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Abstract— This paper addresses the stability of discrete-time class of linear inclusions. In spite of its simple structure, the
conewise linear inclusions (CLIs) and its connection with that stability knowledge of the CLIs is far from complete, except
of switched linear systems (SLSs). The CLIs form a class of 5 e\ results for some special conewise linear systems, e.g.,

switched linear systems subject to state dependent switchings. .
Strong and weak stability concepts of the CLIs are considered [1] studies the planar case only and [10] focuses on a CLI

and the equivalence of asymptotic and exponential stability is With a Lipschitz continuous right-hand side. In this paper, we
established. To characterize stability of the CLIs, a Lyapunov ~ consider strong and weak stability concepts of the general
framework is developed and a converse Lyapunov theorem is CLIs and establish the equivalence of (strong) asymptotic
obtained. Furthermore, stability of general SLSs is studied and - g exponential stability. We then characterize the stability
is shown to be closely related to that of the CLIs through a f the CLIs f the L ti d devel
family of properly defined generating functions. of the S from the Lyapunov perspeclive an evg op
a converse Lyapunov result. Furthermore we establish a
. INTRODUCTION connection between the stability of CLIs and that of SLSs.

. . : . . Specifically, a new stability criterion for the stability of SLSs
Stability analysis of hybrid and switched dynamical Sysisdproposed based on generating functions. Stability of the

tems has received tremendous interest in the systems a§LSS is shown to be equivalent to that of two families of

control community, driven by important applications in IargeqLIS obtained from the SLSs using the generating functions.

scale and complex systems with hierarchical and multi-modal The rest of the paper is organized as follows. In Section II,

structure [8]. Switched dynamical systems can be roughl\xe introduce the CLI and its strong and weak stability

divided into two groups: those subject to arbitrary, Stat((e:once ts. It is shown that (strong) asymptotic stability is
independent switchings, and those subject to state dependént . Pis. 9 ymp Y

S . . : quivalent to exponential stability. Subtle technical condi-
switchings. There is a large body of the literature on switche . . . )

. LS . " L tions that yield such equivalence are discussed. Section llI

systems of the first kind; and various stability criteria havef}

been proposed, e.g., the Lie-algebraic approach [7] angeuses on Lyapunov characterization of strong and weak

the Lyapunov framework [11]. In the latter case, differen Xponential stability; both Lyapunov and converse Lyapunov

. : heorems are established. The latter theorem ensures the
forms of Lyapunov functions have been considered, such as: : . . .
common Lyapunov functions [9] and composite quadrati(?X'Stence of a piecewise quadratic Lyapunov function for

Sstrong exponential stability. Section IV discusses stability of

Lyapunov functions [5]. The converse Lyapunov theoren%LSS. In contrast to Lyapunov approach, a novel generating

and stabilization issue have also been addressed for t LIJSnCtiOH based characterization is proposed for the stability

class .Of switched systems [2], [12]. In comparison, St.ab".it)énalysis of SLSs. It is further shown in Section V that
of S\.N'tChed systems Subject _to state c_lep(_and_ent swﬂchmg_lse exponential stability of such SLSs can be characterized
receives relatively less attention, despite its importance lr?y the weak stability of certain CLIs defined by suitable
robotics, dynamic optimization and other fields. This is

largely due to the fact that state-dependent switching usgn o'oY fu.n.ct|ons. This re sult provides a new perspective to
) ! -Characterizing the stability of SLSs.
ally complicates fundamental dynamic and control analysis.

Particularly it poses great difficulty in obtaining less conser- |I. CONEWISELINEAR INCLUSION AND STABILITY

vative and easily verified stability conditions. Let = = {X;}_, be a finite family of nonempty closed
The present paper addresses the stability of a claggnes whose urﬁc;n 8", namely,U’_, X; = R". EachX;
’ 1= (2 . (2

of discrete-time, switched linear systems subject to statgs ¢ necessarily polyhedral or even convex, and two cones

dependent switchings, i.e., conewise linear inclusions (CLIs), = may overlap. For a givem € R, let the index set

Such a system partitions the state space into finitely mamy,) = {; € {1,--- ¢} |= € X;}. We assign to each cone
. . . - bl ) vy
cones; and the system dynamics is linear on each cong. ... v ., matrix A; that defines the linear mapping—

Switching occurs as a state trajectory exits from one cone alléx if 2 € &;. This gives rise to a linear set-valued mapping
enters another. The state dynamics may have multiple vaIu?s R™ = R" defined byf(z) = {A;z|i € Z(z)}. For the

on the boundary of two cones, thus making the system diven £, define the following discrete-time conewise linear
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multiple trajectories corresponding ¢ in general. Thus it has a subsequence convergingazfo with 1 <
|zl]] < r. Due to the closedness ot;’s, we obtain a
Definition 1 (Strong Stability of CLI) At z. = 0, the CLI  neighborhood/ of 2% such that/ C Ujez(20)X;. Note that
(1) is called z(1,29) = A; 20 for some;j andz? € U for all large k.
« (strongly) stablein the sense of Lyapunov if, for each Furthermore, since the index s&tz?) is finite, we deduce
e > 0, there isé. > 0 such that||z°|| < 6. = thatthere exist a subsequenieg(1, z},)} of {z(1, 23)}r>t,
|z(t,2%)|| < e,¥ t € Z, for any trajectoryz(t,2°) and an indexj; € Z(2?) such thatz(1,2},) = A},
Starting fromxo; for all k¥ with x(l,azg,) — .’Ei and .’L'g/ — xg This
. (strongly) asymptotically stablé it is (strongly) sta- Shows thatz; = Aj; ). Recallingji € Z(?), we have
ble andd > 0 exists such that°]| < 0 = . € f(z)). Repeating this argument and using induction,
lim o0 (£, 2°) = 0 for any trajectoryz(t, z°) starting We obtain{z} }icz, such that ()u < [lzi| < r for all
from 20 t € Z, and that (i) for eacht € Z, 2! € f(al). This
« (strongly) exponentially stabiié there exists > 0, x >  Shows that the trajectory(t, 22) = {2 }sez, is such that
1, andp > 0 such that[2°|| < & = [z(t,2°)| < Hx(t,_g;‘j)ﬂ >,V teZy. This contradicts the asymptotic
k||20)|e=Pt,V t € Z for anyx(t,2°) starting fromz0,  Stability of the CLI. Hence the claim holds true.
Finally, using the above claim, the homogeneity of the
Definition 2 (Weak Stability of CLI) The CLI (1) is CLI and a similar argument as in [6, Theorem 3.9] (for
called weakly stable(respectively, weakly asymptotically linear time-varying systems), one can show that the CLI is
stable and weakly exponentially stabjeat z, — 0 if the €xponentially stable at. = 0. O
corresponding condition in Definition 1 for its strong
counterpart is satisfied for at least one (instead of an
trajectoryz(t, 2°) starting fromz°. In particular, the CLI (1)
is weakly asymptotically stable if it is weakly stable an
§ > 0 exists such thafjz?|| < ¢ = limy_o z(t,2°) = 0
for some trajectorys(t, 2°) from z°.

It is worth mentioning that the closednessXfs plays a
)Qey role in establishing the above equivalence. The following
dexample shows that if the closedness is dropped, then the two
stability notions may not be equivalent in general.

Example 4 Consider the CLI onR? with = = {X;}}: |,
Since the trajectories of the CLI are homogeneous in initiavhere X; = R2, = {z € R*|z > 0} (namely X, is
states, the local and global stability notions are equivalerthe interior of the nonnegative orthant &7 and thus is
Moreover, it is shown below that (strong) asymptotic stabilityopen), X> = {(0,z2)7 € R? |z > 0}, X3 = {(z1,22)T €
is equivalent to its exponential counterpart. R? |z < 0,29 > 0}, Xy = {(z1,22)T € R?|z5 < 0}. Let
the transition matrices for the linear dynamics be
Theorem 3 The CLI (1) is asymptotically stable at. = 0 1 0 1 0
if and only if it is exponentially stable at, = 0. A = [ 0 J , Az [ 11

Proof. It suffices to show j[he “on'ly if” parlt.'To reach. this gjnce any two cones are disjoint,is singleton onR? and
end, we prove the following claim pertaining to uniformy, ;s pecomes a function, albeit discontinuous. Hence, the

asymptotic stability first: _ CLI has a unique trajectory for each initial state. It is easy to
Claim: if the CLI (1) is asymptotically stable at, = 0, verify that forz° = (29, 29)7 € A;, the trajectory sequence

], Ay = Ay =0.

Fhen for any smalb > 0 and a given scaldy < ¢ < 1, there g (29,297 — (=29,29)7 — (@228 — 20T = ... -
is a scalaiTs, . € Zy (depending ord andc only) such that (29,29 — 2297 — ... until the second entry becomes

2] <0 = [la(t,a®)[| < cd, V't =Ty, for any x(t, %) negative so that the sequence ends at the origin. Furthermore,

starting froma”. ~ {ll=(t,2%) 2} is non-increasing with respect to This also
For givend > 0 and0 < ¢ < 1, suppose the claim 45 for any trajectory starting fromt; (as well as that

fails. Hence, there exist an initial state seque{m%} C Bs, from X, U X,). As a result, the CLI is asymptotically stable.

the corresponding trajectorlg&(t7x2)}, and an increasing o the other hand, let? = (e, 1)T € X;, wheree > 0

time sequence{t;} C Zi with lim #; = oo such that s syfficiently small. Thus|z°|j, < 2 for all small > 0.

llz(tg, 20)|| > 4. Furthermore, it follows from the stability Following the above argument, we see thét, z°) reaches

of z. = 0 that two positive scalars (with » > 0) and . the origin in aboutl/(2¢) steps, namely, the number of

(with 1 < §) exist such that (i)|z(¢,29)|| <,V t € Z; for  convergence steps tends to infinity @g 0. Consequently,

all k; and (i) 2° € B, = |lz(t,2%)|| < ¢d, Vt € Z,. By the CLI is not exponentially stable.

(i) and the semi-group property, we hajle(t,z?)| > u To further illustrate Theorem 3, consider the CLI defined

for all t € {0,1,--- ,tx}. Sincep < [|22]| < § for all on the closure of each of the above cones with the same

k, there exists a subsequence f?} convergent tox? linear dynamics, i.e.Z = {clsk;}{_,, where cls denotes

with p < [lz9|| < 6. Without loss of generality, le{z{ the closure of a set. Similarly, we conclude that the CLI

be that subsequence convergentath In view of (i)-(ii) is not exponentially stable. Note that the initial state=

and the construction oft;}, we see that the sequence(0,1)” € clst;nclsX,NclsXs. Thereforer® has a trajectory

{z(1,29)}r>e, satisfiesy < [|z(1,29)|| <r forall k> t;. z(t,z") with z(t,2°) = 2°V t € Z, (although another



trajectory fromz° is such thatx(t,2°) = 0,v ¢t > 1). and thus is omitted. In the sequel, we consider its converse
Therefore the CLI is not asymptotically stable. This examand let || - | be the 2-norm. Since the CLI is (globally)

ple also demonstrates a necessary condition for asymptoéigponentially stable at. = 0, there existsx > 1 and
stability, i.e., A; has no eigenvector if; associated with a p > 0 such that|z(t,2°) < ke ?! 20|,V t € Z,
real eigenvalue\ > 1. O for all 2° € R™. Hence, there existd, € Z, such that
k2 e~ 2T+ < 1 In the following, letW(z,T) denote
. . he family of all the trajectories starting frome R"™ on the
The following example shows that the conclusion Ofnterval [0, 7] with T € Z., . Thus for eactl’ < oo, W(z, T)

Theorem 3 is no Ionggr true if the strong notions of Stablllt)f:ontains finitely many trajectories. We shall show that
are replaced with their weak counterparts.

Ty
Example 5 Consider the CLI onR? with = = {X;}3_,, Vi(z) = X )Z (2, )| 3
where X} = {((El,xz) S R2|IL'1 > 0,20 > 0}, Xy = ’ T =0
{(z1,29)T € R?|zy < 0,29 > 0}, X3 = {(x1,22)T € isadesired finitely piecewise quadratic Lyapunov function as
R? |z, < 0}. Let the corresponding matrices be follows. It is clear that for each € R™, V(2) > ||z||2. Hence
0 1 0 1 ¢1 = 1. Moreover,V(z) < Y12 k2201 ||2]|2 < e 2|2
A = L 0 } , Ag= [_1 _J , A3=0. (2) wherecy; = k?/(1 — e2¢). Therefore (a) holds true. To
prove (b), we note that for any € f(z) and any trajectory
This CLI is not strongly asymptotically or exponentially 7 (¢, ') starting fromz’, the concatenation of followed by
stable as it has a trajectory of periodicity tw@, 1) —  Z(¢,2')|,—o.... 7. is a trajectory iV (z, T, + 1). Therefore
(-1,007 — (0,1)T — ..., that fails to converge to the .
origin. On the other hand, it is weakly asymptotically stable. 122 + Z 13t )|
For example, starting from® = (29, 29)7" in the interior of pord ’
X, the trajectory sequence {89, 29)7 — (—a9,29)T — - S S
(28,28 — )" — -+ — (29,25 — 229)" — .-~ which - max ST )P =Y IEE )%
eventually reached’s; then the sequence can arrive at O at (t,2) EW(2, T +1) {7 o

the next time step. Slmllarly_we can ve_rlfy the eX'StenC%vhere%(t,z) is a trajectory inW(z, T, + 1) that achieves
of at least one convergent trajectory starting from any Oth%e above maximum. SinG&(t, 2)l,—.... 7. is a trajectory
. . 2)|e=0,... T,

initial state. Now consider the trajectories starting frofn= | ~ PSS :
(e,1)T € &, for a smalle > 0. By the above argument, for in W(z,T.) and ||#(T. + 1, 2)||* < 3[z[" by the choice of

any trajectoryz(t, 2°) starting fromz?, the time steps it takes T, we have

for ||z(¢,2°)| to decreases to half of its initial value are at T+ , . . .

least aboutl /¢ steps, which grow unboundedly as— 0. STlEt)I? = D IEE )P+ ET +1,2))|
t=0 t—=

Thus, the CLI is not weakly exponentially stable. O 0 1
< VE+ 5l

I1l. LYAPUNOV AND CONVERSELYAPUNOV THEOREMS Combining the above two inequalities, we obtain

FORCLI
T.
A function V : R™ — R is called (infinitely) piecewise Z 12t 2))? < V(z) — 1|\z||2
guadraticif it is positively homogeneous of degree two along P ’ - 2 ’

each ray:V(\z) = A2V (z), for all A > 0 andz € R™. In o . .
particular, V' is called finitely piecewise quadratidf it is flor agy z(t, ) < W(z ’T*)'. 'I_'herefore,_V(z) < V(z) -
piecewise quadratic and for eaghe R", V(z) = 27 Px §||.z|| L gnd V(z) mqleed satlsfu_as (b). Finally, we show thgt
for at most a finite number of positive semidefinite matriced’ '.S fmltely piecewise quadratic. Indejgad, define the positive
P ¢ R™*", The following result asserts the equivalence ofje“ln'te Py =1 1*‘ AL Ay + (A Ay) (A Ay ) + 0+
exponential/asymptotic stability of CLI and the existence of[[i—r. At,)" (ITi=z. Ar,), where eacht; € {1,.--,¢}.
a finitely piecewise quadratic Lyapunov function. Since there are at moséf suchP;’s andV(z) € {z" P;z}

for eachz, V is finitely piecewise quadratic. O
Proposition 6 The CLI (1) is exponentially stable at. = ) ) .
0 if and only if there exists a finitely piecewise quadratic The converse Lyapunov result est_abllshe_d_m Proposition 6
Lyapunov functionV : R* — R, satisfying can be extended to weak exponential stability.

H 2
(@) y(ezr)e<e)c(ls\\j\2>foroa?lng?Ri' 0 such thate, ||z < Proposition 7 The CLI (1) is weakly exponentially stable
(b) there_ex2ist3c3 ~ 0 such ,thatV(z’) V() < at x. = 0 if and only if there exists a (possibly infinitely)

piecewise quadratic Lyapunov functioi : R — R,
satisfying

Proof. The sufficiency follows from the standard argument(a) there existc; > 0 and c; > 0 such thate ||z[]? <
(even without the finitely piecewise quadratic propertyWor V(2) < ca|2|? for all z € R™;

—cs||z||?, V2 € f(z) for all z € R™.



(b) there existss > 0 such that for eachh € R"”, there « exponentially stable under proper switchinfy there
exists2’ € f(z) such thatV (2') — V(z) < —es|2|2. existx > 1 andp > 0 such that starting from any initial
o ) statez?, there exists at least one switching sequence
Proof. For sufficiency, suppose there exists a Lyapunov  ; for which the state trajectorys(t,z°,0) satisfies
funcnon V' satisfying (a) and (b)_. For any initial state, |z (t, 2%, 0)|| < K[|z°)le P,V t € Z..
it follows from (b) that there exists’ € V(z°) such that
V(2') <V (2°) — c3|2°||? < nV(2°), wheren =1 —c3/c,  Similarly, we can define the notions of stability (in the sense
via (a). To avoid triviality, we may assumgee (0, 1). Letting  of Lyapunov) and asymptotic stability for SLS under both
x(1,2%) = 2/ and repeating the above argument, we obtaiarbitrary and proper switching. Clearly the local and global
an exponentially decaying trajectaryt, z°) (with the decay versions of these stability notions are equivalent. Moreover,
rate determined by). Hence the CLI is weakly exponentially by Theorem 3, asymptotic stability and exponential stability
stable atx, = 0. of SLS under arbitrary switching are equivalent.
For necessity, assume the CLI (1) is weakly exponentiall
stable atz. = 0. Then starting from any € R", there
exists at least one trajectory(t, z) satisfying ||z (¢, z)|| < We next define some functions that will be useful later

ke Pt||z|, Yt € Z,. Thus, the functionV/(z) defined by on. For each: € R", define thestrong generating function
o0 G(-,z) : Ry — Ry U {400} of the SLS as [4]

B. Generating Functions

V(z) = inf t,2)||%, where the infimum is taken
(2) xl(lt{z)2||$( 2)[15, w infimum i

over all the trajectories from, is finite for each. Further- G\ z)=sup Y Nlz(t,z,0)|>, VAR, (5)
more, it satisfied|z||> < V(z) < ¢||z||* for some constant 7 =0
¢ > 1, where the existence ofis due to the weak exponential where the supremum is taken over all switching sequences
stability. Moreover, being the value function of an infinite-of the SLS. ObviouslyZ (), z) is monotonically increasing
horizon optimal control probleni/ (=) satisfies the Bellman in A, with G(0,z) = ||z||*> when A = 0. As X increases,
equation: however, it is possible thaf (), z) = +oc.

It is often convenient to studg(), z) as a function of:

V(z) = ;g;}gz) {I=12+ V(" } = ll=)* + Z,IQ}?Z) (). for fixed \. Thus, for each\ € R, define the function

The minimum in the above equation is achieved by some Gi(z) =G(N\,2), VzeR" (6)
2. € f(2). Then we havé/ () = ||z||>+V (z)), i.e.,V(2L)—

V() = —|l2||?. Thus,V(z) satisfies both (a) and (b). O From the definition (5),GA(z) is homogeneous of degree

two in z, with Go(z) = ||z||%
The radius of convergenca* for the SLS (4) is defined
V. STABILITY OF SWITCHED LINEAR SYSTEMS as \* = sup{A|3 a finite constant such thatGy(z) <

2 n
Switched linear systems (SLS) are a natural extension 6¢%17> ¥ # € R -

linear systems. In this section, some basic notions of t
stability of switched linear systems are reviewed.

For a given discrete-time switched linear system, its sta
z(t) € R™ evolves by switching among a finite family of proof. Assume A* > 1. Then Gi(z) < |z|?
linear dynamics indexed byt = {1,..., m}: for some ¢, i.e., for any trajectoryz(t,z,0) of the

_ SLS, Y02, lz(t, z,0)|[2 < c||z||*>. This implies that
t+1)=A, t), teZ,. 4 : =0 [l+A7 =
o ) »e) * @ () |l=(t, z,0)| is bounded by,/c|z|| for all ¢, hence the
Here, o(t) € M for t € Z,, or simply o, is called the SLS is stable; and (iix(t,z,0) — 0 ast — oo. Therefore,
switching sequence; andl; € R"*", i € M, are the the SLS is asymptotically stable. By Theorem 3, the SLS as
subsystem state dynamics matrices. Starting from the initiah instance of CLIs is also exponentially stable. O

statex?, the trajectory of the SLS depends on the switching
sequencer, and will be denoted byz(t, 2°, o). Note that The converse statement of the above proposition is also

the SLS (4) can be viewed as a special instance of CLIs B{ue. Its proof will appear in an upcoming paper.

setting the family of closed cones to e = R”, i € M. V. CLI OBTAINED FROM SLS
In this casef(z) = {A;z|i € M} for all z € R™. '

r]groposition 9 The SLS (4) is exponentially stable under
Perbitrary switching if its radius of convergencé > 1;

A function E : R™ — R, is anenergy functiorif it is
A. Stability of SLS (i) homogeneous of degree twli(\z) = A\2E(z), V) €
Definition 8 (Stability of SLS) The SLS (4) is called R, Vz e R

. exponentially stable under arbitrary switchirigthere (i) bounded on the unit sphere;|z||* < £(z) < ca|2|*
exist k > 1 and p > 0 such that starting from any for some constants < ¢, < ¢z < oc.
initial state z° and under any switching sequenee Two CLlIs can be defined from the SLS (4) based on an
the state trajectory:(t, z°, o) satisfies||z(t,z°,0)|| <  €nergy functionk.
k||z%e PtV t € Zy.



Definition 10 Given the SLS (4) and an energy functiah ~ of the functional}_;~  A\!||z(¢, z,0)||?. As a result, for any
let = = {X;}iem be a set of closed cones Bf* defined as trajectoryz (¢, z, o) of the SLS (4),

4= o €RT B(diw) = minjer B(d;o)}, i M S Nt 20| < Galz) = 3 Al (t, 2
t=0

Then a CLI can be defined such that it has the dynam- t=0
ics matrix A; on the coneX;. Such a CLI is called the
descending realizatiomf the SLS (4) with respect to the
energy functionE. If in the above definition oft;, minimum
is replaced by maximum, while the dynamics matrices for A € [0, A*), and\ < e (for the last equality to hold).
remain unchanged, then the resulting CLI is called the We claim thatA\* > e?. For otherwise supposg* <
ascending realizationf the SLS (4) with respect td. e*. Fix an arbitrary trajectoryz(t, z,0) of the SLS. De-
. o - fine F(\) = Y2, M|jz(t,2z,0)||>. Note that F(\) can

It is easy to see from the above definition that the trajectqye thought of as a power series i with nonnegative
ries z(t, 2°) of the descending (resp. ascending) realizatioBoefficients ||z (¢, z,o)||2. By (7), F(\) is convergent for
CLI are exactly the trajectories(t,mo,a) of the SLS (4) A € [O,/\*) Thus its radius of convergenceiy =
under the particular switching poliey that tries to decrease sup{)|F(\) < oo}, must be at leask*.
(resp. increase) the value of the energy functioms much  we next show thatRy is strictly larger than\*. First
as possible at each step of the trajectories. If for a given note thatF()\) is an analytic function, hence infinite time
max;e v E(A;2) is achieved by multiple € M, then the (ifferentiable, within its radius of convergende-\*, \*)
ascending realization CLI has multiple trajectories startingsee [3]). For any\ € [0, \*), we compute
from z: f(z) = {Aiz|E(Aix) = maxjem E(A;x)}.

oo 2
— K
< t§70 e e s vl N )

Similarly for the descending realization. F'(\) = i(t F DNt + 1,2, 0)|?
The following two theorems show that the study of expo- o

nential stability for SLSs can be reduced to the study of weak oot
exponential stability for the ascending/descending CLIs with = Z Mzt +1,2,0)|?
respect to properly chosen energy functions. t=0 5=0
Theorem 11 A necessary and sufficient condition for the = Z A? Z )\t||$(t +s+1, ZJ)HQ
SLS (4) to be exponentially stable under arbitrary switching 50200 t=0 ,
is that its ascending realization CLI with respect to any s K 2
energy functionE' is weakly exponentially stable with the = z_:o)‘ 1—de 2 lz(s +1,2,0)]
same parameters, p > 0. o o

o . < s (1, 2,0) |2
Proof. The necessary part is trivial once we notice that any (1 —Ae=2p)2
trajectoryz(t, z) of the ascending realization CLI is also a < krmaxienm [|4ill% o
trajectory of the SLS under some switching sequemnce = (1—Xe20)2 121

To show sufficiency, suppose the ascending realization C
of the SLS (4) with respect to any energy functiéhis
weakly exponentially stable. Consider the functioh (z)
defined in (6) and its radius of strong convergence

Let A € [0,A*) be arbitrary. By the definition of\*,

Where in deriving the first inequality, we have used (7) for
the trajectory:(t+s+1, z,0), t € Z, that starts frome(s+

1, z,0). The ensuing inequality is obtained by applying (7)
once again to the trajectory(s+1, z,0), s € Z,, that starts

: : ’fromx(1, z,0). The last inequality follows agx(1, z, 0)|| =
GA(|.2) 'f angflergf]y;unc_t;ﬁn. Dencitetzgy the thhg z;s;endmg ||A;z]] < ||A4:] ||z]| for somei € M. In an entirely similar
realization of (4) with respect 67, (z), which by our way, we can prove that

assumption is weakly exponentially stable. Thus, starting
from any initial z, there exists a trajectory(t, z) of Cy FO () < K2R (maxie aq || As12)*
that satisfieg|x(t, z)|| < ke *t||z||, Vt € Z;. We observe - (1 — Ae=2p)k+1

that this trajectoryz(t, z) of C, is a trajectoryxz(t,z,0")  ¢or 1. — 0.1.2.. ... Pick any Ao € [0,\*). Consider the
of the SLS (4) under an optimal switching sequence Taylor series e;<pansion df()) at \o: ’

that achieves the supremum in (5). Indeé&g,(z) by its

1212, VA € [0,A%),

definition is the value function for maximizing the functional _ - 1w oy \k
S22 o Alz(t, z,0)|%, and satisfies the Bellman equation: R = kz_o at Qo)A =20)" ®)
Ga(2) = [|=]? +A-maxGy(4;2), VzeR Since F()\) is analytic at\g, F(\) = Fy(\) in a neigh-

borhood of\y. We claim that the power seridg (\) has a

At each time, say = 0, the next stater(1,z,0%) = Aiz  convergence radius of at least a cons@uiefined by
of z(t,z,0") is chosen to be somec M that achieves the | 20
— (&

maximum in the above equation. Thus, by the dynamical 5= ’ 9)
programming principleg (¢, z) = z(t, z,0*) is a maximizer K% max;ea || Ail|?




o

for any Ao € [0, \*). Indeed, forh € (\g — 8, Ao + ), descending realization CLI of (4) with respect to the energy

function H(z). Note thatH (z) satisfies the Bellman equation

[Fo() <> 5 F® (A)A = Aol* H(z) = 2] + min H(A:z), V=

i 1€

Thus, starting from any € R™, we haveH (z') — H(z) =

—||2]|? for any next state’ € f(z) of the CLI. As a result,

H(z) is a piecewise quadratic Lyapunov function of the CLI

Thus, Fy(\) defines an analytic function ofhg — d, Ao+ ).  satisfying the hypotheses of Proposition 6, and the CLI is

Letting Ao T A\*, the union of F(\) and Fy()\) yields an strongly hence weakly exponentially stable. O

analytic continuation ofF'(A) from [0, \*) to [0, A* + §).

The feasibility of finding such an analytic continuation of We remark that Theorem 12 remains valid even if the

F()) beyond\* implies that\* cannot be the radius of con- weak exponential stability is replaced by strong exponential

vergenceRp, for F()\) being a power series of nonnegativestability for the CLI.

coefficients must hav& as a singular point, beyond which ) ) ) )

no analytic continuation is possible [3, Theorem 5.7.1]. Mor&emark 13 The energy functionsZ(z) in this section are

precisely, the above argument implies that > \* + 6. required tp be boundec_j away f_rom bqth zero and infinity
Let A = \* + /4 and\g = A — 6/2 = \* — §/4. Then ©ON the unit sphere. To justify this requirement, assume for

since) is within the radius of convergence of baff{)\) and exampleE(z) is identically zero (or identically infinity) on
Fy(X), we must have R™. Then the ascending (or descending) CLI will have the

same set of trajectories as the SLS (4), thus making the

R (maxie a [|44]]*)*
(1= hoe20)k+1

My I
W“p—\

IN

[|2]126% < oo.
k=0

F(X"4+0/4) = Fo(Mo +0/2) conclusions of Theorem 11 and Theorem 12 trivial.
> 2(k+1 2\k
<y R20HD (maie a [ A4?) I12]|2(6/2)F VI. CONCLUSION
(1 _ )\Oepr)k%l . . . . . . .
k=0 The stability of conewise linear inclusions is studied. It
< 2k2 9 10 is found that strong asymptotic stability is equivalent to
= 1 — \e—2p 11" (10) strong exponential stability for CLIs. Lyapunov and converse

Lyapunov theorems are proved for both strong and weak
exponential stabilities of CLIs. Finally, it is shown that the
exponential stability of switched linear systems is equivalent
to that of a family of CLIs obtained from the SLSs via some
suitably defined energy functions.

Note that the upper bound in (10) is independent oT hen
2

1— M*e=2r

for all z € R™. This leads to a contradiction with the fact
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