting fromx0.

Definition 2 (Weak Stability of CLI) The CLI (1) is
called weakly stable(respectively, weakly asymptotically
stable and weakly exponentially stable) at xe = 0 if the
corresponding condition in Definition 1 for its strong
counterpart is satisfied for at least one (instead of any)
trajectoryx(t, x0) starting fromx0. In particular, the CLI (1)
is weakly asymptotically stable if it is weakly stable and
δ > 0 exists such that‖x0‖ < δ ⇒ limt→∞ x(t, x0) = 0
for some trajectoryx(t, x0) from x0.

Since the trajectories of the CLI are homogeneous in initial
states, the local and global stability notions are equivalent.
Moreover, it is shown below that (strong) asymptotic stability
is equivalent to its exponential counterpart.

Theorem 3 The CLI (1) is asymptotically stable atxe = 0
if and only if it is exponentially stable atxe = 0.

Proof. It suffices to show the “only if” part. To reach this
end, we prove the following claim pertaining to uniform
asymptotic stability first:

Claim: if the CLI (1) is asymptotically stable atxe = 0,
then for any smallδ > 0 and a given scalar0 < c < 1, there
is a scalarTδ, c ∈ Z+ (depending onδ andc only) such that
‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ c δ, ∀ t ≥ Tδ, c for any x(t, x0)
starting fromx0.

For given δ > 0 and 0 < c < 1, suppose the claim
fails. Hence, there exist an initial state sequence{x0

k} ⊆ Bδ,
the corresponding trajectories{x(t, x0

k)}, and an increasing
time sequence{tk} ⊆ Z+ with lim

k→∞
tk = ∞ such that

‖x(tk, x0
k)‖ > c δ. Furthermore, it follows from the stability

of xe = 0 that two positive scalarsr (with r > δ) and µ
(with µ < δ) exist such that (i)‖x(t, x0

k)‖ ≤ r, ∀ t ∈ Z+ for
all k; and (ii) x0 ∈ Bµ ⇒ ‖x(t, x0)‖ ≤ c δ, ∀ t ∈ Z+. By
(ii) and the semi-group property, we have‖x(t, x0

k)‖ ≥ µ
for all t ∈ {0, 1, · · · , tk}. Since µ ≤ ‖x0

k‖ ≤ δ for all
k, there exists a subsequence of{x0

k} convergent tox0
∗

with µ ≤ ‖x0
∗‖ ≤ δ. Without loss of generality, let{x0

k}
be that subsequence convergent tox0

∗. In view of (i)-(ii)
and the construction of{tk}, we see that the sequence
{x(1, x0

k)}k≥t1 satisfiesµ ≤ ‖x(1, x0
k)‖ ≤ r for all k ≥ t1.

Thus it has a subsequence converging tox1
∗ with µ ≤

‖x1
∗‖ ≤ r. Due to the closedness ofXi’s, we obtain a

neighborhoodU of x0
∗ such thatU ⊆ ∪i∈I(x0

∗)
Xi. Note that

x(1, x0
k) = Aj x0

k for somej and x0
k ∈ U for all large k.

Furthermore, since the index setI(x0
∗) is finite, we deduce

that there exist a subsequence{x(1, x0
k′)} of {x(1, x0

k)}k≥t1

and an indexj1 ∈ I(x0
∗) such thatx(1, x0

k′) = Aj1x
0
k′

for all k′ with x(1, x0
k′) −→ x1

∗ and x0
k′ −→ x0

∗. This
shows thatx1

∗ = Aj1x
0
∗. Recalling j1 ∈ I(x0

∗), we have
x1
∗ ∈ f(x0

∗). Repeating this argument and using induction,
we obtain{xt

∗}t∈Z+ such that (i)µ ≤ ‖xt
∗‖ ≤ r for all

t ∈ Z+, and that (ii) for eacht ∈ Z+, xt+1
∗ ∈ f(xt

∗). This
shows that the trajectoryx(t, x0

∗) = {xt
∗}t∈Z+ is such that

‖x(t, x0
∗)‖ ≥ µ, ∀ t ∈ Z+. This contradicts the asymptotic

stability of the CLI. Hence the claim holds true.
Finally, using the above claim, the homogeneity of the

CLI and a similar argument as in [6, Theorem 3.9] (for
linear time-varying systems), one can show that the CLI is
exponentially stable atxe = 0. �

It is worth mentioning that the closedness ofXi’s plays a
key role in establishing the above equivalence. The following
example shows that if the closedness is dropped, then the two
stability notions may not be equivalent in general.

Example 4 Consider the CLI onR2 with Ξ = {Xi}4i=1,
where X1 = R2

++ ≡ {x ∈ R2 |x > 0} (namely X1 is
the interior of the nonnegative orthant ofR2 and thus is
open),X2 = {(0, x2)T ∈ R2 |x2 > 0}, X3 = {(x1, x2)T ∈
R2 |x1 < 0, x2 > 0}, X4 = {(x1, x2)T ∈ R2 |x2 ≤ 0}. Let
the transition matrices for the linear dynamics be

A1 =
[
−1 0
0 1

]
, A3 =

[
−1 0
1 1

]
, A2 = A4 = 0.

Since any two cones are disjoint,f is singleton onR2 and
thus becomes a function, albeit discontinuous. Hence, the
CLI has a unique trajectory for each initial state. It is easy to
verify that forx0 = (x0

1, x
0
2)

T ∈ X1, the trajectory sequence
is (x0

1, x
0
2)

T → (−x0
1, x

0
2)

T → (x0
1, x

0
2 − x0

1)
T → · · · →

(x0
1, x

0
2 − 2x0

1)
T → · · · until the second entry becomes

negative so that the sequence ends at the origin. Furthermore,
{‖x(t, x0)‖2} is non-increasing with respect tot. This also
holds for any trajectory starting fromX3 (as well as that
from X2∪X4). As a result, the CLI is asymptotically stable.
On the other hand, letx0 = (ε, 1)T ∈ X1, where ε > 0
is sufficiently small. Thus‖x0‖2 ≤ 2 for all small ε > 0.
Following the above argument, we see thatx(t, x0) reaches
the origin in about1/(2ε) steps, namely, the number of
convergence steps tends to infinity asε ↓ 0. Consequently,
the CLI is not exponentially stable.

To further illustrate Theorem 3, consider the CLI defined
on the closure of each of the above cones with the same
linear dynamics, i.e.,Ξ = {clsXi}4`=1, where cls denotes
the closure of a set. Similarly, we conclude that the CLI
is not exponentially stable. Note that the initial statex0 =
(0, 1)T ∈ clsX1∩clsX2∩clsX3. Thereforex0 has a trajectory
x(t, x0) with x(t, x0) = x0,∀ t ∈ Z+ (although another



trajectory from x0 is such thatx(t, x0) = 0,∀ t ≥ 1).
Therefore the CLI is not asymptotically stable. This exam-
ple also demonstrates a necessary condition for asymptotic
stability, i.e.,Ai has no eigenvector inXi associated with a
real eigenvalueλ ≥ 1. �

The following example shows that the conclusion of
Theorem 3 is no longer true if the strong notions of stability
are replaced with their weak counterparts.

Example 5 Consider the CLI onR2 with Ξ = {Xi}3i=1,
where X1 = {(x1, x2) ∈ R2 |x1 ≥ 0, x2 ≥ 0}, X2 =
{(x1, x2)T ∈ R2 |x1 ≤ 0, x2 ≥ 0}, X3 = {(x1, x2)T ∈
R2 |x2 ≤ 0}. Let the corresponding matrices be

A1 =
[
0 −1
1 0

]
, A2 =

[
0 1
−1 −1

]
, A3 = 0. (2)

This CLI is not strongly asymptotically or exponentially
stable as it has a trajectory of periodicity two,(0, 1)T →
(−1, 0)T → (0, 1)T → · · · , that fails to converge to the
origin. On the other hand, it is weakly asymptotically stable.
For example, starting fromx0 = (x0

1, x
0
2)

T in the interior of
X1, the trajectory sequence is(x0

1, x
0
2)

T → (−x0
2, x

0
1)

T →
(x0

1, x
0
2 − x0

1)
T → · · · → (x0

1, x
0
2 − 2x0

1)
T → · · · which

eventually reachesX3; then the sequence can arrive at 0 at
the next time step. Similarly we can verify the existence
of at least one convergent trajectory starting from any other
initial state. Now consider the trajectories starting fromx0 =
(ε, 1)T ∈ X1 for a smallε > 0. By the above argument, for
any trajectoryx(t, x0) starting fromx0, the time steps it takes
for ‖x(t, x0)‖ to decreases to half of its initial value are at
least about1/ε steps, which grow unboundedly asε → 0.
Thus, the CLI is not weakly exponentially stable. �

III. L YAPUNOV AND CONVERSELYAPUNOV THEOREMS

FOR CLI

A function V : Rn → R is called (infinitely) piecewise
quadraticif it is positively homogeneous of degree two along
each ray:V (λx) = λ2V (x), for all λ ≥ 0 and x ∈ Rn. In
particular, V is called finitely piecewise quadraticif it is
piecewise quadratic and for eachx ∈ Rn, V (x) = xT Px
for at most a finite number of positive semidefinite matrices
P ∈ Rn×n. The following result asserts the equivalence of
exponential/asymptotic stability of CLI and the existence of
a finitely piecewise quadratic Lyapunov function.

Proposition 6 The CLI (1) is exponentially stable atxe =
0 if and only if there exists a finitely piecewise quadratic
Lyapunov functionV : Rn → R+ satisfying

(a) there existc1 > 0 and c2 > 0 such thatc1‖z‖2 ≤
V (z) ≤ c2‖z‖2 for all z ∈ Rn;

(b) there existsc3 > 0 such that V (z′) − V (z) ≤
−c3‖z‖2, ∀ z′ ∈ f(z) for all z ∈ Rn.

Proof. The sufficiency follows from the standard argument
(even without the finitely piecewise quadratic property forV )

and thus is omitted. In the sequel, we consider its converse
and let ‖ · ‖ be the 2-norm. Since the CLI is (globally)
exponentially stable atxe = 0, there existκ ≥ 1 and
ρ > 0 such that‖x(t, x0)‖ ≤ κ e−ρt‖x0‖,∀ t ∈ Z+

for all x0 ∈ Rn. Hence, there existsT∗ ∈ Z+ such that
κ2 e−2ρ(T∗+1) ≤ 1

2 . In the following, letW(z, T ) denote
the family of all the trajectories starting fromz ∈ Rn on the
interval [0, T ] with T ∈ Z+. Thus for eachT < ∞, W(z, T )
contains finitely many trajectories. We shall show that

V (z) ≡ max
x(t,z)∈W(z,T∗)

T∗∑
t=0

‖x(t, z)‖2 (3)

is a desired finitely piecewise quadratic Lyapunov function as
follows. It is clear that for eachz ∈ Rn, V (z) ≥ ‖z‖2. Hence
c1 = 1. Moreover,V (z) ≤

∑T∗
t=0 κ2 e−2ρt ‖z‖2 ≤ c2‖z‖2

where c2 ≡ κ2/(1 − e−2ρ). Therefore (a) holds true. To
prove (b), we note that for anyz′ ∈ f(z) and any trajectory
x̂(t, z′) starting fromz′, the concatenation ofz followed by
x̂(t, z′)|t=0,··· ,T∗ is a trajectory inW(z, T∗ + 1). Therefore

‖z‖2 +
T∗∑
t=0

‖x̂(t, z′)‖2

≤ max
x(t,z)∈W(z,T∗+1)

T∗+1∑
t=0

‖x(t, z)‖2 =
T∗+1∑
t=0

‖x̃(t, z)‖2,

where x̃(t, z) is a trajectory inW(z, T∗ + 1) that achieves
the above maximum. Sincẽx(t, z)|t=0,··· ,T∗ is a trajectory
in W(z, T∗) and‖x̃(T∗ + 1, z)‖2 ≤ 1

2‖z‖
2 by the choice of

T∗, we have

T∗+1∑
t=0

‖x̃(t, z)‖2 =
T∗∑
t=0

‖x̃(t, z)‖2 + ‖x̃(T∗ + 1, z)‖2

≤ V (z) +
1
2
‖z‖2.

Combining the above two inequalities, we obtain

T∗∑
t=0

‖x̂(t, z′)‖2 ≤ V (z)− 1
2
‖z‖2,

for any x̂(t, z′) ∈ W(z′, T∗). Therefore,V (z′) ≤ V (z) −
1
2‖z‖

2, andV (z) indeed satisfies (b). Finally, we show that
V is finitely piecewise quadratic. Indeed, define the positive
definite Pj ≡ I + AT

t1At1 +
(
At2At1

)T (
At2At1

)
+ · · · +

(
∏1

i=T∗
Ati

)T (
∏1

i=T∗
Ati

), where eachti ∈ {1, · · · , `}.
Since there are at most`T∗ suchPj ’s andV (z) ∈ {zT Pjz}
for eachz, V is finitely piecewise quadratic. �

The converse Lyapunov result established in Proposition 6
can be extended to weak exponential stability.

Proposition 7 The CLI (1) is weakly exponentially stable
at xe = 0 if and only if there exists a (possibly infinitely)
piecewise quadratic Lyapunov functionV : Rn → R+

satisfying

(a) there existc1 > 0 and c2 > 0 such thatc1‖z‖2 ≤
V (z) ≤ c2‖z‖2 for all z ∈ Rn;



(b) there existsc3 > 0 such that for eachz ∈ Rn, there
existsz′ ∈ f(z) such thatV (z′)− V (z) ≤ −c3‖z‖2.

Proof. For sufficiency, suppose there exists a Lyapunov
function V satisfying (a) and (b). For any initial statex0,
it follows from (b) that there existsz′ ∈ V (x0) such that
V (z′) ≤ V (x0)− c3‖x0‖2 ≤ ηV (x0), whereη ≡ 1− c3/c2

via (a). To avoid triviality, we may assumeη ∈ (0, 1). Letting
x(1, x0) ≡ z′ and repeating the above argument, we obtain
an exponentially decaying trajectoryx(t, x0) (with the decay
rate determined byη). Hence the CLI is weakly exponentially
stable atxe = 0.

For necessity, assume the CLI (1) is weakly exponentially
stable atxe = 0. Then starting from anyz ∈ Rn, there
exists at least one trajectoryx(t, z) satisfying ‖x(t, z)‖ ≤
κ e−ρt‖z‖, ∀ t ∈ Z+. Thus, the functionV (z) defined by

V (z) ≡ inf
x(t,z)

∞∑
t=0

‖x(t, z)‖2, where the infimum is taken

over all the trajectories fromz, is finite for eachz. Further-
more, it satisfies‖z‖2 ≤ V (z) ≤ c ‖z‖2 for some constant
c ≥ 1, where the existence ofc is due to the weak exponential
stability. Moreover, being the value function of an infinite-
horizon optimal control problem,V (z) satisfies the Bellman
equation:

V (z) = min
z′∈f(z)

{
‖z‖2 + V (z′)

}
= ‖z‖2 + min

z′∈f(z)
V (z′).

The minimum in the above equation is achieved by some
z′∗ ∈ f(z). Then we haveV (z) = ‖z‖2+V (z′∗), i.e.,V (z′∗)−
V (z) = −‖z‖2. Thus,V (z) satisfies both (a) and (b). �

IV. STABILITY OF SWITCHED L INEAR SYSTEMS

Switched linear systems (SLS) are a natural extension of
linear systems. In this section, some basic notions of the
stability of switched linear systems are reviewed.

For a given discrete-time switched linear system, its state
x(t) ∈ Rn evolves by switching among a finite family of
linear dynamics indexed byM≡ {1, . . . ,m}:

x(t + 1) = Aσ(t)x(t), t ∈ Z+. (4)

Here, σ(t) ∈ M for t ∈ Z+, or simply σ, is called the
switching sequence; andAi ∈ Rn×n, i ∈ M, are the
subsystem state dynamics matrices. Starting from the initial
statex0, the trajectory of the SLS depends on the switching
sequenceσ, and will be denoted byx(t, x0, σ). Note that
the SLS (4) can be viewed as a special instance of CLIs by
setting the family of closed cones to beXi = Rn, i ∈ M.
In this case,f(x) = {Aix | i ∈M} for all x ∈ Rn.

A. Stability of SLS

Definition 8 (Stability of SLS) The SLS (4) is called

• exponentially stable under arbitrary switchingif there
exist κ ≥ 1 and ρ > 0 such that starting from any
initial state x0 and under any switching sequenceσ,
the state trajectoryx(t, x0, σ) satisfies‖x(t, x0, σ)‖ ≤
κ‖x0‖e−ρt,∀ t ∈ Z+.

• exponentially stable under proper switchingif there
existκ ≥ 1 andρ > 0 such that starting from any initial
statex0, there exists at least one switching sequence
σ for which the state trajectoryx(t, x0, σ) satisfies
‖x(t, x0, σ)‖ ≤ κ‖x0‖e−ρt,∀ t ∈ Z+.

Similarly, we can define the notions of stability (in the sense
of Lyapunov) and asymptotic stability for SLS under both
arbitrary and proper switching. Clearly the local and global
versions of these stability notions are equivalent. Moreover,
by Theorem 3, asymptotic stability and exponential stability
of SLS under arbitrary switching are equivalent.

B. Generating Functions

We next define some functions that will be useful later
on. For eachz ∈ Rn, define thestrong generating function
G(·, z) : R+ → R+ ∪ {+∞} of the SLS as [4]

G(λ, z) ≡ sup
σ

∞∑
t=0

λt‖x(t, z, σ)‖2, ∀ λ ∈ R+, (5)

where the supremum is taken over all switching sequencesσ
of the SLS. Obviously,G(λ, z) is monotonically increasing
in λ, with G(0, z) = ‖z‖2 when λ = 0. As λ increases,
however, it is possible thatG(λ, z) = +∞.

It is often convenient to studyG(λ, z) as a function ofz
for fixed λ. Thus, for eachλ ∈ R+, define the function

Gλ(z) ≡ G(λ, z), ∀ z ∈ Rn. (6)

From the definition (5),Gλ(z) is homogeneous of degree
two in z, with G0(z) = ‖z‖2.

The radius of convergenceλ∗ for the SLS (4) is defined
as λ∗ ≡ sup{λ | ∃ a finite constantc such thatGλ(z) ≤
c‖z‖2, ∀ z ∈ Rn}.

Proposition 9 The SLS (4) is exponentially stable under
arbitrary switching if its radius of convergenceλ∗ > 1;

Proof. Assume λ∗ > 1. Then G1(z) ≤ c‖z‖2
for some c, i.e., for any trajectory x(t, z, σ) of the
SLS,

∑∞
t=0 ‖x(t, z, σ)‖2 ≤ c‖z‖2. This implies that

(i) ‖x(t, z, σ)‖ is bounded by
√

c‖z‖ for all t, hence the
SLS is stable; and (ii)x(t, z, σ) → 0 as t →∞. Therefore,
the SLS is asymptotically stable. By Theorem 3, the SLS as
an instance of CLIs is also exponentially stable. �

The converse statement of the above proposition is also
true. Its proof will appear in an upcoming paper.

V. CLI OBTAINED FROM SLS

A function E : Rn → R+ is anenergy functionif it is

(i) homogeneous of degree two:E(λz) = λ2E(z), ∀λ ∈
R, ∀ z ∈ Rn;

(ii) bounded on the unit sphere:c1‖z‖2 ≤ E(z) ≤ c2‖z‖2
for some constants0 < c1 ≤ c2 < ∞.

Two CLIs can be defined from the SLS (4) based on an
energy functionE.



Definition 10 Given the SLS (4) and an energy functionE,
let Ξ = {Xi}i∈M be a set of closed cones ofRn defined as

Xi ≡ {x ∈ Rn |E(Aix) = minj∈ME(Ajx)} , i ∈M.

Then a CLI can be defined such that it has the dynam-
ics matrix Ai on the coneXi. Such a CLI is called the
descending realizationof the SLS (4) with respect to the
energy functionE. If in the above definition ofXi, minimum
is replaced by maximum, while the dynamics matricesAi

remain unchanged, then the resulting CLI is called the
ascending realizationof the SLS (4) with respect toE.

It is easy to see from the above definition that the trajecto-
ries x(t, x0) of the descending (resp. ascending) realization
CLI are exactly the trajectoriesx(t, x0, σ) of the SLS (4)
under the particular switching policyσ that tries to decrease
(resp. increase) the value of the energy functionE as much
as possible at each step of the trajectories. If for a givenx,
maxi∈ME(Aix) is achieved by multiplei ∈ M, then the
ascending realization CLI has multiple trajectories starting
from x: f(x) = {Aix |E(Aix) = maxj∈ME(Ajx)}.
Similarly for the descending realization.

The following two theorems show that the study of expo-
nential stability for SLSs can be reduced to the study of weak
exponential stability for the ascending/descending CLIs with
respect to properly chosen energy functions.

Theorem 11 A necessary and sufficient condition for the
SLS (4) to be exponentially stable under arbitrary switching
is that its ascending realization CLI with respect to any
energy functionE is weakly exponentially stable with the
same parametersκ, ρ > 0.

Proof. The necessary part is trivial once we notice that any
trajectoryx(t, z) of the ascending realization CLI is also a
trajectory of the SLS under some switching sequenceσ.

To show sufficiency, suppose the ascending realization CLI
of the SLS (4) with respect to any energy functionE is
weakly exponentially stable. Consider the functionGλ(z)
defined in (6) and its radius of strong convergenceλ∗.

Let λ ∈ [0, λ∗) be arbitrary. By the definition ofλ∗,
Gλ(z) is an energy function. Denote byCλ the the ascending
realization CLI of (4) with respect toGλ(z), which by our
assumption is weakly exponentially stable. Thus, starting
from any initial z, there exists a trajectoryx(t, z) of Cλ

that satisfies‖x(t, z)‖ ≤ κe−ρt‖z‖, ∀ t ∈ Z+. We observe
that this trajectoryx(t, z) of Cλ is a trajectoryx(t, z, σ∗)
of the SLS (4) under an optimal switching sequenceσ∗

that achieves the supremum in (5). Indeed,Gλ(z) by its
definition is the value function for maximizing the functional∑∞

t=0 λt‖x(t, z, σ)‖2, and satisfies the Bellman equation:

Gλ(z) = ‖z‖2 + λ ·max
i∈M

Gλ(Aiz), ∀ z ∈ Rn.

At each time, sayt = 0, the next statex(1, z, σ∗) = Aiz
of x(t, z, σ∗) is chosen to be somei ∈M that achieves the
maximum in the above equation. Thus, by the dynamical
programming principle,x(t, z) = x(t, z, σ∗) is a maximizer

of the functional
∑∞

t=0 λt‖x(t, z, σ)‖2. As a result, for any
trajectoryx(t, z, σ) of the SLS (4),

∞∑
t=0

λt‖x(t, z, σ)‖2 ≤ Gλ(z) =
∞∑

t=0

λt‖x(t, z)‖2

≤
∞∑

t=0

λtκ2e−2ρt‖z‖2 =
κ2

1− λe−2ρ
‖z‖2, (7)

for λ ∈ [0, λ∗), andλ < e2ρ (for the last equality to hold).
We claim thatλ∗ ≥ e2ρ. For otherwise supposeλ∗ <

e2ρ. Fix an arbitrary trajectoryx(t, z, σ) of the SLS. De-
fine F (λ) ≡

∑∞
t=0 λt‖x(t, z, σ)‖2. Note that F (λ) can

be thought of as a power series inλ with nonnegative
coefficients‖x(t, z, σ)‖2. By (7), F (λ) is convergent for
λ ∈ [0, λ∗). Thus its radius of convergence,RF ≡
sup{λ |F (λ) < ∞}, must be at leastλ∗.

We next show thatRF is strictly larger thanλ∗. First
note thatF (λ) is an analytic function, hence infinite time
differentiable, within its radius of convergence(−λ∗, λ∗)
(see [3]). For anyλ ∈ [0, λ∗), we compute

F ′(λ) =
∞∑

t=0

(t + 1)λt‖x(t + 1, z, σ)‖2

=
∞∑

t=0

t∑
s=0

λt‖x(t + 1, z, σ)‖2

=
∞∑

s=0

λs
∞∑

t=0

λt‖x(t + s + 1, z, σ)‖2

≤
∞∑

s=0

λs κ2

1− λe−2ρ
‖x(s + 1, z, σ)‖2

≤ κ4

(1− λe−2ρ)2
‖x(1, z, σ)‖2

≤ κ4 maxi∈M ‖Ai‖2

(1− λe−2ρ)2
‖z‖2,

where in deriving the first inequality, we have used (7) for
the trajectoryx(t+s+1, z, σ), t ∈ Z+, that starts fromx(s+
1, z, σ). The ensuing inequality is obtained by applying (7)
once again to the trajectoryx(s+1, z, σ), s ∈ Z+, that starts
from x(1, z, σ). The last inequality follows as‖x(1, z, σ)‖ =
‖Aiz‖ ≤ ‖Ai‖ ‖z‖ for somei ∈ M. In an entirely similar
way, we can prove that

F (k)(λ) ≤ k!κ2(k+1)(maxi∈M ‖Ai‖2)k

(1− λe−2ρ)k+1
‖z‖2, ∀λ ∈ [0, λ∗),

for k = 0, 1, 2, . . .. Pick any λ0 ∈ [0, λ∗). Consider the
Taylor series expansion ofF (λ) at λ0:

F0(λ) ≡
∞∑

k=0

1
k!

F (k)(λ0)(λ− λ0)k. (8)

Since F (λ) is analytic atλ0, F (λ) = F0(λ) in a neigh-
borhood ofλ0. We claim that the power seriesF0(λ) has a
convergence radius of at least a constantδ defined by

δ =
1− λ∗e−2ρ

κ2 maxi∈M ‖Ai‖2
, (9)



for any λ0 ∈ [0, λ∗). Indeed, forλ ∈ (λ0 − δ, λ0 + δ),

|F0(λ)| ≤
∞∑

k=0

1
k!

F (k)(λ0)|λ− λ0|k

≤
∞∑

k=0

κ2(k+1)(maxi∈M ‖Ai‖2)k

(1− λ0e−2ρ)k+1
‖z‖2δk < ∞.

Thus,F0(λ) defines an analytic function on(λ0−δ, λ0 +δ).
Letting λ0 ↑ λ∗, the union ofF (λ) and F0(λ) yields an
analytic continuation ofF (λ) from [0, λ∗) to [0, λ∗ + δ).
The feasibility of finding such an analytic continuation of
F (λ) beyondλ∗ implies thatλ∗ cannot be the radius of con-
vergenceRF , for F (λ) being a power series of nonnegative
coefficients must haveRF as a singular point, beyond which
no analytic continuation is possible [3, Theorem 5.7.1]. More
precisely, the above argument implies thatRF ≥ λ∗ + δ.

Let λ = λ∗ + δ/4 and λ0 ≡ λ − δ/2 = λ∗ − δ/4. Then
sinceλ is within the radius of convergence of bothF (λ) and
F0(λ), we must have

F (λ∗ + δ/4) = F0(λ0 + δ/2)

≤
∞∑

k=0

κ2(k+1)(maxi∈M ‖Ai‖2)k

(1− λ0e−2ρ)k+1
‖z‖2(δ/2)k

≤ 2κ2

1− λ∗e−2ρ
‖z‖2. (10)

Note that the upper bound in (10) is independent ofσ. Then

Gλ∗+δ/4(z) = sup
σ

F (λ∗ + δ/4) ≤ 2κ2

1− λ∗e−2ρ
‖z‖2 < ∞,

for all z ∈ Rn. This leads to a contradiction with the fact
that λ∗ is the radius of strong convergence for the SLS (4).
As a result,λ∗ < e2ρ cannot be true as we assumed; and we
must haveλ∗ ≥ e2ρ > 1. By Proposition 9, the SLS (4) is
exponentially stable under arbitrary switching. �

In reality, however, the above corollary may not be easily
implemented as it requires the knowledge of the functions
Gλ(z), which are typically difficult to obtain.

Theorem 12 A necessary and sufficient condition for the
SLS (4) to be exponentially stable under proper switching
is that its descending realization CLI with respect to some
energy functionE is weakly exponentially stable.

Proof. The sufficient part is straightforward. Suppose the
descending realization CLI with respect to someE is weakly
exponentially stable. Then starting fromz ∈ Rn, any
exponentially convergent trajectoryx(t, z) of the CLI is also
a trajectoryx(t, z, σ) of the SLS for some suitablyσ. Thus,
the SLS is exponentially stable under proper switching.

To show necessity, assume that the SLS (4) is exponen-
tially stable under proper switching. Then starting from any
z ∈ Rn, there exists at least one switching sequenceσ for
which ‖x(t, z, σ)‖ ≤ κe−ρt‖z‖ for all t. Thus the function
H(z) = infσ

∑∞
t=0 ‖x(t, z, σ)‖2 is finite everywhere; and

satisfies‖z‖2 ≤ H(z) ≤ κ2

1−e−2ρ ‖z‖2 for all z. Consider the

descending realization CLI of (4) with respect to the energy
functionH(z). Note thatH(z) satisfies the Bellman equation

H(z) = ‖z‖2 + min
i∈M

H(Aiz), ∀ z.

Thus, starting from anyz ∈ Rn, we haveH(z′) −H(z) =
−‖z‖2 for any next statez′ ∈ f(z) of the CLI. As a result,
H(z) is a piecewise quadratic Lyapunov function of the CLI
satisfying the hypotheses of Proposition 6, and the CLI is
strongly hence weakly exponentially stable. �

We remark that Theorem 12 remains valid even if the
weak exponential stability is replaced by strong exponential
stability for the CLI.

Remark 13 The energy functionsE(z) in this section are
required to be bounded away from both zero and infinity
on the unit sphere. To justify this requirement, assume for
exampleE(z) is identically zero (or identically infinity) on
Rn. Then the ascending (or descending) CLI will have the
same set of trajectories as the SLS (4), thus making the
conclusions of Theorem 11 and Theorem 12 trivial.

VI. CONCLUSION

The stability of conewise linear inclusions is studied. It
is found that strong asymptotic stability is equivalent to
strong exponential stability for CLIs. Lyapunov and converse
Lyapunov theorems are proved for both strong and weak
exponential stabilities of CLIs. Finally, it is shown that the
exponential stability of switched linear systems is equivalent
to that of a family of CLIs obtained from the SLSs via some
suitably defined energy functions.
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