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Abstract— Estimation of a convex function is a critical
shape restricted nonparametric inference problem with a wide
range of applications in many important fields. In this pa-
per, penalized splines (or simplyP -splines) are exploited for
convex estimation. The paper is devoted to developing an
asymptotic theory of a class ofP -spline convex estimators
using complementarity techniques and asymptotic statistics.
In particular, due to the convex constraints, the optimality
conditions ofP -splines are characterized by nonsmooth comple-
mentarity conditions. A critical uniform Lipschitz proper ty is
established for optimal spline coefficients via complementarity
techniques. This property yields boundary consistency and
uniform stochastic boundedness. Using this property, theP -
spline estimator is approximated by a two-step estimator based
on the corresponding least squares estimator, and its asymptotic
behaviors are obtained using asymptotic statistic techniques.

I. I NTRODUCTION

Nonparametric estimation of shape restricted functions
receives increasing attention in statistics [3], [8], [10], [13],
[14], [16], driven by numerous applications in science
and engineering. Examples include reliability engineering,
biomedical research, finance, and astronomy. A challenge in
shape restricted estimation is that an estimator is subjectto
inequalityconstraints, e.g., monotone and convex constraints.
These constraints lead to nonsmooth optimality conditions
that complicate performance analysis of estimators.

The polynomial spline models have been extensively stud-
ied in approximation theory and statistics, thanks to their
computational advantages. The non-penalized polynomial
splines are used to develop the shape restricted least squares
estimators [5] for monotone and convex functions. However,
the least squares estimators suffer several deficiencies. For
example, since the least squares estimators are necessarily
piecewise constant (resp. linear) functions for the monotone
(resp. convex) constraint, they lack of smoothness. Further,
the least squares estimators have unsatisfactory performance:
they are inconsistent at boundary and have a non-negligible
asymptotic bias with low convergence rates and non-normal
asymptotic distributions.

In this paper, we consider the penalized polynomial splines
(or P -splines for short) for convex estimation and analyze
their asymptotic performance, i.e. the estimation performance
as the sample size is sufficiently large. The penalty on the
difference of splines improves estimation performance, e.g.,
smoothness and boundary consistency. However, due to the
convex constraints and size dependent difference penalty,
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performance analysis of theP -spline convex estimators is
more complicated. In particular, the optimality conditions
of the P -spline estimators give rise to a family of size-
varying, penalty parameter dependent complementarity con-
ditions. The closed form solution of these complementarity
conditions do not exist. To deal with these difficulties, we
establish a critical uniform Lipschitz property [11], [12]
of the optimal spline coefficients and use this property to
approximate the estimator by by a two-step estimator based
on the corresponding least squares estimator [5]. By exploit-
ing asymptotic statistic tools, we further approximate this
dynamical complementarity system and develop asymptotic
behaviors of theP -spline estimators.

The paper is organized as follows. In Section II, we for-
mulate the convex regression problem and derive optimality
conditions for theP -spline estimator. Section III establishes
a uniform Lipschitz property for a class ofP -splines with
the first order difference penalty. Asymptotic analysis is
performed in Section IV with an example shown in Section V
and the conclusion drawn in Section VI.

II. PROBLEM FORMULATION AND OPTIMALITY

CONDITIONS

Consider the problem of estimating a convex functionf :
[0, 1] → R from a univariate regression modelyi = f(ti) +
ǫi, i = 1, . . . , n, where the pre-specified design points are
ti = i/n, i = 1, . . . , n, and theǫi are independent random
variables with mean zero and varianceσ2. Our goal is to
estimate the functionf which is assumed to be convex.

We propose a class of convex penalized spline estimators
based on binned data and investigate their asymptotic prop-
erties. In particular, let

{
B

[p]
k : k = 1, . . . ,Kn + p

}
be the

p th degree B-spline basis with knots0 = κ0 < κ1 < · · · <
κKn = 1. For simplicity, we consider equally spaced knots,
namely,κ1 = 1/Kn, κ2 = 2/Kn, . . . , κKn = 1. The value
of Kn will depend uponn as discussed below. Assume that
n/Kn is an integer denoted byMn. Let ȳk be the average
of all yi such thatκk−1 < ti ≤ κk, i.e.,

ȳk =

∑n
i=1 yi I(κk−1 < ti ≤ κk)∑n
i=1 I(κk−1 < ti ≤ κk)

=

∑κkMn

i=(κk−1)Mn+1 yi

Mn
,

wherek = 1, . . . ,Kn, andI is the indicator function. Denote
ȳ = (ȳ1, . . . , ȳKn)

T . Let the polyhedral cone be

Ω = {b ∈ R
Kn : bk−2bk+1+bk+2 ≥ 0, k = 1, . . . ,Kn−2}.

We consider the following constrained optimization problem:



for m ∈ N,

b̂[m] ≡ b̂[m](ȳ) = argmin
b∈Ω

Kn∑

k=1

(ȳk−bk)
2+λ∗

Kn∑

k=m+1

(
∆mbk

)2
,

(1)
whereλ∗ > 0 and∆ is the backward difference operator,
i.e., ∆(bk) := bk − bk−1 and ∆m(bk) = ∆(∆m−1(bk)).
Define the following convex spline estimator: forp ≥ 1,

f̂ [m]
p (t) =

Kn+p∑

k=1

b̂
[m]
k B

[p]
k (t),

where b̂[m]
Kn+d = 2b̂

[m]
Kn+d−1 − b̂

[m]
Kn+d−2, d = 1, . . . , p. When

the knots are equally spaced, it is easy to verify that if the
B-spline coefficient vector̂b[m] is in Ω, thenf̂ [m]

p is convex.
Let

C =




1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0

· · · · · ·
1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 1



∈ R

Kn×Kn ,

and letDm ∈ R
(Kn−m)×Kn be themth-order difference

matrix such thatDmb = [∆m(bm+1), · · · ,∆m(bKn)]
T .

Formulating (1) via matrix notation, we obtain the following
equivalent constrained quadratic program

b̂[m] = argmin
b∈Ω

1

2
bT (IKn + λDT

mDm) b− bT ȳ, (2)

whereλ = λ∗/Mn = λ∗ · Kn/n > 0 and IKn ∈ R
Kn×Kn

is the identity matrix.
We first give the characterization of optimality conditions

for b̂[m]. The conditions are represented by complementarity
conditions, which plays a crucial role in addressing analytic
and statistical properties of the estimator. We provide a short
introduction of the complementarity condition. Two vectors
u = (u1, · · · , ud)

T and v = (v1, · · · , vd)T in R
d are said

to satisfy thecomplementarity condition[1], [4] if ui ≥ 0,
vi ≥ 0, andui vi = 0 for all i = 1, · · · , d. This condition can
be put in a more compact vector form:0 ≤ u ⊥ v ≥ 0,
where u ⊥ v means that the two vectors are orthogonal,
i.e., uT v = 0. We introduce more notation as follows. Let
1 denote the vector of ones, i.e.,1 = (1, . . . , 1)T ∈ R

ℓ.
We define the sum operator for1, namely,0∆(1) = 1, and
−m∆(1) = (1,

∑2
i=1(

1−m∆(1))i, . . . ,
∑ℓ

i=1(
1−m∆(1))i)

T

for m ∈ N. In particular,−1∆(1) = (1, 2, . . . , ℓ)T .
Theorem 2.1:The necessary and sufficient conditions for

b̂[m] ∈ Ω to minimize (2) are

0 ≤ D2b̂
[m] ⊥ Cγ• C

[
(IKn+λDT

mDm)b̂[m]−ȳ
]
≥ 0, (3)

and

CKn•

[
(IKn + λDT

mDm)b̂[m] − ȳ
]
= 0,

CKn• C
[
(IKn + λDT

mDm)b̂[m] − ȳ
]
= 0, (4)

where the index setγ := {1, . . . ,Kn − 2}, andCd• denotes
the dth row of C.

Proof: For notational simplicity, we drop the subscript
[m] in b̂[m] as follows. Write the optimization problem
(2) as minb∈Ω g(b), where the objective functiong(b) :=
1
2b

T
(
IKn + λDT

mDm

)
b − bT ȳ. It is clear thatg is coercive

on R
Kn and strictly convex on the closed convex setΩ.

This ensures the existence and uniqueness of an optimal
solution. Furthermore, sinceΩ is a convex polyhedral cone, it
is finitely generated by{v1,−v1, v2,−v2, v3, v4, . . . , vKn}.
Here, for eachk = 3, . . . ,Kn, letting vkj = (−1∆(1))j−k+1

with j = k, . . . ,Kn,

vk =
(

0, . . . , 0,︸ ︷︷ ︸
(k−1)−copies

vkk , . . . , v
k
Kn

)T

=
(

0, . . . , 0,︸ ︷︷ ︸
(k−1)−copies

1, 2, . . . ,Kn − k + 1
)T

,

and fork = 1, 2,

v1 =
(
1, 0, −1, −2, . . . ,−(Kn − 2)

)T

,

v2 =
(
0, 1, 2, 3, . . . ,Kn − 1

)T

. (5)

This shows that∆2vkj = 0 for all k and all j > 2. Hence
±vk ∈ Ω for all k, and it can be also verified that

∑2
k=1 v

k =
1. Further, anyb = (b1, . . . , bKn)

T ∈ Ω can be positively
generated as

b =

2∑

i=1

(
max(0, bi)v

i+max(0,−bi)(−vi)
)
+

Kn∑

i=3

∆2(bi)v
i.

Using these generators forΩ, we obtain the necessary and
sufficient optimality conditions for an optimizer̂b as:

0 ≤ D2b̂ ⊥ C̃∇g(b̂) ≥ 0, 〈vk, ∇g(b̂)〉 = 0, ∀ k = 1, 2,
(6)

whereD2 ∈ R
(Kn−2)×Kn is given by

D2 =




1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0

· · · · · · · · · · · ·
0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1



,

and C̃ ∈ R
(Kn−2)×Kn is given by

C̃ =
[
v3 · · · vKn

]T

=




0 0 1 2 · · · (Kn − 4) (Kn − 3) (Kn − 2)
0 0 0 1 · · · · · · (Kn − 4) (Kn − 3)

· · · · · · · · · · · ·
0 0 0 0 · · · 0 1 2
0 0 0 0 · · · 0 0 1


 .

It can be shown via the definitions ofv1 andv2 in (5) that
the second optimality condition in (6) can be equivalently
written as
Kn∑

i=1

(
∇g(b̂)

)
i
= 0 and

Kn∑

i=1

(Kn − i+ 1)
(
∇g(b̂)

)
i
= 0,



where∇g(b) = (Γn+λDT
mDm)b− ȳ. This gives rise to the

two boundary conditions. Moreover, noting that for anyk,
the definitions ofv1 andv2 in (5) yield

C̃k•∇g(b̂) =

k∑

i=1

i∑

j=1

(
∇g(b̂)

)
j
= (C2)k•∇g(b̂),

we obtain the equivalent condition for the first optimality
condition in (6):

0 ≤ D2 b̂ ⊥
(
C2

)
γ•
∇g(b̂) ≥ 0, (7)

whereγ = {1, . . . ,Kn − 2}. Finally, in view of (C2)γ• =
Cγ•C, the proof is complete.

III. U NIFORM L IPSCHITZ PROPERTY OF̂b

In this section, we characterize a critical property of the
optimal solutionb[m] with m = 1. For notational conve-
nience, we drop the superscript in̂b[1] through this section.
We firstly establish a piecewise linear formulation ofb̂. Let
Λ := (IKn + λDT

1 D1)/(1 + 2λ) and z := ȳ/(1 + 2λ). In
particular,Λ is the following tri-diagonal matrix




θ η 0 0 · · · 0
η 1 η 0 · · · 0

. . .
. . .

. . .
. . .

η 1 η 0
η 1 η

0 0 · · · 0 η θ




, (8)

whereθ := (1 + λ)/(1 + 2λ), andη := −λ/(1 + 2λ) with
λ > 0. With this notation, the optimality conditions become
the following mixed complementarity conditions

0 ≤ D2 b ⊥ Cγ•C(Λb− z) ≥ 0, and

CKn•[Λb− z] = CKn•C[Λb− z] = 0. (9)

It follows from complementarity theory that the optimal
solution b, and thusb̂, is a piecewise linear function of
z determined by an index setα = { i | (D2b)i = 0} ⊆
{1, . . . ,Kn − 2} (α may be empty). Specifically, for given
b̄ andα, we define a vector̃bα and an associated family of
index sets{βα

i } in the following steps:
(1) let ℓ1 := min3≤i≤Kn{i : ∆2(bi) = 0}, and ℓ1 :=

maxℓ1≤k≤Kn{k : ∆2(bi) = 0, ∀i = ℓ1, . . . , k}. Then
inductively define, forj ≥ 1,

ℓj+1 := min
1+ℓj≤i≤Kn

{i : ∆2(bi) = 0},

ℓj+1 := max
ℓj+1≤k≤Kn

{k : ∆2(bi) = 0, ∀i = ℓj+1, . . . , k}.

Suppose that we obtainq’s such ℓi, ℓi, namely,
ℓ1, . . . , ℓq and ℓ1, . . . , ℓq. Define β̂α

ℓj
:= {i : ℓj − 2 ≤

i ≤ ℓj} for j = 1, . . . , q. Note that|β̂α
ℓj
| ≥ 3 for each

ℓj, and for two consecutive index sets,ℓj+1 ≥ ℓj + 2.
Thus if the equality holds, then̂βα

ℓj
∩ β̂α

ℓj+1
= {ℓj};

otherwise, the two consecutive index sets are disjoint.
(2) let L̂ := Kn + q − | ∪q

i=1 β̂α
ℓi
|, where| · | denotes the

cardinality of an index set. For eachi ∈ {1, . . . ,Kn} \
∪q
i=1β̂

α
ℓj

, defineβ̂α
ℓs

= {i}, wheres = (q + 1), . . . , L̂.

(3) this step arranges the index setsβ̂α
ℓj

in a monotone order

as follows. For eacĥβα
ℓi

, let min(β̂α
ℓi
) denote the least

element inβ̂α
ℓi

(the similar notation will be used for
max below). Defineℓs1 := argminℓ1,...,ℓL̂

{min(β̂α
ℓi
)}.

Let β̃α
1 := β̂α

ℓs1
. Then inductively define for eachj ≥ 1,

β̃α
j+1 := β̂α

ℓsj+1

, where

ℓsj+1
:= arg min

{ℓ1,...,ℓL̂}\{ℓs1 ,...,ℓsj}
{min(β̂α

ℓi)}.

(4) in this step, we regroup the index setsβ̂α
ℓj

in a way
that preserves desired structural properties to be used
in the subsequent development. Definep0 := 0 and
p1 := max

(
1, max{k ≥ 1 : β̃α

j ∩ β̃α
j+1 6=

∅, ∀j = 1, . . . , k − 1}
)
, andβα

1 := ∪p1

j=1β̃
α
j , the com-

panion index setϑ1 := {min(β̃α
j ), ∀j = 1, . . . , p1} ∪

{max(β̃α
p1
)}. Recursively, define, for eachs ≥ 1,

ps+1 := max
(
ps+1, max{k ≥ ps+1 : β̃α

j ∩β̃
α
j+1 6=

∅, ∀j = ps +1, . . . , k− 1}
)
, andβα

s+1 := ∪
ps+1

j=ps+1β̃
α
j ,

the companion index setϑs+1 := {min(β̃α
j ), ∀j =

ps + 1, . . . , ps+1} ∪ {max(β̃α
ps+1

)}. Without loss of
generality, we assume that the index elements of each
ϑs are in the strictly increasing order. Hence, any two
consecutive index sets inϑs correspond toℓj and ℓj
defined in Step (1) withℓj+1 = ℓj .

(5) suppose that there areL such the index setsϑs, and let
ϑ := ∪L

s=1ϑs whose index elements are in the strictly
increasing order. Theñβα := (βi), wherei ∈ ϑ.

It is clear from the above construction that{βα
i } forms

a finite and disjoint partition of{1, . . . ,Kn}, namely,⋃L
i=1 βα

i = {1, . . . ,Kn} andβα
j ∩ βα

k = ∅ wheneverj 6= k.
Algebraically, the vector̃βα corresponds to the free variables
of a linear equation subject to the constraints defined byα.
Moreover, it can be shown that̃bα, and thusb

α
(z) which

denotesb(z) corresponding to the index setα, is a linear
function of z (cf. Lemma 3.1). Hence, for anyz ∈ R

Kn ,
b(z) ∈ {b

α
(z)}α, whereb

α
(z) is a selection function ofb(z).

Therefore, the solution mappingz 7→ b is a (continuous)
piecewise linear function with2(Kn−2) selection functions.
The same holds true for the mappinḡy 7→ b̂. In what
follows, we characterize each linear selection function ofb̃α

or equivalentlyb
α

.
Lemma 3.1:For each index setα ⊆ {1, . . . ,Kn − 2}, let

ℓ := Kn−|α|. Thenb̃α is the (unique) solution of the linear
equationΛ̃α b̃α = z̃ α, where theℓ × ℓ tri-diagonal matrix
Λ̃α and theℓ-vector z̃ α are given by

Λ̃α =




d11 η̃1 0 · · · · · · 0
η̃1 d22 η̃2

η̃2 d33 η̃3
. . .

. . .
. . .

η̃ℓ−2 d(ℓ−1)(ℓ−1) η̃ℓ−1

0 · · · · · · 0 η̃ℓ−1 dℓℓ




,



and z̃α =



Fα,1zβα

1

...
Fα,Lzβα

L




T

, whereFα,i, dii andη̃i are given in

the following proof. Moreover,̃Λα is invertible.
Proof: We introduce some notation first. Letmα

i :=
|βα

i | andhα
i := mα

i − 1, wherei = 1, . . . , L. Note that if
mα

i > 1, thenmα
i ≥ 3 such thathα

i ≥ 2 and |ϑi| ≥ 2. It
follows from the definition ofβα

i that b
α
= (Fα)

T b̃α, where
the matrix

Fα =




Fα,1

Fα,2

. . .
Fα,L


 ∈ R

ℓ×Kn

and each matrix block corresponding toβα
k is given as

follows: if mα
k = 1, then Fα,k = 1; otherwise, assuming

that the index elements inϑk are in the strictly increasing
order without loss of generality, and lettinghα

k,j := ϑk(j +
1) − ϑk(j) ≥ 2 for each j = 1, . . . , |ϑk| − 1, we have
Fα,k ∈ R

|ϑk|×mα
k given in (16) at the end of the paper,

wherewk := |ϑk| − 1. HereFα,k is determined fromβα
k

constructed in Steps (1)-(5).
For notational simplicity, letv := Λb − z. In view of the

complementarity condition in (9), we have(D2b)
TCγ•Cv =

0. Sinceb = (Fα)
T b̃α, (̃bα)TFα(D

T
2 Cγ•Cv) = 0. Moreover,

it can be verified that

DT
2 Cγ•C =

[
IKn−2 0(Kn−2)×2

E 02×2

]
∈ R

Kn×Kn ,

where

E =

[
−(Kn − 1) −(Kn − 2) · · · · · · −2
Kn − 2 Kn − 3 · · · · · · 1

]
∈ R

2×(Kn−2)
.

It also follows from the boundary conditionsCKn•v =
CKn•Cv = 0 and elementary row operations that
[−E I2]v = 0. Therefore, we obtainDT

2 Cγ•Cv = IKnv =

v. Hence,(̃bα)TFα(D
T
2 Cγ•Cv) = (̃bα)TFαv = 0. Recall

that for the given index setα, b̃α corresponds to the free
variables of a linear equation defined byα. As a result,̃bα

is arbitrary such thatFαv = 0. This leads to

Fα Λ(Fα)
T b̃α = Fα z.

Letting Λ̃α = Fα Λ(Fα)
T and z̃ α = Fα z, we have a linear

equation for̃bα. SinceFα is of full row rank andΛ is positive
definite,Λ̃α is positive definite and hence is invertible.

In what follows, we determine the entries of̃Λα. Fix
k ∈ {1, . . . , L}. If mα

k = 1, thenFα,kΛβα
k
βα
k
FT
α,k is a real

number that appears on the diagonal ofΛ̃α. Denoting this
number bydss (i.e., dss = Λ̃α

ss), we have

dss = Fα,kΛβα
k
βα
k
FT
α,k =

{
θ, if k ∈ {1, L}
1, otherwise

and Λ̃α
s(s+1) = Λ̃α

(s+1)s = η, Λ̃α
sj = 0 for all j ≤ s −

2 and j ≥ s + 2. If mα
k > 1, then Fα,kΛβα

k
βα
k
FT
α,k is a

symmetric, positive definite matrix of order|ϑk| that forms
a diagonal block of̃Λα. Making use of the structure ofFα,k

given in (16) and somewhat lengthy computation, we obtain
the following results in two separate cases (recallingwk :=
|ϑk| − 1).
(1) k = 1 or k = L. For k = 1,

d11 = θ + η −
η

hα
1,1

+ (1 + 2η)
(hα

1,1 − 1)(2hα
1,1 − 1)

6hα
1,1

,

(10)

η̃s = Λ̃α
s(s+1) = Λ̃α

(s+1)s =
η

hα
1,s

+ (1 + 2η)
(hα

1,s)
2
− 1

6hα
1,s

,

∀ s = 1, . . . , w1,

dss = (1 + 2η)
[2(hα

1,s−1)
2 + 1

6hα
1,s−1

+
2(hα

1,s)
2 + 1

6hα
1,s

]

−

( 1

hα
1,s−1

+
1

hα
1,s

)
η, ∀ s = 2, . . . , w1,

d(w1+1)(w1+1) = (1 + 2η)
(hα

1,w1
+ 1)(2hα

1,w1
+ 1)

6hα
1,w1

−

(
1 +

1

hα
1,w1

)
η. (11)

Besides,̃Λα
(w1+1)(w1+2) = Λ̃α

(w1+2)(w1+1) = η and for

eachs = 1, . . . , wt, Λ̃α
sj = 0, ∀j ≥ s+2 andj ≤ s−2.

For k = L, the similar results can be established by
using the symmetry of the rows ofFα,L.

(2) k ∈ {2, . . . , L−1}. In this case, suppose that the(1, 1)-
element ofFα,kΛβα

k
βα
k
FT
α,k is a diagonal entry of̃Λα

denoted bydtt. Then we have

dtt = 1 + η −
η

hα
k,1

+ (1 + 2η)
(hα

k,1 − 1)(2hα
k,1 − 1)

6hα
k,1

,

(12)

η̃t+s = Λ̃α
(t+s)(t+s+1) =

η

hα
k,s

+ (1 + 2η)
(hα

k,s)
2
− 1

6hα
k,s

,

∀ s = 1, . . . , wk,

d(t+s)(t+s) = (1 + 2η)
[2(hα

k,s+1)
2 + 1

6hα
k,s+1

+
2(hα

k,s)
2 + 1

6hα
k,s

]

−

( 1

hα
k,s+1

+
1

hα
k,s

)
η, ∀ s = 1, . . . , wk − 1,

d(t+wk)(t+wk) = (1 + 2η)
(hα

k,wk
+ 1)(2hα

k,wk
+ 1)

6hα
k,wk

−

(
1 +

1

hα
k,wk

)
η. (13)

In addition, for eachs = t, . . . , t + wk + 1, Λ̃α
sj =

0 for all j ≤ s − 2 and j ≥ s + 2, and Λ̃α
t(t−1) =

Λ̃α
(t+wk+1)(t+wk+2) = η.

Due to the identitỹΛα
t(t−1) = η and the symmetry of̃Λα,

we further conclude that if a diagonal entrydtt = Λ̃α
tt with

t ≥ 2 corresponds to a scalarFα,kΛβα
k βα

k
FT
α,k (i.e.,mα

k = 1),
thenΛ̃α

(t−1)t = η. (Recall that̃Λα
t(t+1) = η has been obtained

before.) Similarly, ifdtt is the first diagonal entry of a matrix
Fα,kΛβα

k βα
k
FT
α,k, thenΛ̃α

(t−1)t = η.
In the following, we prove the uniform Lipschitz property

of the optimal solution̂b[1]. This property implies that̂b[1]



is Lipschitz in ȳ (in the sense ofℓ∞-norm) with the same
Lipschitz constant, regardless ofKn, λ. It plays a critical role
in proving boundary consistency and asymptotic analysis.

Theorem 3.1:Let m = 1. For anyKn and anyλ > 0,
‖b̂[1](ȳ1)− b̂[1](ȳ2)‖∞ ≤ 3‖ȳ1− ȳ2‖∞ for all ȳ1, ȳ2 ∈ R

Kn .
Proof: Recall that for a given index setα, b

α
(z) =

FT
α b̃α(z) = FT

α (Λ̃α)−1Fαz, where z = ȳ/(1 + 2λ). We
shall show that‖FT

α (Λ̃α)−1Fα‖∞ is uniformly bounded,
regardless ofα, λ and Kn. We break the proof into the
following steps.

(1) We first show that for anyα, the matrixΛ̃α is strictly
diagonally dominant and obtain bounds characterizing such
dominance. GiveñΛα ∈ R

ℓ×ℓ, defineξ1 := d11−|η̃1|, ξi :=
dii − |η̃i−1| − |η̃i| with i ∈ {2, . . . , ℓ − 1}, andξℓ := dℓ −
|η̃ℓ−1|. In light of the structure of̃Λα shown in the proof of
Lemma 3.1, we obtain, for eachk ∈ {1, . . . , L},

(1.1) if mα
k = 1, then (i) the correspondingξi = θ − |η| =

1/(1 + 2λ) if k ∈ {1, L}; and (ii) otherwise, the
correspondingξi = 1− 2|η| = 1/(1 + 2λ).

(1.2) if mα
k > 1 with k = 1, then (i) the correspondingξi =

d11−|η| ≥
(
1
2 +

hα
1,1

6

)
/(1+2λ); (ii) for s = 2, . . . , w1,

the correspondingξi = dss − |Λ̃α
s(s−1)| − |Λ̃α

s(s+1)| ≥(
hα
1,s−1+hα

1,s

)
/[6(1+2λ)]; and (iii) the corresponding

ξi = d(w1+1)(w1+1) − |Λ̃α
(w1+1)w1

| − |Λ̃α
(w1+1)(w1+2)| ≥(

1
2+

hα
1,w1

6

)
/(1+2λ). The similar results can be obtained

for mα
k > 1 with k = L using symmetry.

(1.3) if mα
k > 1 with k ∈ {2, . . . , L − 1}, then (i) the

correspondingξi = dtt − |Λ̃α
t(t−1)| − |Λ̃α

t(t+1)| ≥
(
1
2 +

hα
k,1

6

)
/(1 + 2λ); (ii) for s = 1, . . . , wk − 1, the

correspondingξi = d(t+s)(t+s) − |Λ̃α
(t+s)(t+s−1)| −

|Λ̃α
(t+s)(t+s+1)| ≥

(
hα
k,s + hα

k,s+1

)
/[6(1 + 2λ)];

and (iii) the correspondingξi = d(t+wk)(t+wk) −

|Λ̃α
(t+wk)(t+wk−1)| − |Λ̃α

(t+wk)(t+wk+1)| ≥
(
1
2 +

hα
k,wk

6

)
/(1 + 2λ).

Consequently,ξi > 0 for all ξi such thatΛ̃α is strictly
diagonally dominant.

(2) For a givenΛ̃α and ξi’s obtained in the last step,
define the diagonal matrixΞ = diag(ξ−1

1 , . . . , ξ−1
ℓ ) ∈ R

ℓ×ℓ.
Clearly,Ξ is invertible. We thus have

‖FT
α (Λ̃α)−1Fα‖∞ = ‖FT

α · (ΞΛ̃α)−1 · (ΞFα)‖∞

≤ ‖FT
α ‖∞ · ‖(ΞΛ̃α)−1‖∞ · ‖ΞFα‖∞,

where it is easy to verify‖FT
α ‖∞ = 1. Noting that

G := ΞΛ̃α is strictly diagonally dominant withGii −∑ℓ
j=1,j 6=i |Gij | = 1 for eachi, it follows from the Ahlberg-

Nilson-Varah bound [15] that‖(ΞΛ̃α)−1‖∞ = ‖G−1‖∞ ≤
1. Furthermore, we have:

(2.1) if mα
k = 1, then the absolute sum of the entries in the

corresponding row inΞFα is given by1/ξi ≤ (1+2λ).
(2.2) if mα

k > 1 with k = 1, then (i) the absolute sum of
the entries in the row inΞFα corresponding tod11
is given by

1+hα
1,1

2ξi
≤

1+hα
1,1

2
(

1
2
+

hα
1,1
6

)
/(1+2λ)

≤ 3(1 + 2λ);

(ii) for s = 2, . . . , w1, the absolute sum of the entries

in the row in ΞFα corresponding todss is given by
hα
1,s−1+hα

1,s

2ξi
≤

hα
1,s−1+hα

1,s

2
(
hα
1,s−1

+hα
1,s

)
/[6(1+2λ)]

≤ 3(1 + 2λ);

and (iii) the absolute sum of the entries in the row
in ΞFα corresponding tod(w1+1)(w1+1) is given by
1+hα

1,w1

2ξi
≤

1+hα
1,wk

2
(

1
2
+

hα
1,wk
6

)
/(1+2λ)

≤ 3(1 + 2λ). The same

results can be obtained formα
k > 1 with k = L.

(2.3) if mα
k > 1 with k ∈ {2, . . . , L−1}, then (i) the absolute

sum of the entries in the row inΞFα corresponding to
dtt is given by

1+hα
k,1

2ξi
≤

1+hα
k,1

2
(

1
2
+

hα
k,1
6

)
/(1+2λ)

≤ 3(1 +

2λ); (ii) for s = 1, . . . , wk − 1, the absolute sum of the
entries in the row inΞFα corresponding tod(t+s)(t+s) is

given by
hα
k,s+hα

k,s+1

2ξi
≤ 3(1+2λ); and (iii) the absolute

sum of the entries in the row inΞFα corresponding to

d(t+wk)(t+wk) is given by
1+hα

k,wk

2ξi
≤ 3(1 + 2λ).

In view of the above results, we deduce that‖ΞFα‖∞ ≤
3(1 + 2λ), which in turn implies that‖FT

α (Λ̃α)−1Fα‖∞ ≤
3(1+2λ), regardless ofα, λ, andKn. Sincez = ȳ/(1+2λ),
we have‖b̂(ȳ)‖∞ ≤ 3‖ȳ‖∞ for any ȳ ∈ R

Kn . The uniform
Lipschitz property thus follows from the piecewise linear
property of b̂.

A. Consequences of the Uniform Lipschitz Property

The uniform Lipschitz property yields several crucial im-
plications of theP -spline estimator and lays a rigorous foun-
dation for asymptotic analysis. We show stochastic uniform
boundedness and boundary consistency here, following the
similar line in [11]. LetE denote the expectation operator and
b̌[1] := b̂[1](E(ȳ)). Define the companion estimator̄f [1]

p (t) =∑Kn+p
k=1 b̌[1]B

[p]
k (t). Let the norm‖g‖ := supt∈[0,1] |g(t)| for

a functiong ∈ C([0, 1]). Consequently,

‖f̂ [1]
p − f‖ ≤ ‖f̂ [1]

p − f̄ [1]
p ‖+ ‖f̄ [1]

p − f‖

≤ 3‖ȳ − E(ȳ)‖∞ +O(α) +O(K−1
n )

≤ Op(
√

n−1Kn logKn) +O(α) +O(K−1
n ),

whereα := λ∗/(nKn). Hence, under suitable order condi-
tions onn andKn, we obtain stochastic uniform bounded-
ness and boundary consistency in particular.

IV. A SYMPTOTIC ANALYSIS OF f̂ [1]

In this section, we study the asymptotic distribution of
f̂ [m] with m = 1. We first define theinvelope function
of an integrated Brownian motion. The invelope function,
denoted byH , is studied in depth in [5] and its definition
is as follows. LetX(t) = W (t) + 4t3, where W is a
standard two-sided Brownian motion starting from 0, and
let Y =

∫ t

0 X(s)ds. The invelope functionH satisfies
the following conditions: (i) the functionH is everywhere
above the functionY ; (ii) the function H has a convex
second derivative, and with probability 1,H is three times
differentiable att = 0; (iii) the functionH satisfies

∫
[H(t)−

Y (t)]dH(3)(t) = 0.
Theorem 4.1:For any fixedt ∈ [δ, 1 − δ] with 0 < δ <

1/2, assume thatf ′′ is continuous in a neighborhood oft



andf ′′(t) > 0. If n2/5/Kn → 0, then

n2/5
{
f̂ [1](t)− f(t)

}
−→

k2(t)

k1(t)

∫ ∞

−∞

e−k2(t)|u|H(u)du,

in distribution, where k1(t) = 24−3/5σ−8/5f ′′(t)3/5,
k2(t) = 242/5σ2/5f ′′(t)−2/5, andH is the invelope function
of the integrated Brownian motion.

Proof: Recall that the optimality conditions (3) and (4)
for m = 1 are, respectively,

0 ≤ D2b̂
[1] ⊥ CαC

[
(I + λ∗DT

1 D1)b̂
[1] − ȳ

]
≥ 0, (14)

and
Kn∑

k=1

b̂
[1]
k =

Kn∑

k=1

ȳk,

Kn∑

k=1

(Kn−k+1)b̂
[1]
k =

Kn∑

k=1

(Kn−k+1)ȳk.

(15)
For notational simplicity, we drop the subscript[1] in b̂[1].
Consider a two-step estimator. At the first step, we use the
least squares estimator by finding~b to minimize

∑Kn

k=1(ȳk−
~bk)

2, subject to the constraintD2
~b ≥ 0. At the second step,

we find an unconstrained penalized spline estimator. Letb̃
solve (I + λ∗DT

1 D1)b̃ = ~b. For any t0 ∈ [δ, 1 − δ] where
0 < δ < 1/2, let ℓn = ⌊Knt0⌋. In the following, we show
that b̃ satisfies (15) and̃bℓn satisfies (14) asymptotically.

First note that the optimality conditions for~b are 0 ≤
D2

~b ⊥ CαC
[
~b − ȳ

]
≥ 0, and

∑Kn

k=1
~bk =

∑Kn

k=1 ȳk and∑Kn

k=1(Kn− k+1)~bk =
∑Kn

k=1(Kn − k+1)ȳk. It is easy to
see that

∑Kn

k=1
~bk =

∑Kn

k=1 b̂k and
∑Kn

k=1(Kn − k + 1)~bk =∑Kn

k=1(Kn − k+1)b̂k. Hence,̃b satisfies the condition (15).
Let ~f be a piecewise linear function such that~f(κk) = ~bk

andf̃ be another piecewise linear function such thatf̃(κk) =
~bk. As shown in [6] and [17], the penalized spline estimator
is asymptotically equivalent to the kernel estimator. More
specifically, whenKn is of ordernγ with γ > 2/5 andλ is
of ordern−2/5, for any t ∈ [δ, 1− δ],

f̃(t) =

∫ 1

0

K(t, s)~f(s)ds+

∫ 1

0

K(t, s)~R(s)ds

+e−βt(1−t)Op(β
m),

whereK(t, s) is the equivalent kernel whenm = 1 such that
K(t, s) = β

2 e
−β|t−s|, 0 ≤ t, s ≤ 1, β = λ−1/2 which is of

ordern1/5, and the remainderR satisfies

sup
s∈[0,1]

|~R(s)| = Op

(√ logKn

nλKn

)
.

In particular,
∫ 1

0

K(t, s)~f(s)ds =

∫ ∞

−∞

1

2
e−|x| ~f

(
t−

β

u

)
du+Op(e

−βt(1−t)).

Therefore, for anyt ∈ [δ, 1− δ], f̃ ′′(t) ≥ 0 with probability
tending to one. So∆2b̃ℓn ≥ 0 with probability tending to
one. Further,∆2b̃ℓn → 0 with probability tending to one if
and only if ∆2~bℓn = 0. Therefore,̃bℓn satisfies the optimal
condition (14) asymptotically.

In the following, we study the asymptotic distribution of
f̃(t) for a fixed t ∈ [δ, 1 − δ]. The asymptotic property

of ~f can be studied along the same line as in [5]. When
n2/5/Kn → ∞, ~f and the least squares estimator in [5] are
asymptotically equivalent. In particular, letω be the uniform
distribution on{t1, . . . , tn}, and g be a piecewise constant
function such thatg(ti) = yi. Define

Sn(t) =

∫ t

0

g(s)dω(s), Rn(t) =

∫ t

0

~f(s)dω(s),

R̃n(t) =

∫ t

0

~f(s)ds, Yn(t) =

∫ t

0

Sn(s)ds,

Hn(t) =

∫ t

0

Rn(s)ds, H̃n(t) =

∫ t

0

R̃n(s)ds.

Moreover, define their “local counterparts” at the fixedt:

Y loc
n (u) = n4/5

∫ t+n−1/5u

t

{
Sn(s)− Sn(t)

−

∫ s

t

(f(t) + (v − t)f ′(t))dω(v)
}
ds,

H loc
n (u) = n4/5

∫ t+n−1/5u

t

{Rn(s)−Rn(t)

−

∫ s

t

(f(t) + (v − t)f ′(t))dω(v)}ds +Anu+Bn,

H̃ loc
n (u) = n4/5

∫ t+n−1/5u

t

{R̃n(s)− R̃n(t)

−

∫ s

t

(f(t) + (v − t)f ′(t))dv}ds+Anu+Bn,

whereAn = n3/5{Rn(t)−Sn(t)} andBn = n4/5{Hn(t)−
Yn(t)} which are of orderOp(1) following [7, Lemma 8].
It is shown that

Y loc
n (u) −→ σ

∫ u

0

W (s)ds+
1

24
f ′′(t)u4

in distribution uniformly on the compact set|u| ≤ c. Letting
k1 ≡ k1(t) = 24−3/5σ−8/5f ′′(t)3/5 and k2 ≡ k2(t) =
242/5σ2/5f ′′(t)−2/5, then

k1Y
loc
n (k2u) −→ Y (u) ≡

∫ u

0

W (s)ds+ u4

in distribution. Choosingβ = n−1/5, observe that
∫ 1

0

K(t, s)~f(s)ds =

∫ β(1−t)

−βt

1

2
e−|u| ~f(t+ n−1/5u)du

= n−2/5

∫ β(1−t)

−βt

1

2
e−|u|(H̃ loc

n )′′(u)du+ f(t)

+ e−βt(1−t)Op(β
2)

= n−2/5

∫ ∞

−∞

1

2
e−|u|H̃ loc

n (u)du+ f(t) + e−βt(1−t)Op(β
2).

Since
∫ ∞

−∞

e−|u|H̃ loc
n (u)du =

k2
k1

∫ ∞

−∞

e−k2|u|k1H̃
loc
n (k2u)du

−→
k2
k1

∫ ∞

−∞

e−k2|u|H(u)du,
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Fig. 1. Left: Rabbit data scatter plot; Right: Unconstrained penalized spline
estimator (dashed line) and concave penalized spline estimator (solid line).

in distribution, we have

n2/5

(∫ 1

0

K(t, s)~f(s)ds− f(t)

)

−→
k2(t)

k1(t)

∫ ∞

−∞

e−k2(t)|u|H(u)du

in distribution.

V. A PPLICATION: RABBIT DATA

We illustrate two estimators by using the rabbit data from
[2]. These data are available athttp://www.statsci.
org/data/oz/rabbit.html. The scatter-plot of the
data is illustrated in the upper left of Figure 1. Here, the
x-axis is the age measured in days and the y-axis is the
eye lens weight for rabbits in Australia. The sample size
is n = 71. [9] has used a parametric model to fit the
data by assume the true regression function having the form
f(x) = ae−b/(x+c), which is obvious a concave function. In
the right panel of Figure 1, we fit two different estimators: the
unconstrained penalized spline estimator and the proposed
concave penalized spline estimator. We use piecewise linear
function with the first order difference to fit the data. The
number of knots we choose isKn = 20. The unconstrained
penalized spline estimator in the dashed line has the wiggle
behavior and seems not a reasonable fit. Instead, the concave
penalized spline estimator in the solid line gives a more
reasonable concave fit.

VI. CONCLUSION

In this paper, we have studied the asymptotic properties
of the convex spline estimator with the first order differ-
ence penalty. In particular, we have established a critical
uniform Lipschitz property for the optimal spline coefficients
via complementarity techniques. The pointwise asymptotic
distribution of the estimator is also established.

An extension currently under investigation is to peform
the asymptotic analysis for a generalm. The main difficulty
is to establish a similar uniform Lipschitz property for the
optimal spline coefficients. Since the design matrix and
difference matrix are more complicated, this becomes highly
nontrivial and shall be reported in the future.
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Fα,k =




1
hα
k,1−1

hα
k,1

hα
k,1−2

hα
k,1

· · ·

1
hα
k,1

0 · · ·

0
1

hα
k,1

2
hα
k,1

· · ·

hα
k,1−1

hα
k,1

1
hα
k,2−1

hα
k,2

· · ·

1
hα
k,2

0 0 · · ·

0 · · · 0
1

hα
k,2

· · ·

hα
k,2−1

hα
k,2

1
hα
k,3−1

hα
k,3

· · ·

0 · · · 0 · · · 0
1

hα
k,3

· · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

1
hα
k,wk

0

· · · · · · · · ·

hα
k,wk

−1

hα
k,wk

1




(16)
wherewk := |ϑk| − 1.


