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Abstract— Estimation of a convex function is a critical performance analysis of th&-spline convex estimators is
shape restricted nonparametric inference problem with a wile  more complicated. In particular, the optimality conditson
range of applications in many important fields. In this pa- ¢ the p.spline estimators give rise to a family of size-
per, penalized splines (or simply P-splines) are exploited for . .
convex estimation. The paper is devoted to developing an vgrylng, penalty parameter dependent complementarity C?”
asymptotic theory of a class OfP-sp”ne convex estimators dlthI’]S. The C|Osed fOI’m SO|utI0n Of these Comp|emental’lty
using complementarity techniques and asymptotic statistis. conditions do not exist. To deal with these difficulties, we
In particular, due to the convex constraints, the optimality  establish a critical uniform Lipschitz property [11], [12]
conditions of P-splines are characterized by nonsmooth comple- of the optimal spline coefficients and use this property to

mentarity conditions. A critical uniform Lipschitz proper ty is . . .
established for optimal spline coefficients via complemeatity approximate the estimator by by a two-step estimator based

techniques. This property yields boundary consistency and ©n the corresponding least squares estimator [5]. By etploi
uniform stochastic boundedness. Using this property, theP-  ing asymptotic statistic tools, we further approximatesthi

spline estimator is approximated by a two-step estimator bsed  dynamical complementarity system and develop asymptotic
on the corresponding least squares estimator, and its asynic behaviors of theP-spline estimators
behaviors are obtained using asymptotic statistic techniges. . . ' .
The paper is organized as follows. In Section II, we for-
. INTRODUCTION mulate the convex regression problem and derive optimality

Nonparametric estimation of shape restricted functiongondlitions fc_>r theP—spIine estimator. Section III_estain;hes
receives increasing attention in statistics [3], [8], [13], & uniform Lipschitz property for a class df-splines with
[14], [16], driven by numerous applications in sciencdhe first order dl_fference_ penalty. Asymptonc_analys_ls is
and engineering. Examples include reliability enginegyin Performed in Section IV with an example shown in Section V
biomedical research, finance, and astronomy. A challenge #1d the conclusion drawn in Section VI.
shape restricted estimation is that an estimator is sulbject
inequalityconstraints, e.g., monotone and convex constraints. |l. PROBLEM FORMULATION AND OPTIMALITY
These constraints lead to nonsmooth optimality conditions CONDITIONS
that complicate performance analysis of estimators. ) o ]

The polynomial spline models have been extensively stud- Consider the problem of estimating a convex functjon
ied in approximation theory and statistics, thanks to thei: 1] — & from a univariate regression modgl = f(t;) +
computational advantages. The non-penalized polynomigt ¢ = 1:---,n, where the pre-specified design points are
splines are used to develop the shape restricted leastesqude = /7 @ = 1,...,n, and thee; are independent random
estimators [5] for monotone and convex functions. Howeveyariables with mean zero and varianeé. Our goal is to
the least squares estimators suffer several deficiencs. EStimate the functiorf which is assumed to be convex.
example, since the least squares estimators are necgssarilWVe propose a class of convex penalized spline estimators
piecewise constant (resp. linear) functions for the moneto Pased on binned data and investigate their asymptotic prop-
(resp. convex) constraint, they lack of smoothness. Fyrthérties. In particular, le{ BY' : k=1,...,K,+p} be the
the least squares estimators have unsatisfactory perfmena p th degree B-spline basis with knolis= rg < £ <--- <
they are inconsistent at boundary and have a non-negligibies, = 1. For simplicity, we consider equally spaced knots,
asymptotic bias with low convergence rates and non-normagmely,x1 = 1/K,, ko = 2/K,,...,rk, = 1. The value
asymptotic distributions. of K, will depend upom as discussed below. Assume that

In this paper, we consider the penalized polynomial splings/ & is an integer denoted by/,. Let g be the average
(or P-splines for short) for convex estimation and analyz®f all y; such thats,_; <t; < ki, i.e.,
their asymptotic performance, i.e. the estimation pertomoe

as the sample size is sufficiently large. The penalty on the >0,y Z(kk—1 <t; < k) Z?:ké\g:—l)Mn-s—l Yi
difference of splines improves estimation performancg,,e. - ke S T(kk—1 < ti <kg) M, ’
smoothness and boundary consistency. However, due to the

convex constraints and size dependent difference penayherek =1,..., K,, andZ is the indicator function. Denote

4= (y1,-..,9K,)T. Let the polyhedral cone be
Jinglai Shen is with the Department of Mathematics and Siedi
University of Maryland, Baltimore County, Baltimore, MD 230, USA. _ Kn . p _ _ _
Email: shenj@umbc.edu Q= {b eR 2bp—2bgy1+bpy2 >0, k=1,... K, 2}
Xiao Wang is with the Department of Statistics, Purdue Unsitg, \West . . ) o
Lafayette, IN 47906, USA. Emailvangxiao@purdue.edu We consider the following constrained optimization prable



form € N,

K, Kn 9
Fml _ fiml () N ”
™ = ™ () = arg min kgil(yk bi)“+A k} 2 (A™b)",

)
where \* > 0 and A is the backward difference operator,
ie., A(bk) = by, — by_1 and Am(bk) = A(Am_l(bk)).
Define the following convex spline estimator: fpr> 1,

Kn+p

fw = 32 0B,
k=1
wherebl” =200 —0i" ., , d=1,...,p. When

the knots are equally spaced, it is easy to verify that if th
B-spline coefficient vectob™ is in €2, then ™ is convex.
Let

1 0 00 00
1 1 00 00
c_ |1 1t 1o 0 0| _ pruxka
11 11 10
11 11 11

and let D,, € RE~—m)xEKn hea the mth-order difference
matrix such thatD,,b [A™(byt1), -+, A (b, )]
Formulating (1) via matrix notation, we obtain the followin
equivalent constrained quadratic program

R 1
[m] _ A T _ T 5
b arg min 2b (Ik, + AD,,Dp)b—=0b"5, (2)

where A = \*/M,, = \* - K,,/n > 0 and [, € RE~xExn
is the identity matrix.

where the index set := {1, ..., K,, — 2}, andCy, denotes

the dth row of C.

Proof: For notational simplicity, we drop the subscript
[m] in bl™ as follows. Write the optimization problem
(2) asminyeq g(b), where the objective functiog(b) :=
20" (Ik, + ADL Dy, )b — b7 3. It is clear thatg is coercive
on R&» and strictly convex on the closed convex set

This ensures the existence and uniqueness of an optimal

solution. Furthermore, sind@ is a convex polyhedral cone, it
is finitely generated by{v!, —v! 02 —v? 03 vt ... 0B ]

Here, for eachi = 3,..., K, letting v} = ("' A(1)); 11

with j =k, ..., K,,

T
e Uk:( 0,...,0, v,’j,...m’f{n)
(k—1)—Copies
T
:( 0,...,0, 1,2,...7Kn—k+1) ,
H/—’.
(k—1)—Copies
and fork =1, 2,
T
vlz(l,O, —1,—2,...7—(Kn—2)) ,

()

This shows thaTA%;? =0 for all £ and allj > 2. Hence
+v* € Q forall k, and it can be also verified that;_, v* =
1. Further, anyb = (b1,...,bk, )T € Q can be positively
generated as

T
v? = (o, 1, 2,3,...,Kn—1) .

2

b= Z (maX(O, bi)vi—f—max(o, _bi)(_vi))

=1

K,
=3

We first give the characterization of optimality conditionsUsing these generators fét, we obtain the necessary and
for bI™. The conditions are represented by complementaritsufficient optimality conditions for an optimizéras:

conditions, which plays a crucial role in addressing analyt
and statistical properties of the estimator. We provideatsh
introduction of the complementarity condition. Two vetor

u = (ug, - ,uq)T andv = (vy,---,v4)7 in R? are said
to satisfy thecomplementarity conditiofil], [4] if u; > 0,
v; > 0,andu; v; =0forall:=1,---,d. This condition can

be put in a more compact vector for:< v L v > 0,

whereu 1 v means that the two vectors are orthogonal,

i.e., uTv = 0. We introduce more notation as follows. Let
1 denote the vector of ones, i.el,= (1,...,1)T € R’
We define the sum operator far namely,A(1) = 1, and
—m 2 —m 7 “m

A1) = (1, CTmAQ))is - 2 (TA@)))T

i=1
for m € N. In particular,*A(1) = (1,2,...,£)T.

Theorem 2.1:The necessary and sufficient conditions for

blml € O to minimize (2) are
0< Dybl™ 1 ¢y C [(IKn+)\D,:CLDm)B[m]—g} >0, (3)
and
Ckne [(IKn +ADT D, )blm) — g} =0,
[ (4)

Cxe C Ik, + ADT D, )bIm — g} —0,

0 < Dyb L CVg(h) >0, (W* Vg(b))=0,Vk=1,2,

(6)
where D, € R(E»=2)xKn s given by
1 -2 1 0 0 O 0 O
o 1 -2 1 0 O 0 O
Dy = . cee 7
0 O 0 O 1 -2 1 0
0 O 0 O o 1 -2 1
andC € RE»=2)xKn s given by
C=[v* vfn )T
0o 0 1 2 (Kn—4)  (Kn—3) (K.—2)
0o 0 o0 1 (Kn—4)  (Kn—3)
- 0 '0 0 0 0 l 2
0 0 0 0 0 0 1

It can be shown via the definitions of andv? in (5) that
the second optimality condition in (6) can be equivalently
written as

K, K,
Z (Vg(b)), =0 and Z(Kn —i+1)(Vg(b)), =0,



whereVg(b) = (T, + ADL D,,, )b —y. This gives rise to the (3) this step arranges the index séﬁs in a monotone order

two boundary condmons Moreover, noting that for aky as follows. For eachﬁé . let mln(Bé ) denote the least

the definitions ofv’ andv? in (5) yield element in3y (the similar notation will be used for
max below). Definel,, := argming, ., {mln(ﬁz )}

Cre Vg (D) 2; 2; Vb)), = (C*)re Vg (b), Let B¢ := Bg{l. Then inductively define for each> 1,
(2 J ~ ~ s
we obtain the equivalent condition for the first optimality i1 =B, ,,» where
condition in (6): R
- - ls.., == a in(87)}.
0< Db L (C%) Vy(b) =0, 7) i+ LIV }{mln(ﬂel)}

wherey = {1,..., K,, — 2}. Finally, in view of (C?).,, =
C,.C, the proof is complete. m (4) in this step, we regroup the index se.‘is in a way
that preserves desired structural properues to be used

Il. UNIFORM LIPSCHITZ PROPERTY OF) in the subsequent development. Defing := 0 and
In this section, we characterize a critical property of the  ,, .— max(l, max{k > 1 : B N By #

optimal solutionb™! with m = 1. For notational conve- 0, Vj__l —1}), and g := UL, 32, the com-
nience, we drop the superscript 8! through this section. L =!

We firstly establish a piecewise linear formulationiofLet panlon mdex set91 = {min(55"), W =L..,pi}U

A= (I, + ADTD})/(1+2)) and z := 5/(1 + 2)\). In {max(B5,)}. Recursively, defme for each > 1,
particular, A is the following tri-diagonal matrix Pot1 = max (p,+1, max{k > p,+1: NG, #
0y 0 0 - 0] 0, Vj2p5+.1,....7/€—1}),andB?+1Z upp+15a,

n 1 15 0 - 0 the companion index set,,; := {mln(Bo‘) Vi =
ps + 1. per1} U {max(8; )} Without loss of

; (8) generality, we assume that the index elements of each
m 1 n 0 ¥ are in the strictly increasing order. Hence, any two
oo 1o consecutive index sets ifl; correspond to/; and /;
Lo 0 - 0 n 0 defined in Step (1) with, ; = 7,.

wheref := (1 + \)/(1 +2)), andn := —A\/(1+ 2)\) with  (5) suppose that there afesuch the index set,, and let
A > 0. With this notation, the optimality conditions become ¥ := UL, 9, whose index elements are in the strictly

the following mixed complementarity conditions increasing order. The® := (3,), wherei € ¥.
0< Db L CleC(Ab—2)>0, and It is clear from the above construction thgs?} forms
Cxo[AD — 2] = Cr, o C[Al — 2] = 0. (@ @ finite and disjoint partiton of{1,..., K,}, namely,

2y B =A1,.... K.} andBs N By —@Wheneverj;ék
It follows from complementarity theory that the OptlmalAIgebralcaIIy, the vectop® corresponds to the free variables
solution b, and thusb, is a p|eceW|se linear function of 5 jinear equation subject to the constraints definedvby
? determlned by an index set = {i|(D:b)i = 0} € Moreover, it can be shown thae, and thusb” (=) which

{1 — 2} (o may be empty). Specifically, for given yenqtess() corresponding to the index set, is a linear
b anda we define a vectob® and an associated family of function sz (cf. Lemma 3.1). Hence, for any € RE»,
index sets{ 5"} in the following steps: _ b(z) € {b"(2)}a, whereb” (z) is a selection function df(z).
(1) let 4, := ming<i<k, {i : A*(b;) = 0}, and/y :=  Therefore, the solution mapping — b is a (continuous)
maxy, <k<x, {k : A%(bi) =0, Vi = £1,...,k}. Then piecewise linear function witt2(»—2) selection functions.
inductively define, forj > 1, The same holds true for the mapping — b. In what
lisr = min  {i : A%(B;) =0}, follows, we characterize each linear selection function of
147, <i<K, or equivalentlyb .
lir1:= max {k: A2(b;) =0, Vi= lit1,...,k}. Lemma 3.1:For each index set C {1,..., K, — 2}, let
i1 SksKn ¢ := K, —|a|. Thenb® is the (unique) solution of the linear

Suppose that we obtainy's such ¢;,¢;, namely, equationA®b* = Z<, where thel x ¢ tri-diagonal matrix
l1,..., 0y and?y, ..., 0, Define3y :={i : £; —2< A~ and thel-vectorz* are given by

i <7;} for j =1,...,q. Note that|3§ | > 3 for each

¢;, and for two consecutive index seg,1 > /; + 2. duomo 0 0
Thus if the equality holds, theﬁz Ny, = {4} moodw i
otherwise, the two consecutive index seéts are disjoint. Ao — 2 dss s
) letL := K, +q—| U 1ﬁ¢| where]| - |denotesthe P . ’
cardlnallty of an index set. For eacle {1,. ni\ Me—2  die—1y@e—1) Te-1
1@ , deflneﬁz = {i}, wheres = (¢ + 1) , L. L0 - 0 Ne—1 dee |




Fa,lzﬂf‘

andz® = , WhereF,, ;, d;; andy; are given in

Fa_’ngch _
the following proof. MoreoverA® is invertible.

Proof: We introduce some notation first. Lety :=
|6 and h$ := m$ — 1, wherei = 1,..., L. Note that if
m$ > 1, thenmg$ > 3 such thathy > 2 and |9;] > 2. It
follows from the definition of3® thatb” = (F, )7, where
the matrix

6 ]REXKTL

Fa,L

and each matrix block corresponding fff is given as
follows: if m§ = 1, then F,, ; = 1; otherwise, assuming
that the index elements ifl;, are in the strictly increasing
order without loss of generality, and lettidg; ; := 0 (j +

1) — 9r(j) > 2 for eachj = 1,...,|9x| — 1, we have
F,r € RIPxxmi given in (16) at the end of the paper,
wherewy, := |94 — 1. Here F,, ; is determined fromgy
constructed in Steps (1)-(5).

For notational simplicity, let := Ab — z. In view of the
complementarity condition in (9), we hay®,b)7'C.,eCv =
0. Sinceb = (F,)Tv*, (b*)T F,(D¥ C,.Cv) = 0. Moreover,
it can be verified that

Iy _ O —
T _ |{K,—2 (Kp,—2)x2 KnxKp
D; C,.C { B O } eR )
where
|-(Kn—=1) —(K,-2) -2 2% (Kp—2)
E= { Kn—2  Kn—3 1| €R :

It also follows from the boundary conditionSk, v =
Ck,eCv 0 and elementary row operations that
[-E I:]v = 0. Therefore, we 0btainD2 CyeCv=Ig,v=
v. Hence, (b*)TF, (D3 CreCu) = (b*)T Fyv = 0. Recall
that for the given index set, b corresponds to the free
variables of a linear equation defined by As a result,b®
is arbitrary such tha¥,,v = 0. This leads to

Fo A(F,)T b

Letting AC = Fy A(F,)T andz® = F, z, we have a linear
equation fob “. SincefF, is of full row rank andA is positive
definite, A* is positive definite and hence is invertible.

In what follows, we determine the entries &f*. Fix
ke{l,...,L}. If my =1, then F, pAgope L, is a real
number that appears on the diagonal?iff. Denoting this
number byds, (i.e., dss = AS,), we have

=F,z.

0 if ke{l,L}

_ T } )

dss = FoxApppp Fop = { 1, otherwise

and As(s+1) = K?‘Hl)s =, KO‘ = 0 for all j < 5 —

2andj > s+ 2. If mg > 1, thenFakAﬁaﬂa .k is a
symmetric, positive definite matrix of ord(wk| ‘that forms
a diagonal block ofA*. Making use of the structure df,

given in (16) and somewhat lengthy computation, we obtain
the following results in two separate cases (recalling:=

[Dk| = 1).

Q) k=1ork=L. Fork =1,

n (h?1 —1)(2hT, — 1)
din=0+n— -~ +(1+2n)— o )
h1,1 6h1,1
(10)
a \2
~ Ao Ao Ul ( ) —1
773:Ass :As s — +(1+27])7a’
(s+1) (s+1) hl,s 6h1 .
Vs=1,...,wi,
2(hs 1)’ +1  2(hf0)*+1
dos = (142 [ ’ ’ ]
( * 7]) 6h(i¥,sfl 6h(is
1 1
e + )n, Vs=2,...,wi,
(hl,s—l hl,s

(hfw, + 1201w, +1)
6h§

1,wq

dwy+1)(wr+1) = (1 +2n)

— (1+ hhl)n' 1)
Besrdes,A Cwr 1) (wy42) = A?w1+2)(w1+1) =n and for

eachs =1,...,w, AY; =0,Vj > s+2andj < s—2.
For k = L, the srmllar results can be established by
using the symmetry of the rows df, ..

(2) k€ {2,...,L—1}.Inthis case, suppose that tfig 1)-
element ofFa kA[jaﬁaF & is a diagonal entry of\*
denoted byd;;. Then we have

n (hia —1)(2hg, — 1)
dew =141 — 75—+ (14 2n)— = ,
hk 1 6hk,1
(12)
~ Na (hk s) -1
Nets = At s)ttstl) = 7a— + (14 20—,
(t+s)(t+s+1) hk,s th’S
Vs=1,...,wg,
d _ (1+27])|:2(hg,s+1)2+1 2( g,s)2+1:|
+s)(t+s) — o o
(o) (tts) 6hk,s+1 6hk,s
1 1
= + = )n, Vs=1,...,wr — 1,
(hk ,s+1 hk,s
At ety = (14 20) ===
k,wy,
(14— )n. (13)
(7

In addition, for eachs = t,...,t + wy + 1, A%
Oforall j <s—2andj > s+2 andAj, ;) =
A(()%+wk+1)(t+wk+2) =n _
Due to the |dent|tyAt(t =71 and the symmetry ol\®,

we further conclude that if a diagonal entdy, = 7&3 with
t > 2 corresponds to a scaléb, kA pe I, 4, (1-€.,my = 1),
then/NX?;e =n. (Recall tha’rAt(t+1 = 7 has been obtained
before.) S|m|larly, ifdy, is the first d|agonal entry of a matrix
F,. kAﬁaﬁaF Y thenA (t—1)t = =n. ]
In the foIIowrng we prove the uniform Lipschitz property
of the optimal solutiorb!!). This property implies thab!!]



is Lipschitz ing (in the sense of,-norm) with the same
Lipschitz constant, regardless &f,, . It plays a critical role

in proving boundary consistency and asymptotic analysis.

Theorem 3 lilet m = 1. For anyK and any)\ > 0,
160 (5") =61 (52) oo < 3l15" =52l forall ', 52 € R,
~Proof Recall that for a given index set, b (2)
FTpe(2) = FI(A*)"1F,z, wherez = /(1 + 2)\). We

shall show that||FZ(A*)~F, |- is uniformly bounded, (2.3)

regardless ofe, A and K,,. We break the proof into the
following steps. B
(1) We first show that for any, the matrixA® is strictly

diagonally dominant and obtain bounds characterizing such

dominance. Giver\® ¢ R**¢, define¢, := dy1 — |71, & =
— |7i—1| — || with ¢ € {2,...,0 -1}, and§, := d; —
|77¢—1]. In light of the structure of\® shown in the proof of
Lemma 3.1, we obtain, for eadhe {1,...,L},
(1.1) if mg = 1, then (i) the corresponding, = 0 — |n| =
1/(1 4+ 2X) if k& € {1,L}; and (ii) otherwise, the
corresponding; = 1 — 2|n| = 1/(1 + 2)).
if m > 1 with k: =1, then (i) the corresponding =
din—1Inl > (5+ ]61)/(14—2/\) (i) for s =2,...,w,
the corresponding; = dss — |A2, P |A S+1)| >
(hf{‘s 1 +h8,)/[6(1+2))]; and (iii) the corresponding
gl = w1+1)(w1+1 |A |A
(3+ 163“1 )/ (142).
for mg > 1 with k = L using symmetry.

(1.2)

(w1+1) w1| (w141)(w1+2) | >

(1.3) if mg > 1 with k& € {2,...,L — 1}, then (i) the
correspondingé;, = dy — |At(t 1)| |At(t+1)|

(L 4+ M) /(1 4 20); (i) for s = 1,. 1, the
corresponding& = dit4s)(t+s) — |A(t+s) sl —

(t+s (t+s+1) | 2 (hgs + hk s+1)/[6(1 + 2)‘)]

and i) the correspondinggl = ditrw)(trwr) —

|A(t+wk)(t+wk 1)| - |A(t+wk)(t+wk+1)| z (% +

kwk

)/(1+2X).
Consequentlyéz > 0 for all & such thatA® is strictly
diagonally dominant.

(2) For a givenA® and ¢;'s obtained in the last step,

define the diagonal matri€ = diaglé; ', ..., &, ") € R¥*X.
Clearly, = is invertible. We thus have
1FS (A Falloo = |FY - (BA®) " - (BFa)l|oo

<F oo - 1EA®) Moo - 1EFalloo,

where it is easy to verify||F]

G EA® is strictly diagonally dominant withG;; —

ZﬁZL#i |Gij| = 1 for eachi, it follows from the Ahlberg-

Nilson-Varah bound [15] thalf(EA®) !||se = [|G e <

1. Furthermore, we have:

(2.1) if m¢ = 1, then the absolute sum of the entries in th
corresponding row irfEF,, is given by1/&; < (1+2X).

(2.2) it m¢ > 1 with £ = 1, then (i) the absolute sum of
the entries in the row irEF, corresponding tod;;

1. Noting that

in the row in =F, corresponding tod ss IS given by

h?571+h?s hl 5— 1+h’
: : 1+ 2X
2€; 2(hg,_ +he ) /I6(14+20)] 3(1+24);
and (iii) the absolute sum of the entries in the row
in £F, corresponding tod(,, 11)(w,+1) IS given by

L L, < 3(1 4 2)). The same

1wy
N 2(%+“#)/<1+2A>

results can be obtained fong > 1 with k = L

if mg > 1with k € {2,..., L—1}, then (i) the absolute

sum of the entries in the row i&F;, corresponding to

dy is given by + ’“ L Lthicy < 3(1+

2(%+iﬁ*1)/(1+2>\)
2X); (ii) for s = 1, ...,wy — 1, the absolute sum of the

entries in the row irEFy, corresponding t@; , () iS
given by% < 3(14-2)); and (iii) the absolute
sum of the entries in the row iRF,, corresponding to
A(t4wy) (t4wy) 1S given by - hk =5 < 3(1420).
In view of the above results, we deduce th&F, || <
3(1 4 2)), which in turn implies thaf] F7 (A®) "1 F, || o <
3(1+2)), regardless ofy, A, andK,,. Sincez = §/(1+2)),
we have||b(7)|| s < 3|7l for any§ € RE». The uniform
Lipschitz property thus follows from the piecewise linear
property ofb. ]

A. Consequences of the Uniform Lipschitz Property

The similar results can be obtained 1h€ uniform Lipschitz property yields several crucial im-

plications of theP-spline estimator and lays a rigorous foun-
dation for asymptotic analysis. We show stochastic uniform
boundedness and boundary consistency here, following the
similar line in [11]. LetE denote the expectation operator and
il = pl] (E(g?). Define the companion estimatgf" (t) =
S P BB (¢). Let the nomlg| := supyepo 1) lg(1)] for

a functiong € C([0, 1]). Consequently,

IF = £ < A0 = B+ 170 = )
< 3] — E(9)[loc + O(a) + O(K,, )

< 0,(Vn K, log Ky) + 0(a) + O(K; ),

wherea := \*/(nK,,). Hence, under suitable order condi-
tions onn and K,,, we obtain stochastic uniform bounded-
ness and boundary consistency in particular.

IV. ASYMPTOTICANALYSIS OF fI

In this section, we study the asymptotic distribution of
flml with m = 1. We first define theinvelope function
of an mtegrated Brownian motion. The invelope function,
denoted byH, is studied in depth in [5] and its definition
is as follows. LetX(t) W(t) + 43, where W is a
standard two sided Brownian motion starting from 0, and
let v f X(s)ds. The invelope functionH satisfies
éhe following conditions (i) the functiorff is everywhere
above the functionY’; (ii) the function H has a convex
second derivative, and with probability H is three times
differentiable at = 0; (iii) the function H satisfies|[H

Theorem 4.1:For any fixedt € [§,1 — §] with 0 < § <

¢ 3) (¢
is given by - 1 L LHhi < 3(1 4 2)); Y(D)]dH™ (t) = 0.
2(4+11) /(142
(i) for s = 2,...,

wy, the absolute sum of the entries1/2, assume thaf” is continuous in a neighborhood of



of fcan be studied along the same line as in [5]. When
n%//K, — oo, f and the least squares estimator in [5] are
asymptotically equivalent. In particular, letbe the uniform
distribution on{#,...,¢,}, andg be a piecewise constant

and f”(t) > 0. If n*/°/K,, — 0, then

n2/3{ fl1 £} — kz()/ e~k 1 F (1) du,

K (t)
in distribution, where ky(t) = 2473/5¢78/5f()3/5,

ko(t) = 242/55%/5 £ (¢)=2/5, and H is the invelope function

of the integrated Brownian motion. S,

Proof: Recall that the optimality conditions (3) and (4)

—~
~+

~
|

function such thay(¢;) = y;. Define
/ f Ydw(s

/Ot (5)do(s)

for m =1 are, respectively, Ra(t) = /t A(s)ds _ / S,.(5)ds
0< DbV L CuC[(I+ X DTDIY — 5] >0, (14) e "o
and H,(t) = /0 R, (s)ds, Hy(t) = /0 R, (s)ds.
& & & - & Moreover, define their “local counterparts” at the fixed
S o= Zyk, S K=k D)8 = S (K= k1) ! P
k=1 k=1 k=1 t+n~ /%
15) Vs =t [ {Su(s) = S0
For notational simplicity, we drop the subscripf in b, t

Consider a two-step estimator. At the first step we use the
least squares estimator by flndlhgo m|n|m|zezk " (k —
bk)2 subject to the constraldDQb > 0. At the second step,
we find an unconstrained penalized spline estimator. et
solve (I + A*DTD;)b = b. For anyt, € [4,1 — 6] where
0<d<1/2 lett, =|Kuto]. In the following, we show
that b satisfies (15) and, satisfies (14) asymptotically.

First note that the optimality conditions farare 0 <
Dgl; L CoClb—g] =0, and Y b = 57 i and
S (K, k+1)bk—2k 5y (Kn —k+ 1)z Itis easy to
see thatzk by = Zk " by andz,C (K — k4 1)y =

o (Kn —k+ 1)bs. Hence,) satisfies the condition (15)

Let f be a piecewise linear function such ttfe(kk) = b
andf be another piecewise linear function such tﬁ&tk)
by.. As shown in [6] and [17], the penalized spline estimator
is asymptotically equivalent to the kernel estimator. More
specifically, whenk,, is of ordern” with v > 2/5 and X is
of ordern=2/5, for anyt € [5,1 — 4],

1
/ K(t,s s)ds—i—/ K(t,s)R(s)ds
0
ﬁt(l t)Op(ﬂm)

whereK (t, s) is the equivalent kernel when = 1 such that
K(t,s) = Se=flt=sl, 0 < t,5s <1, B = A\~'/2 which is of
ordern'/®, and the remaindeR satisfies

- log K,
R(s)| =0 .
o 10 =0(y 55 )

In particular,

/OlK(tatS)f(S)ds:/o; %e*‘””‘f(t ﬁ)du—i—O( —Bt(1-)y,

Therefore, for anyt € [5,1 — 4], f”(t) > 0 with probability
tending to one. SdﬁQBgn > 0 with probability tending to
one. Further,A%n — 0 with probability tending to one if
and only if AQZ;ZR =0. Thereforefun satisfies the optimal
condition (14) asymptotically.

In the following, we study the asymptotic distribution of
f(t) for afixedt € [6,1 — §]. The asymptotic property

g WhereAn =n3/{R,(t) —
Y, (t)} which are of orderO,(1) following [7, Lemma 8].
It is shown that

Since

/.

- ) + (0 — 0 (1))de(v) ) ds,

t4n—1/5
H}Ioc(u) _ TL4/5/
t

- /ts(f(t) + (v —1)f'(t))dw(v)}ds + Ayu + By,

u

{Rn(s) - Ry (t)

t+n71/5u ~
) = [ R = Rl
_/:(f(t) + (v = ) f'(£))dv}ds + Agu + By,

S, ()} and By, = n*/5{ H,,(t) —

ocC “ 1 1
yeo(u) — cr/0 W(s)ds + ﬂf (t)u*

in distribution uniformly on the compact sgt| < c. Letting
ki = ki(t) = 2473/5078/5f7(4)3/5 and ky =
242/502/5f//(t)—2/5 then

kao(t) =

k1Yo (kyu) — Y (u

/ W(s ds+u

in distribution. Choosing? = n~'/5, observe that

/ K(t,s)
B(1-t) 1

_ n72/5/ 1.-
_Bt 2

B(1=t) 1 .
s)ds = / e Mt + n~Y%u)du
*ﬁt 2

(L) () + £(2)

+ €_Bt(1_t)0p(ﬂ2)

_ <1 —|ul| rrloc - -
—n 2/5/_OO 56 \ |H711 (w)du+ f(t) +e Bt(1 t)Op(ﬂQ).

ks

k1
k2
k1

e U H (u)du = _kﬂulklﬁ,lfc(kgu)du

eik2|“‘H(u)du,
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Fig. 1. Left: Rabbit data scatter plot; Right: Unconstrdimpenalized spline
estimator (dashed line) and concave penalized spline astingsolid line).

in distribution, we have

n?/° </01 K(t,s)f(s)ds — f(t))
ka(

t) Ooe—kg(t)|u\ Wdu
kl(t)/ H(wd

— 0o

in distribution.

V. APPLICATION: RABBIT DATA

We illustrate two estimators by using the rabbit data from

[2]. These data are available latt p: / / www. st at sci .
org/ data/ oz/rabbit. htm . The scatter-plot of the

data is illustrated in the upper left of Figure 1. Here, thél4]
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