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There has been an increasing interest in shape constrained estimation and approxi-

mation in the fields of applied mathematics and statistics. Applications from various areas

of research such as biology, engineering, and economics have fueled this soaring attention.

Due to the natural constrained optimization and optimal control formulations achieved

by inequality constrained estimation problems, optimization and optimal control play an

invaluable part in resolving computational and statistical performance matters in shape

constrained estimation. Additionally, the favorable statistical, numerical, and analytical

properties of spline functions grant splines an influential place in resolving these issues.

Hence, the purpose of this research is to develop numerical and analytical techniques for

general shape constrained estimation problems using optimization, optimal control, spline

theory, and statistical tools. A number of topics in shape constrained estimation are ex-

amined. We first consider the computation and numerical analysis of smoothing splines

subject to general dynamics and control constraints. Optimal control formulations and

nonsmooth algorithms for computing such splines are established; we then verify the con-

vergence of these algorithms. Second, we consider the asymptotic analysis of the nonpara-

metric estimation of functions subject to general nonnegative derivative constraints in the



supremum norm. A nonnegative derivative constrained B-spline estimator is proposed,

and we demonstrate that this estimator achieves a critical uniform Lipschitz property.

This property is then exploited to establish asymptotic bounds on the B-spline estimator

bias, stochastic error, and risk in the supremum norm. Minimax lower bounds are then

established for a variety of nonnegative derivative constrained function classes, using the

same norm. For the first, second, and third order derivative constraints, these asymp-

totic lower bounds match the upper bounds on the constrained B-spline estimator risk,

demonstrating that the nonnegative derivative constrained B-spline estimator performs

optimally over suitable constrained Hölder classes, with respect to the supremum norm.
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CHAPTER I

Introduction

Constrained estimation and approximation garners increasing attention in applied

mathematics and statistics, with applications in a wide variety of disciplines. Moreover,

various functions in all sorts of practices are known to adhere to a number of shape

constraints such as monotonicity or convexity. Examples include monotone regulatory

functions in genetic networks [73] and a shape restricted function in an attitude control

system [62]. Other applications are found in reliability engineering (e.g., survival/hazard

functions), medicine (e.g., dose-response curves), finance (e.g., option/delivery price), and

astronomy (e.g., galaxy mass functions). When estimating or approximating such func-

tions, it is desirable to obtain an estimator or approximation that preserves the shape of

the true/original constrained function. Additionally, incorporating the knowledge of shape

constraints into a construction procedure improves estimation efficiency and accuracy [61].

This has led to a surging interest in the study of constrained estimation and approximation

in applied mathematics, statistics, and other related fields [52, 70, 71, 72, 80].

Estimation and approximation problems subject to inequality shape constraints can

be naturally formulated as constrained optimization or optimal control problems. For
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instance, constrained smoothing splines achieve certain optimal control formulations [67,

70], and constrained penalized polynomial spline estimators can be formulated as the

solutions of quadratic programs with linear constraints [71, 72]. Hence, optimization

and control play a critical role in the numerical resolution and statistical performance

analysis of constrained estimators. Additionally, splines are an important tool in shape

constrained estimation due to their advantageous statistical, numerical, and analytical

properties. Therefore, the goal of this research is to develop numerical and analytical

techniques for general shape constrained estimation problems using optimization, optimal

control, spline theory, and statistical tools. Several related topics in shape constrained

estimation are studied.

We first consider the analysis and computation of smoothing splines subject to

general linear dynamics and control constraints. Moreover, we begin by demonstrating how

constrained smoothing splines achieve certain optimal control formulations. A nonsmooth

Newton’s method for B(ouligand)-differentiable functions is then introduced [53, 67], and

is used to compute such constrained smoothing splines. Finally, the convergence analysis

of this method is carried out.

Second, we consider the asymptotic analysis of the nonparametric estimation of

smooth functions subject to general nonnegative derivative constraints, where we use the

supremum norm as the performance metric. In particular, we establish the consistency

and convergence rate of a certain nonnegative derivative constrained B-spline estimator

under the supremum norm. After establishing this convergence rate, minimax asymptotic

lower bounds (in the supremum norm) are developed for a variety of nonnegative derivative

constrained function classes. Combining all of these developments yields that, in certain

instances, the nonnegative derivative constrained B-spline estimator is an asymptotically

2



optimally performing estimator over certain constrained function classes, with respect to

the supremum norm.

In what follows, we discuss each of these individual topics in more detail.

1.1 Analysis and Computation of Shape Constrained Smoothing Splines

We first consider the analysis and computation of smoothing splines subject to

general linear dynamics and control constraints.

1.1.1 Background and Motivation

With numerous applications in various scientific and engineering disciplines, spline

models are studied extensively in approximation theory, numerical analysis, and statistics.

Informally speaking, a univariate spline model produces a piecewise polynomial curve that

“best” fits a given set of data. Spline models enjoy a plethora of favorable analytical

and statistical properties, and attain efficient numerical algorithms [14]. A number of

variations and extensions of spline models have been developed, e.g., penalized polynomial

splines [72] and smoothing splines [78]. Specifically, the smoothing spline model is a

smooth function f : [0, 1] → R in a suitable function space that minimizes the following

objective functional:

1

n

n∑
i=1

(
f(ti)− yi

)2
+ λ

∫ 1

0

(
f (m)(t)

)2
dt, (1.1)

where the yi’s are data points at ti ∈ [0, 1], i = 1, . . . , n, f (m) denotes the mth derivative

of f , and λ > 0 is a penalty parameter that characterizes the tradeoff between the data

fidelity and the smoothness of f . We refer the reader to [78] and references therein for

extensive information on the statistical properties of smoothing splines.
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From a control systems point of view, the smoothing spline model (1.1) is closely

related to the finite-horizon linear quadratic optimal control problem when f (m) is treated

as a control input [22]. Moreover, we may think of a smoothing spline as the output

of a linear control system, which depends on the initial state of the system and the

system control (e.g., f (m) in view of (1.1)). This has led to a highly interesting spline

model characterized by a linear control system called a control theoretic spline [22]. It is

shown in [22] and the references therein, e.g., [36, 75, 82], that a number of smoothing,

interpolation, and path planning problems can be incorporated into this paradigm and

studied using control theory and optimization techniques on Hilbert spaces with efficient

numerical schemes. Other relevant approaches include control theoretic wavelets [25].

Although many important results for unconstrained or equality constrained spline

models are available, various biological, engineering, and economic systems contain func-

tions whose shape and/or dynamics are governed by inequality constraints, e.g., the mono-

tone and convex constraints. Even though many meaningful applications with inequality

constraints exist, there are substantially fewer results available on spline models sub-

ject to inequality constraints than their unconstrained or equality constrained counter-

parts [22, 78]. In this thesis, we focus on spline models subject to such inequality con-

straints, with these applications in mind.

The first part of this thesis focuses on constrained smoothing splines formulated

as constrained linear optimal control problems with unknown initial state and control.

Hence, two types of constraints arise: (i) control constraints; and (ii) state constraints.

While several effective numerical methods have been developed for state constrained op-

timal control problems in [24], we focus on control constraints, since a variety of shape

constraints, which may be imposed on derivatives of a function, can be easily formulated as
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control constraints. It should be noted that a control constrained optimal control problem

is inherently nonsmooth, and thus is considerably different from a classical (unconstrained)

linear optimal control problem, such as LQR. Moreover, the goal of the shape constrained

spline problem is to find an optimal initial condition and an open-loop like optimal control

that “best” fit the sample data, rather than finding an optimal state feedback as in LQR,

where the cost function is written in terms of the state function.

1.1.2 Literature Review

Most of the current literature on control constrained smoothing splines focuses on

relatively simple linear dynamics and special control constraints, e.g., [19, 20, 22, 36, 52,

76]. Moreover, all of these sources consider problems in which the control is given by a

certain derivative of the constrained smoothing spline, and is required to be nonnegative.

This gives rise to a variety of nonnegative derivative constraints such as monotonicity

and convexity. For instance, in [19, 20], the authors consider a cubic smoothing spline

interpolation problem, where the nonnegative constrained control is given by the second

derivative of the smoothing spline. This forces the smoothing spline interpolant to be

convex. In [22, Chapter 7], more general nonnegative derivative constraints are considered.

In general, a widely used approach in the literature concentrates on shape con-

strained smoothing splines whose linear dynamics are defined by certain nilpotent matri-

ces, and whose control is restricted to a cone in R [20, 22, 46]. Such dynamics and control

constraints correspond to the previously mentioned nonnegative derivative constraints. In

this case, the smoothing spline is a piecewise continuous polynomial with a known degree.

Hence the computation of the smoothing spline boils down to determining the parameters

of a polynomial on each interval, which can be further reduced to a quadratic or semidef-
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inite program that attains efficient algorithms [19, 22]. However, this approach fails to

handle general linear dynamics and control constraints, e.g., when the control is given by

a linear combination of the constrained smoothing spline derivatives and is required to be-

long to some polyhedron, since the solution form of a general shape constrained smoothing

spline is unknown a priori. Therefore, many critical questions remain open in smoothing

spline analysis and computation when general dynamics and control constraints are taken

into account; new tools are needed to handle more general dynamics and control constraint

induced nonsmoothness.

1.2 Asymptotic Analysis of General Nonnegative Derivative Constrained

Nonparametric Estimation

We now consider the second topic of this work, i.e., the the asymptotic statisti-

cal analysis of the nonparametric estimation of functions subject to general nonnegative

derivative constraints in the supremum norm.

1.2.1 Background and Motivation

The nonparametric estimation of unknown functions plays a central role in esti-

mation theory, system identification, and systems and control [34, 49, 75, 77]. There

has been an increasing interest in the estimation of nonnegative derivative constrained

functions (e.g., monotone or convex functions) [22, 52, 70, 73, 79], driven by a variety of

applications. The goal of constrained estimation is to develop an estimator that preserves

a pre-specified constraint of the underlying true function, e.g., the monotone or convex

constraint.
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Given a collection of functions Σ subject to a pre-specified constraint, several key

questions arise when evaluating the asymptotic performance of constraint preserving non-

parametric estimators over Σ:

(Q1) What rates of convergence are possible (in terms of sample size) for constrained

estimators uniformly over Σ? Is there a “best” convergence rate, for which any

constrained estimator cannot achieve a faster rate of convergence uniformly over Σ?

(Q2) Is it possible to construct a constraint preserving estimator that achieves such a

“best” rate of convergence? How should we construct such an estimator?

These questions address critical research issues in minimax theory of constrained nonpara-

metric estimation [33, 34, 49, 77]. In particular, the first question pertains to the minimax

lower bound on Σ [48], while the second question is related to the minimax upper bound

on Σ. We are interested in addressing these questions when Σ is a general nonnegative

derivative constrained Hölder class, and the supremum norm is used as the performance

metric.

A major challenge in the development of general nonnegative derivative constrained

nonparametric estimation is induced by the estimator inequality shape constraints, which

lead to nonsmooth conditions in estimator characterization and complicate the estimator

asymptotic performance analysis. Additionally, further difficulties arise when the supre-

mum norm is used as the performance metric. For instance, a critical constrained B-spline

estimator uniform Lipschitz property (c.f. Section 1.2.1.1) is easily established in the L2-

norm, but is much more difficult to verify under the supremum norm (see Chapter III).

Unlike the L2-norm, the supremum norm characterizes the worst-case performance of an

estimator. The supremum norm is a widely studied norm in estimation theory [77].
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In what follows, we consider questions (Q1) and (Q2) in the context of general non-

negative derivative constrained nonparametric estimation under the supremum norm. In

Sections 1.2.1.1-1.2.1.2, we provide background information on a nonnegative derivative

constrained B-spline estimator and its performance over suitable Hölder classes, in associ-

ation to (Q2). Similarly, in Section 1.2.1.3, we motivate the study of asymptotic minimax

lower bounds over several general nonnegative derivative constrained Hölder and Sobolev

classes, in connection to (Q1).

1.2.1.1 Constrained B-spline Estimator: Uniform Lipschitz Property

It is observed that the monotone (resp. convex) constraint on a univariate function

roughly corresponds to the first (resp. second) order nonnegative derivative constraint, un-

der suitable smoothness conditions on the underlying function. Despite extensive research

on the asymptotic analysis of monotone and convex estimation, very few performance

analysis results are available for higher-order nonnegative derivative constraints, although

such constraints arise in applications [62]. Motivated by these applications and the lack of

performance analysis of the associated constrained estimators, we consider the estimation

of a univariate function subject to the mth order nonnegative derivative constraint via B-

spline estimators, for arbitrary m ∈ N. B-splines are a popular tool in approximation and

estimation theory thanks to their numerical advantages [14, 17]. Nonnegative derivative

constraints on a B-spline estimator can be easily imposed on spline coefficients, which can

then be efficiently computed via quadratic programs. In spite of this numerical simplicity

and effciency, the asymptotic analysis of constrained B-spline estimators is far from trivial,

particularly when uniform convergence and the supremum-norm risk are considered.
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The asymptotic analysis of constrained B-spline estimators requires a deep under-

standing of the mapping from a (weighted) sample data vector to the corresponding B-

spline coefficient vector. For a fixed sample size, this mapping is given by a Lipschitz

piecewise linear function due to the inequality shape constraints. As the sample size in-

creases and tends to infinity, an infinite family of size-varying piecewise linear functions

arise. A critical uniform Lipschitz property has been established for monotone P-splines

(corresponding to m = 1) [72] and convex B-splines (corresponding to m = 2) [80]. This

property states that the size-varying piecewise linear functions attain a uniform Lipschitz

constant under the `∞-norm, independent of sample size and the number of knots. It

leads to many important results in asymptotic analysis, e.g., uniform convergence, point-

wise mean squared risk, and optimal rates of convergence [80]. It has been conjectured

that this property can be extended to B-spline estimators subject to higher-order nonneg-

ative derivative constraints [80]. However, the extension encounters a major difficulty: the

proof of the uniform Lipschitz property for the monotone and convex cases heavily relies

on the diagonal dominance of certain matrices that no longer holds in the higher-order

cases. In addition, the results in [72, 80] are based on the restrictive assumption of evenly

spaced design points and knots; the extension to the unevenly spaced case is nontrivial.

To overcome these difficulties, we develop various new results for the proof of the uniform

Lipschitz property for an arbitrary m ∈ N.

1.2.1.2 Constrained B-spline Estimator: Consistency and Convergence Rate

Using the aforementioned uniform Lipschitz property, we develop a number of results

concerning the asymptotic analysis of the constrained B-spline estimator in the supremum

norm (c.f. Propostions 4.3.1-4.3.3 and Theorems 4.3.1-4.3.2). Moreover, the risk or error
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associated with a given estimator can be decomposed into the sum of two terms: (i) the

bias, which stems from approximating a true function by another function (e.g., a spline),

and (ii) the stochastic error, which arises from random errors or noise. Therefore, we

provide asymptotic bounds on each of these quantities, with respect to the supremum

norm, utilizing the previously described uniform Lipschitz property.

One difficulty that arises in bounding the constrained B-spline estimator bias in-

volves demonstrating that each sufficiently smooth function subject to a given nonneg-

ative derivative constraint attains a Jackson type spline approximation with the same

nonnegative derivative constraint (c.f. statement (J) in Chapter IV) [14, pg. 149]. For the

monotone and convex constraints, i.e., the first and second order nonnegative derivative

constraints, such a Jackson type approximation is easily verified. For third order nonneg-

ative derivative constraints, Jackson type approximations are given by [38, 58]. Hence,

we are able to obtain the optimal rate of convergence for the constrained B-spline estima-

tor bias, and thus the risk, for the first, second, and third order nonnegative derivative

constraints (c.f. Theorem 4.3.1 and Theorem 5.2.1). Alternatively, under an additional

assumption, in which the true function’s mth order derivative is also bounded below by a

constant (independent of the function) away from zero, the optimal bias and rate of con-

vergence can be achieved by the constrained B-spline estimator for any order derivative

constraint (c.f. Proposition 4.2.3). However, for forth and higher order derivative con-

straints, the optimal convergence rate may not be attained by the constrained B-spline

estimator if no such assumption is made (c.f. Proposition 4.2.2) [39]; rather, a larger than

desired lower bound on the estimator performance may be established (c.f. Remark 4.2.1).
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1.2.1.3 Constrained Nonparametric Estimation Minimax Lower Bounds

For unconstrained estimation, question (Q1) (see above) has been satisfactorily ad-

dressed for both the Hölder and Sobolev classes under the L2-norm and supremum norm.

Moreover minimax lower bounds have been developed for a variety of unconstrained Hölder

and Sobolev classes using a variety of norms; see [18, 33, 43, 48, 49, 77] and references

therein for details. This has led to well known optimal rates of convergence over uncon-

strained function classes. However, if shape constraints, such as nonnegative derivative

constraints, are imposed, then minimax asymptotic analysis becomes more complicated;

fewer results have been reported, particularly when the supremum norm is considered.

It is worth mentioning that a shape constraint does not improve the unconstrained op-

timal rate of convergence [37], and it is believed that the same optimal rate holds on a

constrained function class, although no rigorous justification has been given for general

nonnegative derivative constraints.

1.2.2 Literature Review

The current literature on nonnegative derivative constrained nonparametric esti-

mation focuses mostly on monotone estimation, e.g., [10, 51, 52, 72, 79], and convex

estimation, e.g., [8, 21, 27, 71, 80], i.e., estimation related to the first and second order

nonnegative derivative constraints. All of these papers study the performance of certain

constrained estimators, e.g., the least-squares, B-spline, and P-spline estimators, for suf-

ficiently large sample size. Typical performance issues include consistency, convergence

rates, and minimax risk [49, 77]. For instance, in [72], the consistency and uniform con-

vergence of a monotone P-spline estimator is verified. In the realm of convex (or concave)

estimation, the least squares convex estimator is studied in [27, 31, 45]. This estimator is
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shown to be consistent on the interior of the interval of interest [31]. The pointwise rate

of convergence for this estimator is developed in [45]. Finally, the pointwise asymptotic

distributions of this estimator are characterized in [27]. The minimax analysis of convex

estimation in the L2-norm has recently been carried out in [7, 28, 29]. In addition to mono-

tone and convex estimation, results on k-monotone estimation are given in [2] for higher

order nonnegative derivative constraints. Such results from [2] concern the consistency of a

k-monotone maximum likelihood estimator, as well as minimax asymptotic lower bounds

for k-monotone functions in the L1-norm. However, all of the above results are either

are (i) concerned only with lower order derivative constraints, or (ii) do not examine the

estimator performance under the supremum norm, which is an important performance

metric, as it is a critical tool in arguments used to establish estimator consistency and

uniform convergence rates.

1.3 Summary of Research Contributions

We summarize the major results and contributions made in the areas of constrained

estimation and approximation presented in this thesis as follows:

(1) We first develop the optimal control formulation and analytical properties of

smoothing splines subject to general linear dynamics and control constraints using opti-

mal control techniques. By using the Hilbert space method and variational techniques,

optimality conditions are established for these constrained smoothing splines in the form

of variational inequalities. These optimality conditions yield a nonsmooth equation of an

optimal initial condition; it is shown that the unique solution of this equation completely

determines an optimal control and thus the desired smoothing spline (c.f. Theorem 2.3.2

and Corollary 2.3.1).
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(2) We utilize techniques from nonsmooth optimization to provide results on the

numerical computation of constrained smoothing splines. Moreover, in order to solve the

above mentioned equation, we verify its B-differentiability and other nonsmooth proper-

ties. A modified nonsmooth Newton’s algorithm with line search [53] is invoked to solve

the equation. This algorithm does not require knowing the solution form of a smoothing

spline a priori. However, the convergence of the original nonsmooth Newton’s method

in [53] relies on several critical assumptions, including the boundedness of level sets and

global existence of direction vectors for a related equation. The verification of these as-

sumptions for constrained smoothing splines turns out to be rather nontrivial, due to the

dynamics and constraint induced complexities. By using various techniques from nons-

mooth analysis, polyhedral theory, and piecewise affine switching systems, we establish the

global convergence of the proposed algorithm for a general polyhedral control constraint

under mild technical conditions (c.f. Theorems 2.5.1–2.5.2).

(3) We establish the critical uniform Lipschitz property for the constrained B-spline

estimator introduced in Section 1.2.1.1. A novel technique for the proof of the uniform

Lipschitz property depends on a deep result in B-spline theory (dubbed de Boor’s con-

jecture) first proved by A. Shardin [64]; see [26] for a recent, simpler proof. Informally

speaking, this result says that the `∞-norm of the inverse of the Gramian formed by the

normalized B-splines of order m is uniformly bounded, independent of the spline knot

sequence and the number of B-splines (c.f. Theorem 3.2.2 in Section 3.2.3). Recall that

the uniform Lipschitz property states that the size-varying piecewise linear functions that

map the (weighted) sample data vector to the constrained B-spline estimator coefficients

attain a uniform Lipschitz constant independent of the data sample size and the number

of spline knots. Inspired by Shardin’s result, we construct (nontrivial) coefficient matrices
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for these piecewise linear functions, and use these constructions to approximate related

matrices by suitable B-spline Gramians via analytic techniques. This yields the uniform

bounds in the `∞-norm for arbitrary m and possibly unevenly spaced design points and

knots; see Theorem 3.2.1.

(4) Using the uniform Lipschitz property, we show that for any spline order m,

the constrained B-spline estimator achieves uniform convergence and consistency on the

entire interval of interest, even when the design points and/or the knots are unevenly

spaced (c.f. Theorem 4.3.1). Moreover, we develop several important results on constrained

spline approximation (c.f. Propositions 4.2.1-4.2.3), which are used to the bound estimator

bias. After bounding the bias, standard techniques and the uniform Lipschitz property

are utilized to bound the constrained B-spline estimator stochastic error. Furthermore,

these bounds allow us to develop a convergence rate for the B-spline estimator in the

supremum norm (c.f. Theorem 4.3.1 and Remark 4.3.1); this rate sheds light on the optimal

convergence and minimax risk analysis of the B-spline estimator under general nonnegative

derivative constraints.

(5) Finally, we develop multiple minimax lower bounds under the supremum norm

for a variety of nonnegative derivative constrained nonparametric regression problems over

Hölder and Sobolev classes (c.f. Theorem 5.2.1). This is done by constructing a family of

functions (or hypotheses) satisfying an appropriate supremum norm separation order and

a small total L2-distance order that also adhere to the specified nonnegative derivative

constraint [77, Section 2]. This construction is the first of its kind for minimax general

nonnegative derivative constrained estimation. Combining the minimax lower bounds

with the previous results demonstrates that the nonnegative derivative constrained B-
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spline estimator achieves the optimal asymptotic performance over a suitable Hölder class

in the supremum norm, for certain order nonnegative derivative constraints.

1.4 Organization

This thesis is organized as follows. In Chapter II, we study both the analytical prop-

erties and computation of smoothing splines subject to general linear dynamics and control

constraints. In Chapters III-V, we consider the nonparametric estimation of smooth func-

tions subject to general nonnegative derivative constraints. Moreover, in Chapter III a

nonnegative derivative constrained B-spline estimator is proposed, and the critical uni-

form Lipschitz property for this estimator is established. In Chapter IV several results

on constrained spline approximation are verified and then combined with the previously

established uniform Lipschitz property to develop the consistency and convergence rate

of the Chapter III B-spline estimator in the supremum norm. Finally, in Chapter V, a

number of minimax lower bounds are developed (in the supremum norm) for a variety

of general nonnegative derivative constrained nonparametric regression problems. These

lower bounds are combined with the results from Chapter IV in order to demonstrate that

the Chapter III constrained B-spline estimator obtains the optimal rate of convergence

(with respect to the supremum norm) over suitable Hölder classes, for certain nonnegative

derivative constraints. Several conclusions and future research directions are discussed in

Chapter VI.

15



CHAPTER II

Shape Constrained Smoothing Splines: Analysis and

Computation

2.1 Introduction

Spline models are extensively studied in approximation theory, numerical analysis,

and statistics with broad applications in science and engineering. In particular, smoothing

splines are smooth functions with favorable statistical properties, whose smoothness at-

tributes deter the overfitting of model data [78]. From a control systems point of view, the

smoothing spline model is closely associated with certain finite-horizon linear quadratic

optimal control problems [22]. In this chapter, we consider smoothing spline models sub-

ject to various control constraints. These splines achieve certain constrained linear optimal

control formulations with unknown initial state and control. Attention is given to both

the analysis and the computation of these shape constrained smoothing splines.

This chapter is organized as follows. In Section 2.2, we formulate a shape con-

strained smoothing spline as a constrained optimal control problem with optimality con-

ditions developed in Section 2.3. In Section 2.4, critical analytical properties of constrained
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smoothing splines are formulated; such properties are relevant to the numerical computa-

tion of these splines. A nonsmooth Newton’s method for computing constrained smoothing

splines is given in Section 2.5; its convergence analysis and numerical results are presented

in Section 2.5 and Section 2.6 respectively, for polyhedral control constraints. Finally, a

summary is given in Section 2.7.

Notation. We introduce the following notation to be used throughout this chapter.

Let 〈·, ·〉 denote the inner product on the Euclidean space. Let IS denote the indicator

function for a set S. Let ⊥ denote the orthogonality of two vectors in Rn, i.e., a ⊥ b

implies aT b = 0. For a closed convex set K in Rn, ΠK(z) denotes the Euclidean projection

of z ∈ Rn onto K. It is known that ΠK(·) is Lipschitz continuous on Rn with the Lipschitz

constant L = 1 with respect to the Euclidean norm [23]. Throughout this chapter, let
∫

be the Lebesgue integral. For a matrix M , Mj• denotes its jth row and Ker(M) denotes

the null space of M . Finally, for a function F : Rn → Rn and a closed convex set

K in Rn, let VI(K, F ) be the variational inequality problem whose solution is z∗ ∈ K if

〈z−z∗, F (z∗)〉 ≥ 0 for all z ∈ K. We use SOL(K, F ) to denote the solution set of VI(K, F ).

2.2 Shape Constrained Smoothing Splines: Constrained Optimal Con-

trol Formulation

Consider the linear control system on R` subject to control constraint:

ẋ = Ax+Bu, y = Cx, (2.1)

where A ∈ R`×`, B ∈ R`×m, and C ∈ Rp×`. Let Ω ⊆ Rm be a closed convex set. The

control constraint is given by u ∈ L2([0, 1];Rm) and u(t) ∈ Ω for almost all t ∈ [0, 1],
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where L2([0, 1];Rm) is the space of square Rm-valued (Lebesgue) integrable functions.

We denote this constrained linear control system by Σ(A,B,C,Ω). Define the set of

permissible controls, which is clearly convex:

W : =
{
u ∈ L2([0, 1];Rm) | u(t) ∈ Ω, a.e. [0, 1]

}
.

Let the underlying function f : [0, 1] → Rp be the output f(t) := Cx(t) for an ab-

solutely continuous trajectory x(t) of Σ(A,B,C,Ω), which can be completely determined

by its initial state and control. Consider the following (generalized) regression problem

on the interval [0, 1]:

yi = f(ti) + εi, i = 0, 1, . . . , n, (2.2)

where ti’s are the pre-specified design points with 0 = t0 < t1 < · · · < tn = 1, yi ∈ Rp

are samples, and εi ∈ Rp are noise or errors. Given the sample observation (ti, yi)
n
i=0, and

wi > 0, i = 1, . . . , n such that
∑n

i=1wi = 1 (e.g., wi = ti− ti−1), define the cost functional

J :=
n∑
i=1

wi
∥∥yi − Cx(ti)

∥∥2

2
+ λ

∫ 1

0
‖u(t)‖22dt, (2.3)

where λ > 0 is the penalty parameter. The goal of a shape constrained smoothing spline

is to find an absolutely continuous trajectory x(t) (which is determined by its initial state

and control) that minimizes the cost functional J subject to the dynamics of the linear

control system Σ(A,B,C,Ω) in (2.1) and the control constraint u ∈ W.

Remark 2.2.1. Let R ∈ Rm×m be a symmetric positive definite matrix. A more general

cost functional

J :=

n∑
i=1

wi
∥∥yi − Cx(ti)

∥∥2

2
+ λ

∫ 1

0
uT (t)Ru(t)dt (2.4)
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may be considered. However, a suitable control transformation will yield an equivalent

problem defined by the cost functional (2.3). In fact, let R = P TP for an invertible matrix

P . Let v(t) = Pu(t), Ω′ = PΩ, and W ′ : =
{
v ∈ L2([0, 1];Rm) | v(t) ∈ Ω′, a.e. [0, 1]

}
.

Clearly, Ω′ remains closed and convex, and likewise, W ′ remains convex. Therefore

the constrained optimal control problem defined by (2.4) for the linear control system

Σ(A,B,C,Ω) is equivalent to that defined by (2.3) with u replaced by v for the linear

system Σ(A,BP−1, C,Ω′) subject to the constraint (v, x0) ∈ W ′ × R`.

Example 2.2.1. The constrained linear control model (2.1) covers a wide range of estima-

tion problems subject to shape and/or dynamical constraints. For instance, the standard

monotone regression problem is a special case of the model (2.1) by letting the scalars

A = 0, B = C = 1, and Ω = R+. Another case is the convex regression, for which

A =

0 1

0 0

 ∈ R2×2, B =

0

1

 ∈ R2, CT =

1

0

 ∈ R2, Ω = R+.

2.3 Optimality Conditions of Shape Constrained Smoothing Splines

This section develops optimality conditions for the finite-horizon constrained optimal

control problem (2.3) using Hilbert space techniques. We first introduce the following

functions Pi : [0, 1]→ Rp×m inspired by [22]:

Pi(t) :=


CeA(ti−t)B, if t ∈ [0, ti]

0, if t > ti

, i = 1, . . . , n.

Hence,

f(ti) = Cx(ti) = CeAtix0 +

∫ 1

0
Pi(t)u(t)dt, i = 1, . . . , n,
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where x0 denotes the initial state of x(t). Define the set P :=W ×R`. It is easy to verify

that P is convex. The constrained optimal control problem is formulated as

inf
(u,x0)∈P

J(u, x0), (2.5)

where J : P → R+ is given by

J(u, x0) :=

n∑
i=1

wi

∥∥∥∥CeAtix0 +

∫ 1

0
Pi(t)u(t)dt− yi

∥∥∥∥2

2

+ λ

∫ 1

0
‖u(t)‖22dt.

For given design points {ti}ni=1 in [0, 1], we introduce the following condition:

H.1 : rank



CeAt1

CeAt2

...

CeAtn


= `.

It is easy to see, via ti ∈ [0, 1] for all i, that if (C,A) is an observable pair, then the condition

H.1 holds for all sufficiently large n. Under this condition, the existence and uniqueness

of an optimal solution can be shown via standard arguments in functional analysis, e.g.,

[3, 42, 44]. We present a proof in the following theorem for self-containment.

Theorem 2.3.1. Suppose {(ti, yi)}, {wi}, and λ > 0 are given. Under the condition H.1,

the optimization problem (2.5) has a unique optimal solution (u∗, x
∗
0) ∈ P.

Proof. Consider the Hilbert space L2([0, 1];Rm) × R` endowed with the inner product

〈(u, x), (v, z)〉 :=
∫ 1

0 u
T (t)v(t)dt + xT z for any (u, x), (v, z) ∈ L2([0, 1];Rm) × R`. Its

induced norm satisfies ‖(u, x)‖2 := ‖u‖2L2
+ ‖x‖22, where ‖u‖L2 :=

( ∫ 1
0 u

T (t)u(t)dt
)1/2

for
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any u ∈ L2([0, 1];Rm) and ‖ · ‖2 is the Euclidean norm on R`. The following properties

of J : L2([0, 1];Rm) × R` → R+ can be easily verified via the positive definiteness of the

matrix
∑n

i=1wi(Ce
Ati)T (CeAti) ∈ R`×` due to H.1:

(i) J is coercive, i.e., for any sequence {(uk, xk)} with ‖(uk, xk)‖ → ∞ as k → ∞,

J(uk, xk)→∞ as k →∞.

(ii) J is strictly convex, i.e., for any (u, x), (v, z) ∈ L2([0, 1];Rm)× R`, J(α(u, x) + (1−

α)(v, z)) < αJ(u, x) + (1− α)J(v, z), ∀ α ∈ (0, 1).

Pick an arbitrary (ũ, x̃) ∈ P and define the level set S := {(u, x) ∈ P : J(u, x) ≤

J(ũ, x̃)}. Due to the convexity and the coercive property of J , S is a convex and (L2-

norm) bounded set in L2([0, 1];Rm) × R`. Since the Hilbert space L2([0, 1];Rm) × R` is

reflexive and self dual, it follows from Banach-Alaoglu Theorem [44] that an arbitrary

sequence {(uk, xk)} in S with uk ∈ W and xk ∈ R` has a subsequence {(u′k, x′k)} that

attains a weak*, thus weak, limit (u∗, x
∗) ∈ L2([0, 1];Rm)×R`. Clearly, x∗ ∈ R`. Without

loss of generality, we assume that for each u′k, u
′
k(t) ∈ Ω for all t ∈ [0, 1]. Therefore,

CeAtix′k +
∫ 1

0 Pi(t)u
′
k(t)dt converges to CeAtix∗ +

∫ 1
0 Pi(t)u∗(t)dt for each i.

Next we show that u∗ ∈ W via the closedness and convexity of Ω. In view of the

weak convergence of (u′k) to u∗, it follows from Mazur’s Lemma [60, Lemma 10.19] that

there exists a sequence of convex combinations of (u′k), denoted by (vk), that converges to

u∗ strongly in L2([0, 1];Rm), i.e., for each k, there exist an integer pk ≥ k and real numbers

λk,j ≥ 0, k ≤ j ≤ pk with
∑pk

j=k λk,j = 1 such that vk =
∑pk

j=k λk,juk, and ‖vk−u∗‖L2 → 0

as k →∞. Since each uk(t) ∈ Ω,∀ t ∈ [0, 1], the same holds for each vk via the convexity

of Ω. Furthermore, due to the strong convergence of (vk) to u∗ (i.e., in the L2-norm), (vk)

converges to u∗ in measure [4, pp. 69], and hence has a subsequence that converges to u∗
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pointwise almost everywhere on [0, 1] (cf. [4, Theorem 7.6] or [42, Theorem 5.2]). Since Ω

is closed, u∗(t) ∈ Ω for almost all t ∈ [0, 1]. This shows that u∗ ∈ W.

Furthermore, by using the (L2-norm) boundedness of (u′k) and the triangle inequality

for the L2-norm, it is easy to show that for any η > 0, there exists K ∈ N such that

‖u∗‖2L2
≤ ‖u′k‖2L2

+ η,∀ k ≥ K. These results imply that for any ε > 0, J(u∗, x
∗) ≤

J(u′k, x
′
k) + ε for all k sufficiently large. Consequently, J(u∗, x

∗) ≤ J(ũ, x̃) such that

(u∗, x
∗) ∈ S. This thus shows that S is sequentially compact. In view of the (strong)

continuity of J , we see that a global optimal solution exists on S [44, Section 5.10, Theorem

2], and thus on P. Moreover, since J is strictly convex in (u, x0) and the set P is convex,

the optimal solution (u∗, x
∗
0) must be unique.

The next result provides the necessary and sufficient optimality conditions in terms

of variational inequalities. In particular, the optimality conditions yield two equations:

(2.6) and (2.7). It is shown in Corollary 2.3.1 that equation (2.6) implies that if x∗0

is known, then the smoothing spline can be determined inductively. Furthermore, the

optimal initial state x∗0 can be solved from the (nonsmooth) equation (2.7), for which a

nonsmooth Newton’s method will be used (cf. Section 2.4).

Theorem 2.3.2. The pair (u∗, x
∗
0) ∈ P is an optimal solution to (2.5) if and only if the

following two conditions hold:

u∗(t) = ΠΩ

(
−G(t, u∗(t), x

∗
0)/λ

)
, a.e. [0, 1], (2.6)

L(u∗, x
∗
0) = 0, (2.7)

where

G(t, u∗(t), x
∗
0) :=

n∑
i=1

wiP
T
i (t)

(
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi

)
, (2.8)
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and

L(u∗, x
∗
0) :=

n∑
i=1

wi
(
CeAti

)T(
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi

)
.

Proof. Let (u′, x′) ∈ P be arbitrary. Due to the convexity of P, (u∗, x
∗
0) + ε[(u′, x′) −

(u∗, x
∗
0)] ∈ P for all ε ∈ [0, 1]. Further, since (u∗, x

∗
0) is a global optimizer, we have

J((u∗, x
∗
0) + ε[(u′, x′)− (u∗, x

∗
0)]) ≥ J(u∗, x

∗
0) for all ε ∈ [0, 1]. Therefore

0 ≤ lim
ε↓0

J((u∗, x
∗
0) + ε[(u′, x′)− (u∗, x

∗
0)])− J(u∗, x

∗
0)

ε

= 2

[
n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi , CeAti(x′ − x∗0)

+

∫ 1

0
Pi(t)

(
u′(t)− u∗(t)

)
dt

〉
+ λ

∫ 1

0
u∗(t)

T
(
u′(t)− u∗(t)

)
dt

]
.

This thus yields the necessary optimality condition: for all (u′, x′) ∈ P,

n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi, CeAti(x′ − x∗0)

+

∫ 1

0
Pi(t)

(
u′(t)− u∗(t)

)
dt

〉
+ λ

∫ 1

0
u∗(t)

T
(
u′(t)− u∗(t)

)
dt ≥ 0. (2.9)

This condition is also sufficient in light of the following inequality due to the convexity of

J : for all (u′, x′) ∈ P,

J(u′, x′)− J(u∗, x
∗
0) ≥ lim

ε↓0

J((u∗, x
∗
0) + ε[(u′, x′)− (u∗, x

∗
0)])− J(u∗, x

∗
0)

ε
.

We now show that the optimality condition (2.9) is equivalent to

〈
u′(t)− u∗(t), λu∗(t) +G(t, u∗(t), x

∗
0)
〉
≥ 0, a.e. [0, 1], ∀ u′ ∈ W, (2.10)
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where G(t, u∗(t), x
∗
0) is given in (2.8), and

〈
L(u∗, x

∗
0), x′ − x∗0

〉
≥ 0, ∀x′ ∈ R`. (2.11)

Clearly, if (2.10) and (2.11) hold, then (2.9) holds. Conversely, by setting u′ = u∗, we have

from (2.9) that

n∑
i=1

wi

〈
CeAtix∗0 +

∫ 1

0
Pi(t)u∗(t)dt− yi, CeAti(x′ − x∗0)

〉
≥ 0, ∀ x′ ∈ R`.

Since x′ is arbitrary in R`, this yields (2.11) and thus (2.7). Furthermore, the condition

(2.9) is reduced to

∫ 1

0

〈
u′(t)− u∗(t), λu∗(t) +G(t, u∗(t), x

∗
0)
〉
dt ≥ 0, ∀ u′ ∈ W.

Let G̃(t, u∗(t), x
∗
0) := λu∗(t)+G(t, u∗(t), x

∗
0). Since Ω is closed and convex, G̃ ∈ L2([0, 1];Rm),

and u′ ∈ L2([0, 1];Rm), it follows from [55, Section 2.1] that the above integral in-

equality is equivalent to the variational inequality (2.10), which is further equivalent to

u∗(t) ∈ SOL
(
Ω, G̃(t, ·, x∗0)

)
, a.e. [0, 1]. Hence, for almost all t ∈ [0, 1],

〈
w − u∗(t), u∗(t) +G(t, u∗(t), x

∗
0)/λ

〉
≥ 0, ∀ w ∈ Ω.

This shows u∗(t) = ΠΩ(−G(t, u∗(t), x
∗
0)/λ) a.e. [0, 1].

In what follows, we further develop the optimal control solution for the shape con-

strained smoothing spline. Let f̂(t, x∗0) denote the shape constrained smoothing spline for
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the given {yi}, i.e.,

f̂(t, x∗0) := CeAtx∗0 +

∫ t

0
CeA(t−s)Bu∗(s, x

∗
0)ds, (2.12)

where u∗ is the optimal control, and x∗0 is the optimal initial state.

Corollary 2.3.1. The shape constrained smoothing spline f̂(t, x∗0) satisfies

n∑
i=1

wi
(
CeAti

)T (
f̂(ti, x

∗
0)− yi

)
= 0, (2.13)

and G(t, u∗(t), x
∗
0) in (2.8) is given by

G(t, u∗(t), x
∗
0) =

0, ∀ t ∈ [0, t1)

−
k∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, x

∗
0)− yi

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1.

(2.14)

Note that since each f̂(ti, x
∗
0) depends on u∗ via (2.12), G is a function of t, u∗, and x∗0.

Proof. Note that f̂(ti, x
∗
0) = CeAtix∗0 +

∫ 1
0 Pi(s)u∗(s, x

∗
0)ds for i = 1, . . . , n. In light of

(2.7) and the definition of L(u∗, x
∗
0), we obtain (2.13). To establish (2.14), we see from

(2.13) that

n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
I[0,ti]

=


0, ∀ t ∈ [0, t1)

−
k∑
i=1

wi
(
CeAti

)T (
f̂(ti, x

∗
0)− yi

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1.

(2.15)
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Moreover, it follows from (2.8) and the definition of Pi that

G(t, u∗(t), x
∗
0) =

n∑
i=1

wi

(
CeA(ti−t)B · I[0,ti]

)T(
f̂(ti, x

∗
0)− yi

)
=

n∑
i=1

wi

(
CeAtie−AtB

)T
· I[0,ti] ·

(
f̂(ti, x

∗
0)− yi

)
=

(
e−AtB

)T n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
I[0,ti].

By virtue of this and (2.15), we obtain (2.14).

This corollary shows that if the optimal initial condition x∗0 is known, then the

constrained smoothing spline f̂(t, x∗0) can be determined inductively. Moreover, using (2.6)

and (2.14), we may first compute u∗(t) on [0, t1), and by extension, f̂(t, x∗0) on [0, t1]

via (2.12). Once we have computed f̂(t, x∗0) on [0, tk], we may then compute G(t, u∗(t), x
∗
0),

and thus u∗(t) on [tk, tk+1), as each of these depend only on f̂(ti, x
∗
0) when i ≤ k (see (2.6)

and (2.14)). From here, we may compute f̂(t, x∗0) on [tk, tk+1], using (2.12). This inductive

computation will be exploited to compute the constrained smoothing splines in Section 2.4.

We mention a few special cases of particular interest as follows. If K is a closed

convex cone C, then z ∈ SOL(K, F ) if and only if C 3 z ⊥ F (z) ∈ C∗, where C∗ is the dual

cone of C. In particular, if K is the nonnegative orthant Rn+, then z ∈ SOL(K, F ) if and

only if 0 ≤ z ⊥ F (z) ≥ 0, where the latter is called a complementarity problem (cf. [12, 23]

for details). In the case where F (z) is affine, i.e., F (z) = Mz + q for a square matrix M

and a vector q, then the complementarity problem becomes the linear complementarity

problem (LCP). Another special case of significant interest is when K is a polyhedron,

namely, K = {z ∈ Rn |Dz ≥ b, Ez = d}, where D ∈ Rr×n, E ∈ Rq×n, and b ∈ Rr, d ∈ Rq.

In this case, it is well known that z ∈ SOL(K, F ) if and only if there exist multipliers
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χ ∈ Rr, µ ∈ Rq such that F (z)−DTχ+ ETµ = 0, 0 ≤ χ ⊥ Dz − b ≥ 0, Ez − d = 0 [23,

Proposition 1.2.1]. Along with these results, we obtain the following optimality condition

for u∗ in terms of a complementarity problem when Ω is polyhedral.

Proposition 2.3.1. Let Ω = {w ∈ Rm |Dw ≥ b} be a (nonempty) polyhedron with

D ∈ Rr×m and b ∈ Rr. Then

u∗(t) =
[
−G(t, u∗(t), x

∗
0) +DTχ(G(t, u∗(t), x

∗
0))
]
/λ, a.e. [0, 1],

where DTχ : Rm → Rm is a continuous piecewise affine function defined by the solution

of the linear complementarity problem: 0 ≤ χ ⊥ λ−1DDTχ− λ−1Dz − b ≥ 0.

Proof. It follows from u∗ ∈ SOL(Ω, G̃(t, ·, x∗0)) a.e. [0, 1], where G̃(t, u∗(t), x
∗
0) = λu∗ +

G(u∗(t), x
∗), and the above discussions that u∗ is the optimal control if and only if for

almost all t ∈ [0, 1], there exists χ ∈ Rr such that

λu∗(t) +G(u∗(t), x
∗
0)−DTχ = 0, and 0 ≤ χ ⊥ Du∗(t)− b ≥ 0.

This is equivalent to the linear complementarity problem

0 ≤ χ ⊥ λ−1DDTχ− λ−1z − b ≥ 0, (2.16)

where z := G(u∗(t), x
∗
0). Due to the positive semidefinite plus structure [69], it follows

from complementarity theory [12] that for any z ∈ Rm, the LCP (2.16) has a solution χ(z),

and DTχ(z) is unique. Furthermore, this implies that DTχ(·) is a continuous piecewise

affine function [69].
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2.4 Computation of Shape Constrained Smoothing Splines: Formula-

tion and Analytic Properties

In this section, we discuss the numerical issues of the shape constrained smoothing

splines. As indicated below Corollary 2.3.1, in order to determine f̂(t, x∗0), it suffices to find

the optimal initial state x∗0, since once x∗0 is known, u∗ and f̂ can be computed recursively.

In fact, it follows from Corollary 2.3.1 that f̂(t, x∗0) is given by

f̂(t, x∗0) = CeAtx∗0 +

∫ t

0
CeA(t−s)Bu∗(s, x

∗
0)ds, (2.17)

where

u∗(t, x
∗
0) =
ΠΩ(0), ∀ t ∈ [0, t1)

ΠΩ

(
λ−1

k∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, x

∗
0)− yi

))
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1,

and f̂(t, x∗0) satisfies

Hy,n(x∗0) :=
n∑
i=1

wi

(
CeAti

)T(
f̂(ti, x

∗
0)− yi

)
= 0. (2.18)

To compute the optimal initial state x∗0, we consider the equation Hy,n(z) = 0, where

f̂(t, z) in Hy,n(z) is defined by (2.17) when x∗0 is replaced by z. The following lemma is a

direct consequence of Theorem 2.3.1 and the definition of f̂ .
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Lemma 2.4.1. For any given {(ti, yi)}, {wi}, and λ > 0 satisfying H.1, the equation

Hy,n(z) = 0 has a unique solution, which corresponds to the optimal initial state x∗0 of the

smoothing spline f̂(t, x∗0).

It should be noted that the function Hy,n : R` → R` is nonsmooth in general,

due to the constraint induced nonsmoothness of u∗(t, x
∗
0) in x∗0. However, the following

proposition shows the B(ouligand)-differentiability of f̂(t, z) in z [23, Section 3.1]. Recall

that a functionG : R` → R` is B-differentiable if it is Lipschitz continuous and directionally

differentiable on R`, namely, for any z ∈ R` and any direction vector d ∈ R`, the following

(one-sided) directional derivative exists

G′(z; d) := lim
τ↓0

G(z + τd)−G(z)

τ
.

Proposition 2.4.1. Assume that ΠΩ : Rm → Rm is directionally differentiable on Rm.

For any given {(ti, yi)}, {wi}, λ > 0, and z ∈ R`, f̂(t, z) is B-differentiable in z for any

fixed t ∈ [0, 1].

Proof. We prove the B-differentiability of f̂(t, z) in z by induction on the intervals [tk, tk+1],

for k = 0, 1, . . . , n − 1. Consider t ∈ [0, t1] first. Since u∗(t, z) = ΠΩ(0),∀ t ∈ [0, t1) and

f̂(t, z) is continuous in t, f̂(t, z) = CeAtz +
∫ t

0 Ce
A(t−s)BΠΩ(0)ds,∀ t ∈ [0, t1], which is

clearly Lipschitz continuous and directionally differentiable. Thus f̂(t, ·) is B-differentiable

in z for any fixed t ∈ [0, t1].

Now assume that f̂(t, ·) is B-differentiable for all t ∈ [0, t1] ∪ · · · ∪ [tk−1, tk], and

consider the interval [tk, tk+1]. Note that for any t ∈ [tk, tk+1), the optimal control

u∗(t, z) = ΠΩ

(
λ−1

k∑
i=1

wi

(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
. (2.19)
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Since the functions ΠΩ(·) and f̂(ti, ·), i = 1, . . . , k are all B-differentiable, it follows from

[23, Proposition 3.1.6] that the composition given in u∗(t, z) remains B-differentiable in

z for each fixed t ∈ [tk, tk+1). For a given direction vector d ∈ R` and a given τ ≥ 0,

u∗(t, z+ τd) is continuous in t on [tk, tk+1). Therefore, u∗(t, z+ τd) is (Borel) measurable

on [tk, tk+1) for any fixed τ and d. Since

u′∗(t, z; d) = lim
τ↓0

u∗(t, z + τd)− u∗(t, z)
τ

,

the function u′∗(t, z; d) is also (Borel) measurable on [tk, tk+1) for any fixed z and d [4,

Corollary 2.10 or Corollary 5.9]. It follows from the non-expansive property of ΠΩ with

respect to the Euclidean norm ‖ · ‖2 [23] that for any given τ > 0,

‖u∗(t, z + τd)− u∗(t, z)‖2
τ

≤ 1

λ · τ

k∑
i=1

wi

∥∥∥(CeA(ti−t)B
)T∥∥∥

2
·
∥∥∥f̂(ti, z + τd)− f̂(ti, z)

∥∥∥
2
.

This shows that for each t ∈ [tk, tk+1),

‖u∗(t, z + τd)− u∗(t, z)‖2
τ

≤
k∑
i=1

wiL(ti)‖d‖2
λ

∥∥(CeA(ti−t)B)T
∥∥

2
,

where L(ti) > 0 is the Lipschitz constant of f̂(ti, ·). Hence, it is easy to see that u′∗(t, z; d)

is bounded on the interval [tk, tk+1), i.e., there exists %k > 0 such that ‖u′∗(t, z; d)‖2 ≤ %k

for all t ∈ [tk, tk+1). This shows that u′∗(t, z; d) is (Lebesgue) integrable in t on [tk, tk+1]. In

view of the above results and the Lebesgue Dominated Convergence Theorem [4, Theorem

5.6 or Corollary 5.9], we have f̂ ′(t, z; d) = CeAtd +
∫ t

0 Ce
A(t−s)Bu′∗(s, z; d)ds for all t ∈

[tk, tk+1]. This shows that f̂(t, ·) is directionally differentiable for each t ∈ [tk, tk+1].

Furthermore, since ‖ΠΩ(z)− ΠΩ(z′)‖2 ≤ ‖z − z′‖2 for all z, z′ ∈ R`, and u∗(t, z) depends
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on finitely many f̂(ti, z) on the interval [tj , tj+1) with j = 1, . . . , k (cf. (2.19)), it can

be shown that for each j = 1, . . . , k, there exists a uniform Lipschitz constant Lj > 0

(independent of t) such that for any t ∈ [tj , tj+1), ‖u∗(t, z)− u∗(t, z′)‖2 ≤ Lj‖z − z′‖2 for

all z, z′ ∈ R`. In view of f̂(t, z) = CeAtz+
∫ t

0 Ce
A(t−s)Bu∗(s, z)ds, the continuity of f̂ in t,

and the induction hypothesis, we deduce the Lipschitz continuity of f̂(t, ·) for each fixed

t ∈ [tk, tk+1]. Therefore, the proposition follows by the induction principle.

Clearly, the assumption of global directional differentiability of the Euclidean pro-

jector ΠΩ is critical to Proposition 2.4.1. In what follows, we identify a few important cases

where this assumption holds. One of the most important cases is when Ω is polyhedral.

In this case, as shown in Proposition 2.3.1, ΠΩ(·) is a continuous piecewise affine function,

and its directional derivative is given by a piecewise linear function of a direction vector

d (cf. [23, Section 4.1] or [63]). When Ω is non-polyhedral, we consider a finitely gener-

ated convex set, i.e., Ω = {w ∈ Rm |G(w) ≤ 0}, where G : Rm → Rp1 is such that each

component function Gi is twice continuously differentiable and convex for i = 1, . . . , p1.

It is known that if, for each w ∈ Rm, the set Ω satisfies either the sequentially bounded

constraint qualification (SBCQ) or the constant rank constraint qualification (CRCQ) at

ΠΩ(w), then ΠΩ is directionally differentiable; see [23, Sections 4.4-4.5] for details.

More differential properties can be obtained for f̂(t, z). Motivated by [56, Theorem

8], we consider the semismoothness of f̂ . A function G : Rn → Rm is said to be semismooth

at z∗ ∈ Rn [23] if G is B-differentiable at all points in a neighborhood of z∗ and satisfies

lim
z∗ 6=z→z∗

G ′(z; z − z∗)−G ′(z∗; z − z∗)
‖z − z∗‖

= 0.
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Semismooth functions play an important role in nonsmooth analysis and optimization; see

[23] and the references therein for details.

Lemma 2.4.2. Assume that ΠΩ : Rm → Rm is directionally differentiable on Rm. For

any given {(ti, yi)}, {wi}, λ > 0, and z ∈ R`, if u∗(t, ·) is semismooth at z for each fixed

t ∈ [0, 1], so is f̂(t, ·).

Proof. Fix {(ti, yi)}, {wi}, λ > 0, and z ∈ R`. It suffices to prove that x̂(t, ·) is semismooth

at z for each fixed t ∈ [0, 1], where x̂(t, z) satisfies the ODE: ẋ(t) = Ax(t)+Bu∗(t, z), t ∈

[0, 1] with x(0) = z. It follows from the proof of Proposition 2.4.1 that x̂(t, z) is B-

differential in z on [0, 1] and for a given d ∈ R` and t ∈ [0, 1],

x̂ ′(t, z; d) = eAtd+

∫ t

0
eA(t−s)Bu′∗(s, z; d)ds.

In view of this, it is easy to verify that for a fixed t ∈ [0, 1] and any z̃ ∈ R`,

x̂ ′(t, z̃; z̃ − z)− x̂ ′(t, z; z̃ − z) =

∫ t

0
eA(t−s)B

(
u′∗(s, z̃; z̃ − z)− u′∗(s, z; z − z̃)

)
ds.

By the semismoothness of u∗(s, ·) at z, we have for each fixed s ∈ [0, t],

lim
z 6=z̃→z

u′∗(s, z̃; z̃ − z)− u′∗(s, z; z̃ − z)
‖z̃ − z‖

= 0.

Furthermore, it is shown in the proof of Proposition 2.4.1 that u′∗(s, z̃; z̃−z) and u′∗(s, z; z̃−

z) are Lebesgue integrable and bounded on [0, 1]. Therefore, it follows from Lebesgue

Dominated Convergence Theorem [4, Theorem 5.6 or Corollary 5.9] that

lim
z 6=z̃→z

x̂′(t, z̃; z̃ − z)− x̂′(t, z; z̃ − z)
‖z̃ − z‖

= 0.
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This shows that x̂(t, z) is semismooth at z for each t ∈ [0, 1].

Proposition 2.4.2. If ΠΩ is semimsooth at any point in Rm, then for any z ∈ R`, f̂(t, ·)

is semismooth at z for each t ∈ [0, 1]. In particular, this holds true if Ω is polyhedral.

Proof. Note that semimsoothness implies B-differentiability. Furthermore, f̂(t, ·) is clearly

semismooth in z on [0, t1]. Now assume that f̂(t, z) is semismooth in z for all t ∈ [0, tk].

By the induction hypothesis and (2.19), we see that for any fixed t ∈ [tk, tk+1], u∗(t, z)

is a composition of ΠΩ and a semismooth function of z. It follows from [23, Proposition

7.4.4] that u∗(t, ·) is semismooth at z for any t ∈ [tk, tk+1]. In light of Lemma 2.4.2,

f̂(t, ·) is semismooth at z on [tk, tk+1] and on [0, tk+1]. By the induction principle, f̂(t, ·)

is semismooth at z for each t ∈ [0, 1]. Finally, since Ω is polyhedral, ΠΩ is continuous

piecewise affine and hence (strongly) semismooth [23, Proposition 7.4.7].

It follows from the above results thatHy,n is a vector-valued B-differentiable function

(provided that ΠΩ(·) is directionally differentiable). To solve the equation Hy,n(z) = 0,

we consider a nonsmooth Newton’s method with line search in [53]; its (unique) solution

is the optimal initial state x∗0 that completely determines the smoothing spline f̂(t, x∗0).

It is worth pointing out that the original nonsmooth Newton’s method in [53] assumes

the existence of a direction vector d solving the equation Hy,n(z) + H ′y,n(z; d) = 0 for

any z. While this assumption is shown to be true for almost all z in Theorem 2.5.1,

it is highly difficult to show that this assumption holds for certain “degenerate” z; we

refer the reader to Section 2.5 for the definition of a degenerate z. To overcome this

difficulty, we show in Proposition 2.5.2 that a suitable small perturbation to a degenerate

z yields a non-degenerate vector for which the assumption is satisfied. This leads to a

modified nonsmooth Newton’s method for the constrained smoothing spline; we postpone
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the presentation of this modified algorithm to Section 2.5 after all essential technical

results are given. Moreover, it is noted that if f̂ is semismooth, other nonsmooth Newton’s

methods may be applied [23]. However, these methods require computing multiple limiting

Jacobians, which is usually numerically expensive. Alternatively, the modified nonsmooth

Newton’s method only requires computing directional derivatives (and a single Jacobian)

at a non-degenerate point.

Before ending this section, we show that for any given z∗ ∈ R`, the level set Sz∗ :=

{z ∈ R` : ‖Hy,n(z)‖ ≤ ‖Hy,n(z∗)‖} is bounded. This boundedness property will be critical

in the convergence analysis of the modified nonsmooth Newton’s method; see the proof of

Theorem 2.5.2.

We introduce some technical preliminaries first. Recall that the recession cone of a

closed convex set K in Rn is defined by K∞ := {d ∈ Rn |x + µd ∈ K, ∀µ ≥ 0} for some

x ∈ K. It is known [1] that in a finite dimensional space such as Rn, K∞ is equivalent to

the asymptotic cone of K defined by

{
d ∈ Rn | there exist 0 < µk →∞, xk ∈ K such that lim

k→∞

xk
µk

= d

}
.

Furthermore, K∞ is a closed convex cone, and K is bounded if and only if K∞ = {0}.

More properties of recession cones can be found in [1, Proposition 2.1.5]. We provide a

lemma pertaining to the Euclidean projection onto a recession cone as follows.

Lemma 2.4.3. Let Ω be a closed convex set in Rm, let (vk) be a sequence in Rm, and let

(µk) be a positive real sequence such that limk→∞ µk = ∞ and limk→∞
vk
µk

= d for some

d ∈ Rm. Then

lim
k→∞

ΠΩ(vk)

µk
= ΠΩ∞(d),
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where Ω∞ is the recession cone of Ω.

Proof. It follows from a similar argument as in [23, Lemma 6.3.13] that

lim
µ→∞

ΠΩ(µd)

µ
= ΠΩ∞(d).

Therefore, it suffices to show limk→∞
ΠΩ(vk)
µk

= limk→∞
ΠΩ(µkd)

µk
. Without loss of generality,

we let the vector norm ‖·‖ be the Euclidean norm. By virtue of the non-expansive property

of the Euclidean projector with respect to the Euclidean norm, we have

∥∥ΠΩ(vk)−ΠΩ(µkd)
∥∥

µk
≤
∥∥vk − µkd∥∥

µk
=

∥∥∥∥ vkµk − d
∥∥∥∥ −→ 0, as k →∞.

This shows the equivalence of the two limits, and hence completes the proof.

With the help of this lemma, we establish a boundedness result for level sets defined

by Hy,n. Recall that for a given z∗ ∈ R`, the level set Sz∗ := {z ∈ R` : ‖Hy,n(z)‖ ≤

‖Hy,n(z∗)‖}.

Proposition 2.4.3. Let Ω be a closed convex set in Rm. Given any {(ti, yi)} satisfying

the condition H.1, {wi}, λ > 0, and z∗ ∈ R` , the level set Sz∗ is bounded.

Proof. We prove the boundedness of Sz∗ by contradiction. Suppose not. Then there exists

a sequence (zk) in Sz∗ such that ‖zk‖ → ∞ as k →∞. Without loss of generality, we may

assume that (zk/‖zk‖) converges to v∗ ∈ R` with ‖v∗‖ = 1 by taking a suitable subsequence

of (zk) if necessary. Define the functions f̃ : [0, 1]×R` → Rp and ũ∗ : [0, 1]×R` → Rm as:

f̃(t, z) := CeAtz +

∫ t

0
CeA(t−s)Bũ∗(s, z) ds, and
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ũ∗(t, z) :=
ΠΩ∞(0), ∀ t ∈ [0, t1)

ΠΩ∞

(
λ−1

k∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, z)

)
, ∀ t ∈ [tk, tk+1), k = 1, . . . , n− 1,

where Ω∞ is the recession cone of Ω. Note that f̃ can be treated as the shape constrained

smoothing spline obtained from the linear control system Σ(A,B,C,Ω∞) for the given

ỹ := (ỹi)
n
i=1 = 0, i.e., when the control constraint set Ω is replaced by its recession cone

Ω∞ and y by the zero vector.

We claim that for each fixed t ∈ [0, 1],

lim
k→∞

f̂(t, zk)

‖zk‖
= f̃(t, v∗).

We prove this claim by induction on the intervals [tj , tj+1] for j = 0, 1, . . . , n− 1.

Consider the interval [0, t1] first. Recall that u∗(t, zk) = ΠΩ(0),∀ t ∈ [0, t1) such that

f̂(t, zk) = CeAtzk +
∫ t

0 Ce
A(t−s)BΠΩ(0)ds for all t ∈ [0, t1]. Hence, in view of ΠΩ∞(0) = 0

such that ũ∗(t, v
∗) = 0 and f̃(t, v∗) = CeAtv∗ for all t ∈ [0, t1], we have, for each fixed

t ∈ [0, t1],

lim
k→∞

f̂(t, zk)

‖zk‖
= lim

k→∞
CeAt

zk
‖zk‖

= CeAtv∗ = f̃(t, v∗).

Now suppose the claim holds true for all t ∈ [0, tj ] with j ∈ {1, . . . , n − 2}, and

consider [tj , tj+1]. Note that for each t ∈ [tj , tj+1),

u∗(t, z) = ΠΩ

(
λ−1

j∑
i=1

wi
(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
.
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By the induction hypothesis and the boundedness of CeA(ti−t)B on [tj , tj+1] for all i =

1, . . . , j, we have, for each fixed t ∈ [tj , tj+1),

lim
k→∞

λ−1
∑j

i=1wi
(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

)
‖zk‖

= λ−1
j∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, v

∗).

By Lemma 2.4.3, we further have, for each fixed t ∈ [ts, ts+1) with s ∈ {1, . . . , j},

lim
k→∞

u∗(t, zk)

‖zk‖
= lim

k→∞

ΠΩ

(
λ−1

∑s
i=1wi

(
CeA(ti−t)B

)T (
f̂(ti, z)− yi

))
‖zk‖

= ΠΩ∞

(
λ−1

s∑
i=1

wi
(
CeA(ti−t)B

)T
f̃(ti, v

∗)

)
= ũ∗(t, v

∗).

Clearly, ũ∗(·, v∗) is Lebesgue integrable and uniformly bounded on [tj , tj+1]. Therefore,

for each fixed t ∈ [tj , tj+1],

lim
k→∞

f̂(t, zk)

‖zk‖
= lim

k→∞

CeAtzk +

∫ t

0
CeA(t−s)Bu∗(s, zk) ds

‖zk‖

= lim
k→∞

CeAtzk
‖zk‖

+

∫ t

0
CeA(t−s)B

(
lim
k→∞

u∗(s, zk)

‖zk‖

)
ds

= CeAtv∗ +

∫ t

0
CeA(t−s)Bũ∗(s, v

∗) ds

= f̃(t, v∗),

where the second equality follows from the Lebesgue Dominated Convergence Theorem

[4, Theorem 5.6]. This establishes the claim by the induction principle.

In light of the claim and the definition of Hy,n in (2.18), we hence have

lim
k→∞

Hy,n(zk)

‖zk‖
=

n∑
i=1

wi
(
CeAti

)T
f̃(ti, v

∗) = H̃ỹ,n(v∗)
∣∣
ỹ=0

,
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where H̃ỹ,n : R` → R` (with ỹ = (ỹi)
n
i=1) is defined by

H̃ỹ,n(z) :=
n∑
i=1

wi
(
CeAti

)T(
f̃(ti, z)− ỹi

)
.

Since the smoothing spline f̃ is obtained from the linear control system Σ(A,B,C,Ω∞),

and the recession cone Ω∞ contains the zero vector, it is easy to verify that when ỹ = 0,

the optimal solution pair (ũ∗, x̃
∗
0) for f̃(t, x̃∗0) is x̃∗0 = 0 and ũ∗(t, x̃

∗
0) ≡ 0 on [0, 1] (such that

f̃(t, x̃∗0) ≡ 0 on [0, 1]). Based on Lemma 2.4.1, we deduce that the equation H̃0,n(z) = 0

has a unique solution z = 0. Since v∗ 6= 0, we must have H̃0,n(v∗) 6= 0. Consequently,

lim
k→∞

‖Hy,n(zk)‖
‖zk‖

=
∥∥H̃0,n(v∗)

∥∥ > 0.

This shows that ‖Hy,n(z)‖ is unbounded on Sz∗ , which yields a contradiction.

2.5 The Modified Nonsmooth Newton’s Method: Algorithm and Con-

vergence Analysis

In this section, we study the modified nonsmooth Newton’s method and its global

convergence. In particular, we focus on the case where the control constraint set Ω is

polyhedral for the following reasons: (i) the class of polyhedral Ω is already very broad

and includes a number of important applications; (ii) since any closed convex set is the

intersection of all closed half-spaces containing it, such a set can be accurately approxi-

mated by a polyhedron; (iii) when Ω is polyhedral, ΠΩ is globally B-differentiable, while

this is not the case for a non-polyhedral Ω, unless certain constraint qualifications are

imposed globally. Furthermore, for a non-polyhedral Ω, the directional derivatives of ΠΩ

are difficult to characterize and compute.
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Let Ω = {w ∈ Rm |Dw ≥ b} be a polyhedron with D ∈ Rr×m and b ∈ Rr. Propo-

sition 2.3.1 shows that ΠΩ : Rm → Rm is a (Lipschitz) continuous and piecewise affine

(PA) function. It follows from (2.19) that for t ∈ [tk, tk+1) with k = 1, 2, . . . , n − 1,

Bu∗(t, z) = BΠΩ

(
BT e−A

T tvk(z)
)
, where

vk(z) := λ−1
k∑
i=1

wi
(
CeAti

)T (
f̂(ti, z)− yi

)
∈ R`. (2.20)

Define the function F : R` → R` as F := B◦ΠΩ◦BT , which is also Lipschitz continuous and

piecewise affine. It follows from the theory of piecewise smooth functions (e.g., [63]) that

such a function admits an appealing geometric structure for its domain, which provides an

alternative representation of the function. Specifically, let Ξ be a finite family of polyhedra

{Xi}m∗i=1, where each Xi := { v ∈ R` | Giv ≥ hi } for a matrix Gi and a vector hi. We call

Ξ a polyhedral subdivision of R` [23, 63] if

(a) the union of all polyhedra in Ξ is equal to R`, i.e.,
⋃m∗
i=1Xi = R`,

(b) each polyhedron in Ξ has a nonempty interior (thus is of dimension `), and

(c) the intersection of any two polyhedra in Ξ is either empty or a common proper face

of both polyhedra, i.e., Xi ∩ Xj 6= ∅ =⇒
[
Xi ∩ Xj = Xi ∩ {v | (Giv − hi)α = 0} =

Xj∩{v | (Gjv−hj)β = 0} for nonempty index sets α and β with Xi∩{v | (Giv−hi)α =

0} 6= Xi and Xj ∩ {v | (Gjv − hj)β = 0} 6= Xj
]
.

For a Lipschitz PA function F , one can always find a polyhedral subdivision of R`

and finitely many affine functions gi(v) ≡ Eiv + li such that F coincides with one of the

gi’s on each polyhedron in Ξ [23, Proposition 4.2.1] or [63]. Therefore, an alternative
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representation of F is given by

F (v) = Eiv + li, ∀ v ∈ Xi, i = 1, . . . ,m∗,

and v ∈ Xi ∩ Xj =⇒ Eiv + li = Ejv + lj .

Given v ∈ R`, define the index set I(v) := {i | v ∈ Xi}. Moreover, given a direction

vector d̃ ∈ R`, there exists j ∈ I(v) (dependent on d̃) such that F ′(v; d̃) = Ej d̃. (A

more precise characterization of the directional derivative of the Euclidean projection is

defined by the critical cone [23, Theorem 4.1.1], which shows that for a fixed v, F ′(v; d̃) is

continuous and piecewise linear (PL) in d̃.) In view of this and (2.19), we have that, for

each fixed t ∈ [tk, tk+1) with k = 1, . . . , n − 1, there exists j ∈ I(e−A
T tvk(z)) (dependent

on d) such that

Bu′∗(t, z; d) = Eje
−AT tv′k(z; d), where v′k(z; d) = λ−1

k∑
i=1

wi
(
CeAti

)T
f̂ ′(ti, z; d).

(2.21)

For each fixed t, the matrix Ej not only depends on z, which is usually known, but also

depends on the direction vector d that is unknown a priori in a numerical algorithm. This

leads to great complexity and difficulty in solving the equation Hy,n(z) + H ′y,n(z; d) = 0

for a given z, where d is the unknown. In what follows, we identify an important case

where e−A
T tvk(z) is in the interior of some polyhedron Xj such that the matrix Ej relies

on z (and t) but is independent of d.

For notational convenience, define

q(t, v) := e−A
T tv, v ∈ R`,
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which satisfies the linear ODE: q̇(t, v) = −AT q(t, v). For a polyhedron Xi = {v |Giv ≥ hi}

in Ξ, define

Yi := {v ∈ R` | (Giv − hi, Gi(−AT )v,Gi(−AT )2v, . . . , Gi(−AT )`v) < 0},

where < denotes the lexicographical nonnegative order. For a given v ∈ R`, let the index

set J (v) := {i | v ∈ Yi}. Clearly, J (v) ⊆ I(v) for any v. Furthermore, given a t∗,

q(t, v) ∈ Xi for all t ∈ [t∗, t∗ + ε] for some ε > 0 if and only if q(t∗, v) ∈ Yi. We introduce

more concepts as follows.

Definition 2.5.1. Let q(t, v) and a time t∗ be given. If J (q(t∗, v)) 6= I(q(t∗, v)), then

we call t∗ a critical time along q(t, v) and its corresponding state q(t∗, v) a critical state.

Furthermore, if there exist ε > 0 and a polyhedron Xi in Ξ such that q(t, v) ∈ Xi, ∀ t ∈

[t∗ − ε, t∗ + ε], then we call t∗ a non-switching-time along q(t, v); otherwise, we call t∗ a

switching time along q(t, v).

It is known that a switching time must be a critical time but not vice versa [65].

Furthermore, a critical state must be on the boundary of a polyhedron in Ξ. The following

result, which is a direct consequence of [65, Proposition 7], presents an extension of the

so-called non-Zenoness of piecewise affine or linear systems (e.g., [9, 54, 66, 68]).

Proposition 2.5.1. Consider q(t, v) and a compact time interval [t∗, t∗+T ] where T > 0.

Then there are finitely many critical times on [t∗, t∗+ T ] along q(t, v). Particularly, there

exists a partition t∗ = t̂0 < t̂1 < · · · < t̂M−1 < t̂M = t∗ + T such that for each i =

0, 1, . . . ,M − 1, I(q(t, v)) = J (q(t, v)) = J (q(t′, v)), ∀ t ∈ (t̂i, t̂i+1) for any t′ ∈ (t̂i, t̂i+1).

It follows from the above proposition that for any given v, there are finitely many

critical times on the compact time interval [tk, tk+1] along q(t, v), where k ≥ 1. We call
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q(t, v) non-degenerate on [tk, tk+1] if, for any two consecutive critical times t̂j and t̂j+1 on

[tk, tk+1], there exists an index i∗ (dependent on (t̂j , t̂j+1)) such that I(q(t, v)) = {i∗} for

all t ∈ (t̂j , t̂j+1). In other words, q(t, v) is non-degenerate if it is in the interior of some

polyhedron of Ξ on the entire (t̂j , t̂j+1).

We introduce more notation and assumptions. First, it is clear that there ex-

ist constants ρ1 > 0 and ρ2 > 0 such that ‖CeA(t−s)‖∞ ≤ ρ1 for all t, s ∈ [0, 1] and

maxi∈{1,...,m∗} ‖Ei‖∞ ≤ ρ2. In addition, we assume that

H.2 there exist constants ρt > 0 and µ ≥ ν > 0 such that for all n,

max
0≤i≤n−1

|ti+1 − ti| ≤
ρt
n
,

ν

n
≤ wi ≤

µ

n
, ∀ i.

Theorem 2.5.1. Let Ω be a polyhedron in Rm. Assume that H.1 −H.2 hold and λ ≥

µ2ρ2
1ρ2ρt/(4ν). Given z ∈ R`, let vk(z) be defined as in (2.20). Suppose that q(t, vk(z)) =

e−A
T tvk(z) is non-degenerate on [tk, tk+1] for each k = 1, 2 . . . , n− 1. Then there exists a

unique direction vector d ∈ R` satisfying Hy,n(z) +H ′y,n(z; d) = 0.

Proof. It follows from the non-degeneracy of q(t, vk(z)) and Proposition 2.5.1 that, for

the given z and each [tk, tk+1] with k = 1, . . . , n − 1, there exists a partition tk = t̂k,0 <

t̂k,1 < · · · < t̂k,Mk−1 < t̂k,Mk
= tk+1 such that for each j = 0, . . . ,Mk − 1, q(t, vk(z)) is

in the interior of some polyhedron of Ξ for all t ∈ (t̂k,j , t̂k,j+1). It is easy to show via

the continuity of f̂(t, z) in z that for each open interval (t̂k,j , t̂k,j+1), there exists a matrix

Ek,j ∈ {E1, . . . , Eq} such that for all t ∈ (t̂k,j , t̂k,j+1), Bu′∗(t, z; d) = Ek,je
−AT tv′k(z; d).

Letting w̃i := wi/λ, i = 1, . . . , n and by (2.21), we have, for r ≥ k + 1,

∫ tk+1

tk

CeA(tr−s)Bu′∗(s, z; d)ds
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=

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

 e−A
T sv′k(z; d)ds

=

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

 e−A
T s

k∑
i=1

w̃i
(
CeAti

)T
f̂ ′(ti, z; d)ds

=
k∑
i=1

w̃i


∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

(CeA(ti−s)
)T
ds

 f̂ ′(ti, z; d)

=
k∑
i=1

w̃i V(r,k,i),z f̂
′(ti, z; d),

where, for each i = 1, . . . , k,

V(r,k,i),z :=

∫ tk+1

tk

CeA(tr−s)

Mk−1∑
j=0

Ek,j · I[t̂k,j ,t̂k,j+1]

(CeA(ti−s)
)T
ds ∈ Rp×p.

Note that for a fixed triple (r, k, i), V(r,k,i),z depends on z only and r > k ≥ i ≥ 1. For

r > i ≥ 1, define W(r,i),z := w̃i
∑r−1

j=i V(r,j,i),z. Therefore, for each k = 1, . . . , n− 1,

f̂ ′(tk+1, z; d) = CeAtk+1d+

k∑
j=1

∫ tj+1

tj

CeA(tk+1−s)Bu′∗(s, z; d)ds

= CeAtk+1d+

k∑
j=1

j∑
i=1

w̃i V(k+1,j,i),z f̂
′(ti, z; d)

= CeAtk+1d+

k∑
i=1

W(k+1,i),z f̂
′(ti, z; d).

In what follows, we drop z in the subscript of W for notational simplicity. In view of

f̂ ′(t1, z; d) = CeAt1d, it can be shown via induction that for each k = 2, . . . , n,

f̂ ′(tk, z; d)

= CeAtkd+W(k,k−1)Ce
Atk−1d+

(
W(k,k−2) +W(k,k−1)W(k−1,k−2)

)
CeAtk−2d

+ · · · · · · + · · · · · ·
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+

(
W(k,1) +W(k,s)W(s,1) +

k−1∑
s1=3

s1−1∑
s2=2

W(k,s1)W(s1,s2)W(s2,1) + · · ·

· · · · · · · · · +W(k,k−1)W(k−1,k−2) · · ·W(3,2)W(2,1)

)
CeAt1d

=

k∑
j=1

W̃(k,j)Ce
Atjd,

where the matrices W̃(k,j) of order p are defined in terms of W(k,s) as shown above.

For a given r ∈ {1, . . . , n}, define

Cr :=



CeAt1

CeAt2

...

CeAtr


∈ Rrp×`, and

Wr := diag(w1Ip, . . . , wrIp)



Ip

W̃(2,1) Ip

W̃(3,1) W̃(3,2) Ip

...
...

. . .
. . .

W̃(r,1) W̃(r,2) · · · W̃(r,r−1) Ip


∈ Rrp×rp, (2.22)

where Ip is the identity matrix of order p and Wr depends on z but is independent of

d. Hence, the directional derivative of
∑r

i=1wi(Ce
Ati)T

(
f̂(ti, z)− yi

)
along the direction

vector d is given by

r∑
i=1

wi
(
CeAti

)T
f̂ ′(ti, z; d) = CT

r Wr Cr d.
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Clearly, Wr is invertible for any r, and it can be easily verified via the property of W̃(k,j)

that

W−1
r =



Ip

−W(2,1) Ip

−W(3,1) −W(3,2) Ip

...
...

. . .
. . .

−W(r,1) −W(r,2) · · · −W(r,r−1) Ip


diag(w−1

1 Ip, . . . , w
−1
r Ip).

Moreover, define the symmetric matrix

Vr :=
1

2

(
W−1

r +
(
W−1

r

)T)
=



Ip
w1

−W(2,1)

2w1
−W(3,1)

2w1
· · · −W(r,1)

2w1

−W(2,1)

2w1

Ip
w2

−W(3,2)

2w2
· · · −W(r,2)

2w2

−W(3,1)

2w1
−W(3,2)

2w2

Ip
w3

. . .
...

...
...

. . .
. . . −W(r,r−1)

2wr−1

−W(r,1)

2w1
−W(r,2)

2w2
· · · −W(r,r−1)

2wr−1

Ip
wr


.

It follows from assumption H.2 that maxi w̃i ≤ µ/(λn) and that for any 1 ≤ j < k,

‖W(k,j)‖∞ ≤
µ

λn

∫ tk

tj

ρ2
1ρ2dτ ≤

µρ2
1ρ2

λn
· ρt(k − j)

n
.

Furthermore, we deduce from H.2 that maxi,j
wi
wj
≤ µ/ν. Therefore, for any fixed k =

1, . . . , n,

wk

(
k−1∑
i=1

∥∥∥W(k,i)

2wi

∥∥∥
∞

+

n∑
i=k+1

∥∥∥W(i,k)

2wk

∥∥∥
∞

)
≤ µ2ρ2

1ρ2ρt
2λν n2

(
k−1∑
i=1

(k − i) +

n∑
i=k+1

(i− k)

)

≤ µ2ρ2
1ρ2ρt

2λν n2

n−1∑
i=1

i ≤ µ2ρ2
1ρ2ρt (n− 1)

4λν n
< 1,
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where the last inequality follows from the assumption on λ. This implies that the symmet-

ric matrix Vr is strictly diagonally dominant for any r. Hence, for each r, Vr is positive

definite, so are W−1
r and Wr (although not symmetric).

Finally, note that H ′y,n(z; d) = CT
n Wn Cn d, and Cn has full column rank, in light

of the assumption H.1. Consequently, CT
n Wn Cn is positive definite such that the unique

direction vector d = −
(
CT
n Wn Cn

)−1
Hy,n(z) solves the equation Hy,n(z) + H ′y,n(z; d) =

0.

The above result relies on the critical non-degenerate property of q(t, vk(z)). In

what follows, we consider the case where q(t, vk(z)) is degenerate on some sub-interval of

[tk, tk+1]. Geometrically, this implies that the trajectory of q(t, vk(z)) travels on a face

of a polyhedron in Ξ for some time. It shall be shown that under mild assumptions, a

suitable small perturbation of z will lead to a non-degenerate trajectory. Recall that each

polyhedron Xi in the polyhedral subdivision Ξ is defined by the matrix Gi ∈ Rmi and

the vector hi ∈ Rmi . Since each Xi has non-empty interior, we assume, without loss of

generality, that for each j = 1, . . . ,mi, the set {v ∈ Xi | (Giv − hi)j = 0} represents a

(unique) facet of Xi (i.e., a (` − 1)-dimensional face of Xi) [63, Proposition 2.1.3], where

(Gi)j• denotes the jth row of Gi and satisfies ‖(Gi)Tj•‖2 = 1.

Proposition 2.5.2. Let Ω be a polyhedron in Rm. For a given z ∈ R`, suppose that

q(t, vk(z)) is degenerate on the interval [tk, tk+1] for some k ∈ {1, . . . , n− 1}, where vk(z)

is defined in (2.20). Assume that (C,A) is an observable pair, H.1 − H.2 hold, and

λ ≥ µ2ρ2
1ρ2ρt/(4ν). Then for any ε > 0, there exists d ∈ R` with 0 < ‖d‖ ≤ ε such that

q(t, vk(z + d)) is non-degenerate on [tk, tk+1] for each k = 1, . . . , n− 1.
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Proof. Fix ε > 0. Define the set of vector-scalar pairs that represent all the facets of the

polyhedra in Ξ:

S :=
{(

(Gi)
T
j•, (hi)j

)
| i = 1, . . . ,m∗, j = 1, . . . ,mi

}
.

Note that if q(t, vk(z)) is degenerate on [tk, tk+1] for some k, then there exist a pair

(g, α) ∈ S and an open subinterval T ⊂ [tk, tk+1] such that gT q(t, vk(z)) − α = 0 for all

t ∈ T , which is further equivalent to gT q(t, vk(z)) − α = 0 for all t ∈ [tk, tk+1] in view

of q(t, vk(z)) = e−A
T tvk(z). Therefore, we define for each k ∈ {1, . . . , n − 1}, Sz,k,D :=

{(g, α) ∈ S | gT q(t, vk(z)) = α, ∀ t ∈ [tk, tk+1]}.

Let k1 be the smallest k such that Sz,k,D is nonempty (or equivalently q(t, vk(z)) is

degenerate on [tk, tk+1]). Clearly, k ≥ 1. Since q(t, vk(z)) is non-degenerate on [tk, tk+1]

for each k = 1, . . . , k1−1, it follows from a similar argument in the proof of Theorem 2.5.1

that v′k1
(z; d) = λ−1CT

k1
Wk1,z Ck1 d, where we write Wk1 as Wk1,z to emphasize its

dependence on z (but independent of d). Consider the following two cases:

(i) (g, α) ∈ Sz,k1,D. It follows from the B-differentiability of vk1(·) that q(t, vk1(z+d)) =

q(t, vk1(z)) + q
(
t, v′k1

(z; d) + o(‖d‖)
)

for each t ∈ [tk1 , tk1+1] [23, Proposition 3.1.3].

Therefore, using the fact that ‖g‖2 = 1, we have for each t ∈ [tk1 , tk1+1],

gT q(t, vk1(z + d))− α =
(
gT q(t, vk1(z))− α

)
+ gT q

(
t, v′k1

(z; d) + o(‖d‖)
)

= gT q
(
t, v′k1

(z; d)
)

+ o(‖d‖).
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Furthermore, under H.2 and the assumption on λ, it is shown in Theorem 2.5.1 that

Wk1,z is positive definite. Let the observability matrix

Vg :=



gT

gTAT

...

gT (AT )`−1


∈ R`×`.

Since gT q(t, v′k1
(z; d)) = gT e−A

T tCT
k1

Wk1,z Ck2 d, we see that gT q(t, v′k1
(z; d)) is

nonvanishing on [tk1 , tk1+1] if and only if d /∈ Ker(VgC
T
k1

Wk1,z Ck1). Since g is

nonzero, Wk1,z is positive definite, and (C,A) is an observable pair, it is easy to show

that VgC
T
k1

Wk1,z Ck1 6= 0 such that Ker(VgC
T
k1

Wk1,z Ck1) is a proper subspace of

R`. Hence there exists a scalar τ > 0 such that for any d /∈ Ker(VgC
T
k1

Wk1,z Ck1)

with 0 < ‖d‖ ≤ τ , gT q(t, v′k1
(z; d)), and thus gT q(t, vk1(z + d))− α, is nonvanishing

on [tk1 , tk1+1], which further implies that gT q(t, vk1(z + d))− α has at most finitely

many zeros on [tk1 , tk1+1].

(ii) (g, α) ∈ S\Sz,k1,D. This means that there exists t∗ ∈ [tk1 , tk1+1] such that gT q(t∗, vk1(z+

d)) − α 6= 0. Due to the continuity of vk1(z), we see that there exists τ > 0

such that if ‖d‖ ≤ τ , then gT q(t∗, vk1(z + d)) − α 6= 0, which also implies that

gT q(t, vk1(z + d)) − α has at most finitely many zeros on [tk1 , tk1+1]. Similarly, we

see that for each k = 1, . . . , k1 − 1 and each (g, α) ∈ S, gT q(t, vk(z + d))− α has at

most finitely many zeros on [tk1 , tk1+1].

By virtue of the finiteness of S and the above results, we obtain a finite union of

proper subspaces of R` denoted by S and a constant η > 0 such that for each (g, α) ∈ S
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and any d 6∈ S with 0 < ‖d‖ ≤ η, gT q(t, vk(z + d))− α has at most finitely many zeros on

[tk, tk+1] for each k = 1, . . . , k1. Since gT q(t, vk(z + d)) − α 6= 0 for all but finitely many

times in [tk, tk+1] with k = 1, . . . , k1 for all (g, α) ∈ S, we conclude that except finitely

many times in [tk, tk+1], q(t, vk(z+ d)) must be in the interior of some polyhedron in Ξ at

each t ∈ [tk, tk+1], where k = 1, . . . , k1 . This shows that q(t, vk(z + d)) is non-degenerate

on [tk, tk+1] for each k = 1, . . . , k1. In particular, we can choose a nonzero vector d1 with

‖d1‖ ≤ ε/n satisfying this condition.

Now define z̃ 1 := z+d1, and let k2 be the smallest k such that Sz̃ 1,k,D is nonempty.

Clearly, k2 ≥ k1 + 1. By replacing z with z̃ 1 in the preceding proof, we deduce via a

similar argument that there exists a nonzero vector d2 with ‖d2‖ ≤ min(ε/n, ‖d1‖/4) such

that q(t, vk(z̃
1 + d2)) is non-degenerate on [tk, tk+1] for each k = 1, . . . , k2. Continuing

this process and using induction, we obtain at most (n − 1) nonzero vectors dj with

‖dj‖ ≤ min(ε/n, ‖d1‖/2j) for j ≥ 2 and d∗ :=
∑

j d
j such that q(t, vk(z + d∗)) is non-

degenerate on [tk, tk+1] for each k = 1, . . . , n − 1. Obviously ‖d∗‖ ≤ ε. Furthermore, by

virue of ‖
∑

j≥2 d
j‖ ≤ ‖d1‖/2, we conclude that d∗ 6= 0.

We are now ready to present the modified nonsmooth Newton’s algorithm. Let

the merit function g : R` → R+ be given by g(z) := 1
2H

T
y,n(z)Hy,n(z). Then g is B-

differentiable and g′(z; d) = HT
y,n(z)H ′y,n(z; d). The numerical procedure of this algorithm

is described in Algorithm 1.

Finally, we establish the global convergence of Algorithm 1 under suitable assump-

tions.

Theorem 2.5.2. Let Ω be a polyhedron in Rm. If (C,A) is an observable pair, the

assumptions in Theorem 2.5.1 hold, and lim infk β
mk > 0, then the sequence (zk) generated

by Algorithm 1 has an accumulation point that is a solution to the equation Hy,n(z) = 0.
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Algorithm 1 Modified Nonsmooth Newton’s Method with Line Search

Choose scalars β ∈ (0, 1) and γ ∈ (0, 1
2);

Initialize k = 0 and choose an initial vector z0 ∈ R` such that q(t, vj(z
0)) is non-

degenerate on each [tj , tj+1];
repeat
k ← k + 1;
Find a direction vector dk such that Hy,n(zk−1) +H ′y,n(zk−1; dk) = 0;

Let mk be the first nonnegative integer m for which g(zk−1) − g(zk−1 + βmk d
k) ≥

−γβmk g′(zk−1; dk);
zk ← zk−1 + βmkdk;
if q(t, vj(z

k)) is degenerate on some [tj , tj+1] then
Choose d ′ ∈ R` with sufficiently small ‖d ′‖ > 0 such that q(t, vj(z

k + d ′)) is non-
degenerate on each [tj , tj+1];
zk ← zk + d ′;

end if
until g(zk) is sufficiently small
return zk

Proof. Let (zk) be a sequence generated by Algorithm 1 from an initial vector z0 ∈ R`; the

existence of (zk) is due to Theorem 2.5.1 and Proposition 2.5.2. Without loss of generality,

we assume that Hy,n(zk) 6= 0 for each k. Letting d ′ be the perturbation vector in the

algorithm in case of degeneracy, we have g(zk−1)−g(zk−d ′) ≥ σβmk‖Hy,n(zk−d ′)‖22. Since

‖d ′‖ can be arbitrarily small and Hy,n and g are continuous, it follows from an argument

similar to that in the proof of [53, Theorem 4] that g(zk−1)−g(zk) ≥ σβmk
(
‖Hy,n(zk)‖22 +

o(‖Hy,n(zk)‖22)
)

. Hence,
(
g(zk)

)
is a nonnegative and strictly decreasing sequence. This

also shows, in view of Proposition 2.4.3, that the sequence (zk) is bounded and thus has an

accumulation point. Furthermore,
(
g(zk)

)
converges and limk→∞(βmk‖Hy,n(zk)‖22 +εk) =

0, where each |εk| is arbitrarily small by choosing small ‖d ′‖. (For example, |εk| can be

of order o(‖Hy,n(zk)‖22) by choosing a suitable d ′.) Hence, if lim infk β
mk > 0, then

an accumulation point of (zk) is the desired solution to the B-differentiable equation

Hy,n(z) = 0.
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2.6 Numerical Examples

In this section, three nontrivial numerical examples are given to demonstrate the

performance of the shape constrained smoothing spline and the proposed nonsmooth New-

ton’s method. Recall the inductive procedure for computing u∗(t, x
∗
0) and f̂(t, x∗0) from

the discussion following Corollary 2.3.1. For a given z ∈ R`, we may compute u∗(t, z) and

f̂(t, z) on [tk, tk+1) and [tk, tk+1] respectively using the same process. Additionally, given

f̂(ti, z) for i = 1, . . . , k, we may numerically represent u∗(t, z) on [tk, tk+1] by (i) comput-

ing u∗(t, z) at a discrete set of points between tk and tk+1, in order to determine where

u∗(t, z) crosses the boundary of Ω, and (ii) representing u∗(t, z) analytically between the

points at which we determine it crosses the boundary. We then compute f̂(tk+1, z) given

this representation of u∗(t, z) analytically using (2.17), where we replace x∗0 with z. This

procedure is used to compute u∗(t, z) and f̂(t, z) when the nonsmooth Newton’s method

is implemented for each of these numerical examples.

In the following examples, the underlying true function f : [0, 1] → R is defined by

A ∈ R2×2, B = (0, 1)T , C = (1, 0), a true initial state x0, and a true control function

u ∈ L2([0, 1],R) with the control constraint set Ω ⊂ R. The sample data (yi) is generated

by yi = f(ti) + εi, where (εi) is an iid zero mean random error with variance σ2. The

weights wi are chosen as wi = 1/n for each i = 1, . . . , n in all cases. Furthermore, different

choices of (possibly unevenly spaced) design points (ti) are considered in order to illustrate

flexibility of the proposed algorithm.

In what follows, the true underlying function f , the corresponding matrix A, the true

control u, the design points ti, the true initial state x0, the guess of the initial condition z0

in the algorithm, the variance σ, and the penalty parameter λ are given for each example.
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It is easy to verify that (C,A) is an observable pair, and that the assumptions H.1 and

H.2 hold in each example.

Example 2.6.1. The convex constraint with unevenly spaced design points:

f(t) =
(

4
3 t

3 − t+ 1
)
· I[0, 1

2
) +
(
− 8

3 t
3 + 6t2 − 4t+ 3

2

)
· I[ 1

2
, 3
4

) +
(

1
2 t+ 3

8

)
· I[ 3

4
,1],

A =

0 1

0 0

, x0 = (1,−1)T , u(t) = 8t · I[0, 1
2

) + (12− 16t) · I[ 1
2
, 3
4

),

Ω = [0,∞), z0 = (2, 3)T , σ = 0.1, λ = 10−4, and the design points
(
ti
)n
i=0

=

{
0,

1

2n
, . . . ,

1

20
,

1

20
+

4

3n
, . . . ,

9

20
,

9

20
+

1

2n
, . . . ,

11

20
,
11

20
+

1

2n
, . . . ,

19

20
,
19

20
+

1

2n
, . . . , 1

}
.

Example 2.6.2. The unbounded control constraint with unevenly spaced designed points:

f(t) =



11.610t(e−t + e−2t)− 27.219e−t + 25.219e−2t + 2 if t ∈ [0, 1
4)

−6.234e−t + 3.257e−2t + 3 if t ∈ [1
4 ,

1
2)

−11.610t(e−t + e−2t) + 18.222e−t − 21.692e−2t + 3 if t ∈ [1
2 ,

3
4)

−3.345e−t + 1.306e−2t + 2 if t ∈ [3
4 , 1]

A =

 0 1

−2 −3

, x0 = (7/2,−7)T , u(t) =



23.219(e−t − e−2t) + 8 if t ∈ [0, 1
4)

12 if t ∈ [1
4 ,

1
2)

−38.282e−t + 63.117e−2t + 6 if t ∈ [1
2 ,

3
4)

8 if t ∈ [3
4 , 1]

Ω = [8,∞), z0 = (0, 1/2)T , σ = 0.2, λ = 10−4, and the design points

(
ti
)n
i=0

=
{

0,
1

2n
,

2

2n
, . . . ,

1

20
,

1

20
+

9

8n
, . . . ,

19

20
,
19

20
+

1

2n
, . . . , 1

}
.
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Figure 2.1: Left column: spline performance of Examples 2.6.1 (top), 2.6.2 (middle), and
2.6.3 (bottom); right column: the corresponding control performance of Examples 2.6.1–
2.6.3.

Example 2.6.3. The bounded control constraint with evenly spaced designed points:

f(t) =
(

4
3 t

3 + t2
)
· I[0, 1

2
) +
(
− 8

3 t
3 + 7t2 − 3t+ 1

2

)
· I[ 1

2
, 3
4

) +
(
t2 + 3

2 t−
5
8

)
· I[ 3

4
,1],

A =

0 1

0 0

, x0 = (0, 0)T , u(t) = (8t+ 2) · I[0, 1
2

) + (14− 16t) · I[ 1
2
, 3
4

) + 2 · I[ 3
4
,1],

Ω = [2, 6], z0 = (2, 3)T , σ = 0.3, λ = 10−4, and evenly spaced design points ti = i
n .

The proposed nonsmooth Newton’s algorithm is used to compute the shape con-

strained smoothing splines for the three examples. In all cases, we choose β = 0.25 and

γ = 0.1 in Algorithm 1 with the terminating tolerance as 10−6. The numerical results for

Example 2.6.1 with n = 50, Example 2.6.2 with n = 25, and Example 2.6.3 with n = 25
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Table 2.1: Number of Iterations to Convergence for Nonsmooth Newton’s Method

sample size min max mean median

Example 1
n = 25 4 58 24.9 26
n = 50 3 40 28.3 30
n = 100 4 44 30.1 32

Example 2
n = 25 2 159 26.8 15
n = 50 2 127 25.7 17
n = 100 2 117 25.0 17

Example 3
n = 25 1 51 12.6 9
n = 50 1 67 17.3 13
n = 100 4 67 22.2 19

are displayed in Figure 2.1. For comparison, the unconstrained smoothing splines are also

shown in Figure 2.1. The number of iterations for numerical convergence of the proposed

nonsmooth Newton’s algorithm ranges from a single digit to 160 with the median be-

tween 9 and 34 (depending on system parameters, sample data and size, and initial state

guesses). A more detailed description for the number of iterations to convergence for 200

different numerical simulations is given in Table 2.1. It is observed that the proposed

nonsmooth Newton’s algorithm converges superlinearly overall.

To further compare the performance of constrained smoothing splines and uncon-

strained smoothing splines, simulations were run 200 times, and the average performance

over these simulations was recorded in each case. Three performance metrics are consid-

ered, namely, the L2-norm, the L∞-norm, and the 2-norm of the difference between the

true and computed initial conditions. Table 2.2 summarizes the spline performance of the

two splines for different sample sizes, where f̂ denotes the computed smoothing splines

and x̂0 denotes the computed initial condition. It is seen in the above examples that the

shape constrained smoothing spline usually outperforms its unconstrained counterpart. It

should be pointed out that the performance of shape constrained smoothing splines criti-
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Table 2.2: Performance of Constrained (constr.) Splines vs. Unconstrained Splines

‖f − f̂‖L2 ‖f − f̂‖L∞ ‖x0 − x̂0‖2
Example sample size constr. unconstr. constr. unconstr. constr. unconstr.

Ex. 2.6.1
n = 25 0.00696 0.00723 0.06809 0.07216 0.25985 0.30825
n = 50 0.00351 0.00362 0.04971 0.05218 0.19141 0.22549
n = 100 0.00177 0.00180 0.03487 0.03588 0.14021 0.15958

Ex. 2.6.2
n = 25 0.01302 0.01492 0.12639 0.15609 0.76778 1.45583
n = 50 0.00704 0.00791 0.09998 0.12474 0.70899 1.41832
n = 100 0.00387 0.00436 0.08048 0.10519 0.75410 1.54277

Ex. 2.6.3
n = 25 0.01728 0.02138 0.16761 0.22974 0.44519 0.97093
n = 50 0.00912 0.01074 0.13525 0.16891 0.36184 0.67901
n = 100 0.00463 0.00531 0.09601 0.12063 0.31549 0.61803

cally depends on the penalty parameter λ, the weights wi, the control constraint set Ω, and

the function class that the true function belongs to. Detailed discussions of performance

issues will be addressed in the future.

2.7 Summary

Smoothing splines subject to general linear dynamics and control constraints are

studied. Such constrained smoothing splines are formulated as finite-horizon constrained

optimal control problems with unknown initial state and control. Optimality conditions

are derived using Hilbert space methods and variational techniques. To compute the

constrained smoothing splines, the optimality conditions are converted to a nonsmooth

B-differentiable equation, and a modified nonsmooth Newton’s algorithm with line search

is proposed to solve the equation. Detailed convergence analysis of this algorithm is given

for a polyhedral control constraint, and numerical examples demonstrate the effectiveness

of the algorithm.
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CHAPTER III

Nonnegative Derivative Constrained B-spline Estimator:

Uniform Lipschitz Property

The next three chapters, i.e., Chapters III–V, are devoted to the nonparametric

estimation of functions subject to nonnegative derivative constraints. Moreover, attention

is given to the asymptotic performance (measured using the supremum-norm) of a certain

constrained B-spline estimator. In Chapter III, a critical uniform Lipschitz property is

established for this estimator; this uniform Lipschitz property is crucial in the study of the

constrained B-spline estimator performance analysis. Chapter IV provides asymptotic up-

per bounds on the estimator bias and stochastic error via the uniform Lipschitz property;

asymptotic lower bounds on the estimator bias are also given for certain order derivative

constraints. In Chapter V, a minimax asymptotic lower bound in the supremum norm is

established for a family of nonparametric constrained estimation problems. The combina-

tion of the upper bounds on the estimator performance developed in Chapter IV together

with the minimax lower bounds established in Chapter V demonstrate that under certain

conditions, the asymptotic performance of the constrained B-spline estimator is optimal.
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3.1 Introduction

B-splines are a popular tool in approximation and estimation theory [14, 17]. Non-

negative derivative constraints on a B-spline estimator can be easily imposed on spline

coefficients, which can then be efficiently computed via quadratic programs. In spite of

this numerical simplicity, the asymptotic analysis of constrained B-spline estimators is far

from trivial, and requires a deep understanding of the mapping from a (weighted) sample

data vector to the corresponding B-spline coefficient vector. As the sample size increases

and tends to infinity, an infinite family of size-varying piecewise linear functions arises. A

critical uniform Lipschitz property states that these size-varying piecewise linear mappings

share a uniform Lipschitz constant under the `∞-norm, independent of the sample size

and the number of knots; this property leads to many important results in asymptotic

analysis [80]. In this chapter, we demonstrate that this uniform Lipschitz property holds

for B-splines with nonnegative derivative constraints of arbitrary order.

The chapter is organized as follows. In Section 3.2, we introduce the constrained

B-spline estimator and state the uniform Lipschitz property. Section 3.3 is devoted to the

proof of the uniform Lipschitz property. A summary is given in Section 3.4.

Notation. We introduce some notation used in the chapter. Define the function δij

on N × N so that δij = 1 if i = j, and δij = 0 otherwise. Let IS denote the indicator

function for a set S. For an index set α, let α denote its complement, and |α| denote its

cardinality. In addition, for k ∈ N, define the set α + k := {i + k : i ∈ α}. Let 1k ∈ Rk

denote the column vector of all ones and 1k1×k2 denote the k1 × k2 matrix of all ones.

For a column vector v ∈ Rp, let vi denote its ith component. For a matrix A ∈ Rk1×k2 ,

let [A]ij or [A]i,j be its (i, j)-entry, let (A)i• be its ith row, and (A)•j be its jth column.
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If i1 ≤ i2 and j1 ≤ j2, let (A)i1:i2,• be the submatrix of A formed by its i1th to i2th

rows, let (A)•,j1:j2 denote the submatrix of A formed by its j1th to j2th columns, and let

(A)i1:i2,j1:j2 denote the submatrix of A formed by its i1th to i2th rows and j1th to j2th

columns. Given an index set α, let vα ∈ R|α| denote the vector formed by the components

of v indexed by elements of α, and (A)α• denote the matrix formed by the rows of A

indexed by elements of α.

3.2 Nonnegative Derivative Constrained B-splines: Uniform Lipschitz

Property

Fix m ∈ N. Consider the class of (generalized) shape constrained univariate func-

tions on [0, 1]:

Sm :=
{
f : [0, 1]→ R

∣∣∣ the (m− 1)th derivative f (m−1) exists a.e. on [0, 1], and

(
f (m−1)(x1)− f (m−1)(x2)

)
·
(
x1 − x2

)
≥ 0 when f (m−1)(x1), f (m−1)(x2) exist

}
. (3.1)

When m = 1, Sm represents the set of increasing functions on [0, 1]. Similarly, when

m = 2, Sm denotes the set of continuous convex functions on [0, 1].

This chapter focuses on the B-spline approximation of functions in Sm. Toward this

end, we provide a brief review of B-splines as follows; see [14] for more details. For a given

K ∈ N, let Tκ := {κ0 < κ1 < · · · < κK} be a sequence of (K+1) knots in R. Given p ∈ N,

let {BTκ
p,k}

K+p−1
k=1 denote the (K+p−1) B-splines of order p (or equivalently degree (p−1))

with knots at κ0, κ1, . . . , κK , and the usual extension κ1−p = · · · = κ−1 = κ0 on the left

and κK+1 = · · · = κK+p−1 = κK on the right, scaled such that
∑K+p−1

k=1 BTκ
p,k(x) = 1

for any x ∈ [κ0, κK ]. The support of BTκ
p,k is given by (i) [κk−p, κk) when p = 1 and
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1 ≤ k ≤ K − 1; (ii) [κk−p, κk] when p = 1 and k = K or for each k = 1, . . . ,K + p − 1

when p ≥ 2. We summarize some properties of the B-splines to be used in the subsequent

development below:

(i) Nonnegativity, upper bound, and partition of unity: for each p, k, and Tκ, 0 ≤

BTκ
p,k(x) ≤ 1 for any x ∈ [κ0, κK ], and

∑K+p−1
k=1 BTκ

p,k(x) = 1 for any x ∈ [κ0, κK ].

(ii) Continuity and differentiability: when p = 1, each BTκ
p,k(x) is a (discontinuous)

piecewise constant function given by I[κk−1,κk)(x) for 1 ≤ k ≤ K − 1 or I[κK−1,κK ](x)

for k = K. Also, BTκ
p,k(x) · BTκ

p,j(x) = 0, ∀ x if k 6= j. When p = 2, the BTκ
p,k’s are

continuous piecewise linear splines, and there are at most three points in R where

each BTκ
p,k is not differentiable; when p > 2, each BTκ

p,k is differentiable on R. For

p ≥ 2, the derivative of BTκ
p,k (when it exists) is

(
BTκ
p,k(x)

)′
=

p− 1

κk−1 − κk−p
BTκ
p−1,k−1(x) − p− 1

κk − κk−p+1
BTκ
p−1,k(x), (3.2)

where we define p−1
κk−κk−p+1

BTκ
p−1,k(x) := 0,∀x ∈ [0, 1] for k = 0 and k = K + p− 1.

(iii) L1-norm: for each k, the L1-norm of BTκ
p,k is known to be [14, Chapter IX, eqns.(5)

and (7)] ∥∥∥BTκ
p,k

∥∥∥
L1

:=

∫
R

∣∣∣BTκ
p,k(x)

∣∣∣ dx =
κk − κk−p

p
. (3.3)

Let Tκ := {0 = κ0 < κ1 < · · · < κKn = 1} be a given sequence of (Kn + 1) knots

in [0, 1], and let gb,Tκ : [0, 1]→ R be such that gb,Tκ(x) =
∑Kn+m−1

k=1 bkB
Tκ
m,k(x), where the

bk’s are real coefficients of B-splines and b := (b1, . . . , bKn+m−1)T is the spline coefficient

vector. Here the subscript n in Kn corresponds to the number of design points to be used

in the subsequent sections.
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To derive a necessary and sufficient condition for gb,Tκ ∈ Sm, we introduce the

following matrices. Let D(k) ∈ Rk×(k+1) denote the first order difference matrix, i.e.,

D(k) :=



−1 1

−1 1

. . .
. . .

−1 1


∈ Rk×(k+1). (3.4)

When m = 1, let D̃m,Tκ := D(Kn−1). In what follows, consider m > 1. For the given knot

sequence Tκ with the usual extension κk = 0 for any k < 0 and κk = 1 for any k > Kn,

define the following diagonal matrices: ∆0,Tκ := IKn−1, and for each p = 1, . . . ,m− 1,

∆p,Tκ :=
1

p
diag

(
κ1 − κ1−p, κ2 − κ2−p, . . . , κKn+p−1 − κKn−1

)
∈ R(Kn+p−1)×(Kn+p−1).

(3.5)

Furthermore, define the matrices D̃p,Tκ ∈ R(Kn+m−1−p)×(Kn+m−1) inductively as:

D̃0,Tκ := I, and D̃p,Tκ := ∆−1
m−p,Tκ ·D

(Kn+m−1−p) · D̃p−1,Tκ , p = 1, . . . ,m. (3.6)

Roughly speaking, D̃p,Tκ denotes the p th order difference matrix weighted by the knots of

Tκ. When the knots are equally spaced, D̃p,Tκ is almost identical to a standard difference

matrix (except on the boundary). Moreover, since ∆−1
m−p,Tκ is invertible and D(Kn+m−1−p)

has full row rank, it can be shown via induction that D̃p,Tκ is of full row rank for any p

and Tκ.

In what follows, define N := Kn +m− 1 for a fixed spline order m ∈ N. Note that

N depends on n, the number of design points.
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Lemma 3.2.1. Fix m ∈ N. Let Tκ be a given sequence of (Kn + 1) knots, and for each

p = 1, . . . ,m, let {BTκ
p,k}

Kn+p−1
k=1 denote the B-splines of order p defined by Tκ. Then the

following hold:

(1) For any given b ∈ RN and j = 0, 1, . . . ,m − 1, the jth derivative of gb,Tκ :=∑N
k=1 bkB

Tκ
m,k is

∑N−j
k=1

(
D̃j,Tκb)kB

Tκ
m−j,k, except at (at most) finitely many points

on [0, 1];

(2) gb,Tκ ∈ Sm if and only if D̃m,Tκ b ≥ 0.

Proof. For notational simplicity, we write gb,Tκ as g and D̃j,Tκ as D̃j respectively in the

proof.

(1) We prove statement (1) by induction on j = 0, 1, . . . ,m− 1. Clearly, the state-

ment holds for j = 0. Consider j with 1 ≤ j ≤ m− 1, and assume the statement holds for

(j − 1). It follows from (3.2), the induction hypothesis, and the definitions of ∆j,Tκ and

D̃j that

g(j) =
(
g(j−1)

)′
=

(
N−j+1∑
k=1

(
D̃j−1b

)
k
BTκ
m−j+1,k

)′

= (m− j)
N−j∑
k=1

(D̃j−1b)k+1 − (D̃j−1b)k
κk − κk−m+j

BTκ
m−j,k

=

N−j∑
k=1

(
∆−1
m−j,TκD

(N−j)D̃j−1b
)
k
BTκ
m−j,k =

N−j∑
k=1

(
D̃jb

)
k
BTκ
m−j,k,

whenever g(j) and g(j−1) exist. Hence, statement (1) holds for j.

(2) It is easily seen that g(m−1) exists on [0, 1] except at (at most) finitely many

points in [0, 1]. It thus follows from statement (1) that g(m−1) is a piecewise constant

function on [0, 1]. Therefore, g ∈ Sm if and only if the spline coefficients of g(m−1) are

increasing, i.e., (D̃m−1b)k ≤ (D̃m−1b)k+1 for each k = 1, . . . ,Kn − 1. This is equivalent
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to D(Kn−1)D̃m−1b ≥ 0, which is further equivalent to D̃m b ≥ 0, in view of ∆0,Tκ = I and

D̃m = D(Kn−1)D̃m−1. This gives rise to statement (2).

3.2.1 Nonnegative Derivative Constrained B-splines

Let m ∈ N be a fixed spline order throughout the rest of this chapter. Let y :=

(y0, y1, . . . , yn)T ∈ R(n+1) be a given sample sequence corresponding to a sequence of

design points P = (xi)
n
i=0 on [0, 1]. For a given sequence Tκ of (Kn + 1) knots on [0, 1],

consider the following B-spline estimator that satisfies the shape constraint characterized

by Sm:

f̂BP,Tκ(x) :=

Kn+m−1∑
k=1

b̂kB
Tκ
m,k(x), (3.7)

where the coefficient vector b̂P,Tκ := (̂bk) is given by the constrained quadratic optimization

problem:

b̂P,Tκ := arg min
D̃m,Tκb≥0

n∑
i=0

(
xi+1 − xi

)(
yi −

N∑
k=1

bkB
Tκ
m,k(xi)

)2

. (3.8)

Here xn+1 := 1. It follows from Lemma 3.2.1 that f̂BP,Tκ ∈ Sm. Note that f̂BP,Tκ depends

on P and Tκ.

Define the diagonal matrix Θn := diag(x1−x0, x2−x1, . . . , xn+1−xn) ∈ R(n+1)×(n+1),

the design matrix X̂ ∈ R(n+1)×N with [X̂]i, k := BTκ
m,k(xi) for each i and k, the matrix

ΛKn,P,Tκ := Kn · X̂TΘnX̂ ∈ RN×N , and the weighted sample vector y := Kn · X̂TΘny.

Therefore, the quadratic optimization problem in (3.8) for b̂P,Tκ can be written as:

b̂P,Tκ(ȳ) := arg min
D̃m,Tκ b≥0

1

2
bT ΛKn,P,Tκ b− bT y. (3.9)

For the given P, Tκ and Kn, the matrix ΛKn,P,Tκ is positive definite, and the function

b̂P,Tκ : RN → RN is thus piecewise linear and globally Lipschitz continuous [63]. The
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piecewise linear formulation of b̂P,Tκ can be obtained from the KKT optimality conditions

for (3.9):

ΛKn,P,Tκ b̂P,Tκ − y − D̃T
m,Tκ χ = 0, 0 ≤ χ ⊥ D̃m,Tκ b̂P,Tκ ≥ 0, (3.10)

where χ ∈ RKn−1 is the Lagrange multiplier, and u ⊥ v means that the vectors u and

v are orthogonal. It follows from an argument similar to those in [72, 71, 80] that each

linear piece of b̂P,Tκ is characterized by index sets:

α :=
{
i :
(
D̃m,Tκ b̂P,Tκ

)
i

= 0
}
⊆ {1, . . . ,Kn − 1}. (3.11)

Note that α may be the empty set. For each α, the KKT conditions (3.10) become

(D̃m,Tκ)α• b̂P,Tκ = 0, χα = 0, ΛKn,P,Tκ b̂P,Tκ − y −
(
(D̃m,Tκ)α•

)T
χα = 0.

Just as in [72, 71, 80], we may denote the linear piece of b̂P,Tκ for a given α as b̂αP,Tκ , and let

F Tα ∈ RN×(|α|+m) be a matrix whose columns form a basis for the null space of (D̃m,Tκ)α•;

if α is the empty set, then N = (|α| + m), and F Tα will be the order N identity matrix.

By [72, 71, 80],

b̂αP,Tκ(y) = F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα y. (3.12)

Note that for any invertible matrix R ∈ R(|α|+m)×(|α|+m),

(RFα)T ((RFα)ΛKn,P,Tκ(RFα)T )−1(RFα) = F Tα (FαΛKn,P,TκF
T
α )−1Fα.
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Thus any choice of Fα leads to the same b̂αP,Tκ , provided that the columns of F Tα form a

basis of the null space of (D̃m,Tκ)α•.

3.2.2 Uniform Lipschitz Property of Constrained B-splines: Main Result

As indicated in the previous section, the piecewise linear function b̂P,Tκ(·) is Lipschitz

continuous for fixed Kn, P, Tκ. An important question is whether the Lipschitz constants

of size-varying b̂P,Tκ are uniformly bounded with respect to the `∞-norm, independent of

Kn, P , and Tκ, as long as the numbers of design points and knots are sufficiently large.

If this is the case, we say that b̂P,Tκ satisfies the uniform Lipschitz property. Originally

introduced and studied in [72, 71, 79, 80] for monotone P-splines and convex B-splines with

equally spaced design points and knots, this property is shown to play a crucial role in the

uniform convergence and asymptotic analysis of constrained B-spline estimators. In this

section, we extend this property to constrained B-splines subject to general nonnegative

derivative constraints under relaxed conditions on the design points and knots.

Fix cω ≥ 1, and for each n ∈ N, define the following set of sequences of (n + 1)

design points on [0, 1]:

Pn :=
{

(xi)
n
i=0

∣∣∣ 0 = x0 < x1 < · · · < xn = 1, and xi − xi−1 ≤
cω
n
, ∀ i = 1, . . . , n

}
.

(3.13)

Furthermore, let cκ,1 and cκ,2 with 0 < cκ,1 ≤ 1 ≤ cκ,2 be given. For each Kn ∈ N, define

the following set of sequences of (Kn + 1) knots on [0, 1] with the usual extension on the

left and right boundary:

TKn := {(κi)Kni=0

∣∣∣ 0 = κ0 < κ1 < · · · < κKn = 1,
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and
cκ,1
Kn
≤ κi − κi−1 ≤

cκ,2
Kn

, ∀ i = 1, . . . ,Kn}. (3.14)

For any p,Kn ∈ N and Tκ ∈ TKn , it is noted that for any κi ∈ Tκ, we have,
κi−κi−p

p =

1
p

∑i
s=i−p+1(κs − κs−1) ≤ 1

p · p ·
cκ,2
Kn
≤ cκ,2/Kn. Moreover, in view of κi−p = 0 for any

i ≤ p and κi = 1 for any i ≥ Kn, it can be shown that for each 1 ≤ i ≤ Kn + p − 1,

κi−κi−p
p ≥ cκ,1/(p · Kn) so that p

κi−κi−p ≤ p · Kn/cκ,1. In summary, we have, for each

i = 1, . . . ,Kn + p− 1,

cκ,1
p ·Kn

≤ κi − κi−p
p

≤ cκ,2
Kn

, and
Kn

cκ,2
≤ p

κi − κi−p
≤ p ·Kn

cκ,1
. (3.15)

Using the above notation, we state the main result of the paper, i.e., the uniform

Lipschitz property of b̂P,Tκ , as follows:

Theorem 3.2.1. Let m ∈ N and constants cω, cκ,1, cκ,2 be fixed, where cω ≥ 1 and 0 <

cκ,1 ≤ 1 ≤ cκ,2. For any n,Kn ∈ N, let b̂P,Tκ : RKn+m−1 → RKn+m−1 be the piecewise

linear function in (3.9) corresponding to the mth order B-spline defined by the design point

sequence P ∈ Pn and the knot sequence Tκ ∈ TKn. Then there exists a positive constant

c∞, depending on m, cκ,1 only, such that for any increasing sequence (Kn) with Kn →∞

and Kn/n→ 0 as n→∞, there exists n∗ ∈ N, depending on (Kn) (and the fixed constants

m, cω, cκ,1, cκ,2) only, such that for any P ∈ Pn and Tκ ∈ TKn with all n ≥ n∗,

∥∥∥ b̂P,Tκ(u)− b̂P,Tκ(v)
∥∥∥
∞
≤ c∞

∥∥u− v ∥∥∞, ∀ u, v ∈ RKn+m−1.

The above result can be refined when we focus on a particular sequence P and Tκ.

Corollary 3.2.1. Let (Kn) be an increasing sequence with Kn → ∞ and Kn/n → 0 as

n→∞, and
(
(Pn, TKn)

)
be a sequence in Pn×TKn. Then there exists a positive constant
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c′∞, independent of n, such that for each n,

∥∥∥ b̂Pn,TKn (u)− b̂Pn,TKn (v)
∥∥∥
∞
≤ c′∞

∥∥u− v ∥∥∞, ∀ u, v ∈ RKn+m−1.

This corollary recovers the past results on the uniform Lipschitz property for m =

1, 2 (e.g., [80]) when the design points and knots are equally spaced on [0, 1].

3.2.3 Overview of the Proof

The proof of Theorem 3.2.1 is somewhat technical. To facilitate the reading, we

outline its key ideas and provide a road map of the proof as follows. In view of the

piecewise linear formulation of b̂P,Tκ in (3.12), it suffices to establish a uniform bound on

‖F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα‖∞ for all large n, regardless of Kn, α, P ∈ Pn, and Tκ ∈ TKn .

Suppose that there exists a smooth function f : [0, 1] → R satisfying yi = f(xi)

for each xi ∈ P . The overarching idea of the proof is to think of the mapping from the

unweighted data vector y to the spline f̂BP,Tκ as an approximation of the L2-projection

of f onto the polyhedral cone of order m splines in Sm with knot sequence Tκ. Since

the projection mapping from f to f̂BP,Tκ is piecewise linear [63], each linear piece of this

mapping is given by a projection onto a space of order m splines, whose knots lie in a subset

(determined by α) of Tκ. A deep result in B-spline theory (dubbed de Boor’s conjecture),

proven by Shardin [64], states that the L2-projection of functions onto a space of order m

splines is bounded in the L∞-norm, independent of the spline knot sequence. Hence, when

n is sufficiently large, each linear piece of the mapping from y to f̂BP,Tκ closely approximates

such an L2-projection, and is thus bounded in the L∞-norm independent of Kn, α, P ∈ Pn,

and Tκ ∈ TKn . Moreover, the matrix F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα is intimately related to its
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corresponding linear piece of the mapping from y to f̂BP,Tκ . Consequently, results from [64]

will prove invaluable in bounding F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα.

We may choose a diagonal matrix Ξ′α to provide a positive scaling of the rows of

Fα, so that ‖Ξ′αFα‖∞ is uniformly bounded. We may then write that

F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα = F Tα ·

(
Ξ′αFαΛKn,P,Tκ F

T
α

)−1 · Ξ′αFα.

Hence,

‖F Tα
(
FαΛKn,P,Tκ F

T
α

)−1
Fα‖∞ ≤ ‖F Tα ‖∞ ‖

(
Ξ′αFαΛKn,P,Tκ F

T
α

)−1‖∞ ‖Ξ′αFα‖∞.

Therefore, our goal is to construct F Tα , by choosing a suitable basis of (D̃m,Tκ)α•, and

select Ξ′α so that ‖F Tα ‖∞ and ‖
(
Ξ′αFαΛKn,P,Tκ F

T
α

)−1‖∞ are also uniformly bounded for

sufficiently large n, independent of Kn, α, P ∈ Pn and Tκ ∈ TKn . To this end, we will

choose F Tα and Ξ′α so that Ξ′αFαΛKn,P,TκF
T
α approximates a certain B-spline Gramian

matrix (cf. Theorem 3.2.2). A critical technique for establishing uniform bounds on

‖
(
Ξ′αFαΛKn,P,TκF

T
α

)−1‖∞ and other related quantities relies on Theorem I of [64], which

states that the `∞-norm of the inverse of the Gramian formed by the normalized B-splines

of order m is uniformly bounded, independent of the knot sequence and the number of

B-splines; the uniform boundedness of this B-spline Gramian is equivalent to the uniform

boundedness of the aforementioned L2-projection [15, Section 4]. To formally describe the

result on the B-spline Gramian uniform boundedness, we introduce more notation. Let

〈·, ·〉 denote the L2-inner product of real-valued univariate functions on R, i.e., 〈f, g〉 :=∫
R f(x)g(x) dx, and ‖ · ‖L1 denote the L1-norm of a real-valued univariate function on R,

i.e., ‖f‖L1 :=
∫
R |f(x)| dx. The main result of [64] is stated in the following theorem.

67



Theorem 3.2.2. [64, Theorem I] Fix a spline order m ∈ N. Let a, b ∈ R with a < b, and

{BTκ
m,k}

K+m−1
k=1 be the mth order B-splines on [a, b] defined by a knot sequence Tκ := {a =

t0 < t1 < · · · < tK = b} for some K ∈ N. Let G ∈ R(K+m−1)×(K+m−1) be the Gramian

matrix given by

[
G
]
i,j

:=

〈
BTκ
m,i, B

Tκ
m,j

〉
∥∥BTκ

m,i

∥∥
L1

, ∀ i, j = 1, . . . ,K +m− 1.

Then there exists a positive constant ρm, independent of a, b, Tκ and K, such that

‖G−1‖∞ ≤ ρm.

Inspired by this theorem, we intend to approximate Ξ′αFαΛKn,P,Tκ F
T
α and other rel-

evant matrices by appropriate Gramian matrices of B-splines with uniform approximation

error bounds. To achieve this goal, after establishing some preliminary technical results

in Section 3.3.1, we construct a suitable matrix Fα (i.e., F
(m)
α,Tκ

) in Section 3.3.2 so that

‖F Tα ‖∞ is uniformly bounded via Corollary 3.3.1. In Section 3.3.3, we construct a B-spline

collocation matrix approximation Xm,Tκ,Ln such that the product Fα · Xm,Tκ,Ln may be

computed via inductive principles at the conclusion of this section; this product allows us

to then construct Λ̃Tκ,Kn,Ln , which will be used to approximate ΛKn,P,Tκ . We then show

via analytical tools and Theorem 3.2.2 that these constructed matrices attain uniform

bounds or uniform approximation error bounds in Section 3.3.4. With the help of these

bounds, the uniform Lipschitz property is proven in Section 3.3.5.

3.3 Proof of the Uniform Lipschitz Property

In this section, we prove the uniform Lipschitz property stated in Theorem 3.2.1.
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3.3.1 Technical Lemmas

We present two technical lemmas for the proof of Theorem 3.2.1. The first lemma

characterizes the difference between an integral of a continuous function and its discrete

approximation; it will be used multiple times through this section (cf. Propositions 3.3.2,

3.3.4, and 3.3.5).

Lemma 3.3.1. Let ñ ∈ N, v = (vk) ∈ Rñ, [a, b] ⊂ R with a < b, and points {sk}ñk=0

with a = s0 < s1 < · · · < sñ = b such that maxk=1,...ñ |sk − sk−1| ≤ % for some % >

0. Let f : [a, b] → R be a continuous function that is differentiable on [a, b] except at

finitely many points in [a, b]. Suppose there exist positive constants µ1 and µ2 such that

maxk=1,...ñ |vk−f(sk−1)| ≤ µ1, and |f ′(x)| ≤ µ2 for any x ∈ [a, b] where f ′(x) exists. Then

for each i ∈ {1, . . . , ñ},

∣∣∣∣∣
i∑

k=1

vk
(
sk − sk−1

)
−
∫ si

s0

f(x) dx

∣∣∣∣∣ ≤ µ1(b− a) +
3

2
µ2%(b− a).

Proof. Fix an arbitrary k ∈ {1, . . . , ñ}. Suppose that s̃1, . . . , s̃`−1 ∈ (sk−1, sk) with sk−1 :=

s̃0 < s̃1 < s̃2 < · · · < s̃`−1 < s̃` := sk are the only points where f is non-differentiable on

the interval (sk−1, sk). It follows from the continuity of f and the Mean-value Theorem

that for each j = 1, . . . , `, there exists ξj ∈ (s̃j−1, s̃j) such that f(s̃j) = f(s̃j−1)+f ′(ξj)(s̃j−

s̃j−1) = f(sk−1)+
∑j

r=1 f
′(ξr)(s̃r−s̃r−1). Since f is continuous and piecewise differentiable,

we have

∣∣∣∣∣
∫ sk

sk−1

f(x) dx−
(
sk − sk−1

)
f(sk−1)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑̀
j=1

∫ s̃j

s̃j−1

[
f(s̃j−1) + f ′(ξx)

(
x− s̃j−1

)]
dx−

(
sk − sk−1

)
f(sk−1)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∑̀
j=1

[
f(sk−1) +

j−1∑
r=1

f ′(ξr)(s̃r − s̃r−1)

]
(s̃j − s̃j−1)−

(
sk − sk−1

)
f(sk−1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑̀
j=1

∫ s̃j

s̃j−1

f ′(ξx)
(
x− s̃j−1

)
dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑̀
j=1

f ′(ξj)
(
s̃j − s̃j−1

)(
sk − s̃j

)∣∣∣∣∣∣+
µ2

2

∑̀
j=1

(
s̃j − s̃j−1

)2
≤ 3µ2

2

(
sk − sk−1

)2
≤ 3µ2%

2

(
sk − sk−1

)
.

Consequently, for each i ∈ {1, . . . , ñ},

∣∣∣∣∣
i∑

k=1

vk
(
sk − sk−1

)
−
∫ si

s0

f(x) dx

∣∣∣∣∣ ≤
i∑

k=1

∣∣∣∣∣vk (sk − sk−1

)
−
∫ sk

sk−1

f(x) dx

∣∣∣∣∣
≤

i∑
k=1

(
sk − sk−1

)∣∣vk − f(sk−1)
∣∣ +

i∑
k=1

∣∣∣∣∣(sk − sk−1

)
f(sk−1)−

∫ sk

sk−1

f(x) dx

∣∣∣∣∣
≤ µ1

i∑
k=1

(
sk − sk−1

)
+

3µ2%

2

i∑
k=1

(
sk − sk−1

)
≤ µ1(b− a) +

3

2
µ2%(b− a).

This completes the proof.

The second lemma asserts that if corresponding matrices from two families of square

matrices are sufficiently close, and that the matrices from one family are invertible with

uniformly bounded inverses, then so are the matrices from the other family. This result

is instrumental in establishing a uniform bound of the inverses of certain size-varying

matrices (cf. Corollary 3.3.2).

Lemma 3.3.2. Let {Ai ∈ Rni×ni : i ∈ I } and {Bi ∈ Rni×ni : i ∈ I } be two families of

square matrices for a (possibly infinite) index set I, where ni ∈ N need not be the same

for different i ∈ I. Suppose that each Ai is invertible with µ := supi∈I ‖A−1
i ‖∞ <∞ and
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that for any ε > 0, there are only finitely many i ∈ I satisfying ‖Ai − Bi‖∞ ≥ ε. Then

for all but finitely many i ∈ I, Bi is invertible with ‖B−1
i ‖∞ ≤

3
2µ.

Proof. For the given positive constant µ := supi∈I ‖A−1
i ‖∞ < ∞, define the positive

constant ε := 1/(3µ). Let Iε := {i ∈ I : ‖Ai − Bi‖∞ < ε}. Note that there exist only

finitely many i ∈ I such that ‖Ai − Bi‖∞ ≥ ε. Define Ci := Bi − Ai so that ‖Ci‖∞ < ε

for each i ∈ Iε. Since Bi = Ai + Ci and Ai is invertible, we have A−1
i Bi = I + A−1

i Ci.

Hence, we obtain, via ε = 1/(3µ),

∥∥A−1
i Ci

∥∥
∞ ≤ ‖A

−1
i ‖∞ · ‖Ci‖∞ ≤ µ · ε =

1

3
, ∀ i ∈ Iε.

This shows that I +A−1
i Ci is strictly diagonally dominant, and thus is invertible. There-

fore, A−1
i Bi is invertible, and so is Bi for each i ∈ Iε. Hence all but finitely many Bi, i ∈ I,

are invertible.

By virtue of
∥∥A−1

i Ci
∥∥
∞ ≤ 1/3 for any i ∈ Iε, we deduce that

∥∥∥(I +A−1
i Ci

)−1
∥∥∥
∞
≤ 1

1−
∥∥A−1

i Ci
∥∥
∞
≤ 3

2
, ∀ i ∈ Iε.

Using A−1
i Bi = I +A−1

i Ci again, we further have that

∥∥B−1
i

∥∥
∞ =

∥∥∥(I +A−1
i Ci

)−1 ·A−1
i

∥∥∥
∞
≤
∥∥∥(I +A−1

i Ci
)−1
∥∥∥
∞
· ‖A−1

i ‖∞ ≤
3

2
µ,

for all i ∈ Iε. This yields the desired result.
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3.3.2 Construction of the Null Space Basis Matrix

In this subsection, we construct a suitable matrix Fα used in (3.12), whose rows

form a basis for the null space of (D̃m,Tκ)α•, such that ‖F Tα ‖∞ is uniformly bounded (cf.

Corollary 3.3.1). For Kn ∈ N, let Tκ ∈ TKn be a knot sequence, and α ⊆ {1, . . . ,Kn − 1}

be an index set defined in (3.11). The complement of α is α = {i1, . . . , i|α|} with 1 ≤ i1 <

· · · < i|α| ≤ Kn − 1. For notational simplicity, define qα := |α|+m.

We introduce the following two matrices, both of which have full row rank:

Eα,Tκ :=



1Ti1

1Ti2−i1

. . .

1TKn−i|α|


∈ R(|α|+1)×Kn , F

(1)
α,Tκ

:=

Im−1 0

0 Eα,Tκ

 ∈ Rqα×N ,

(3.16)

where we recall N := Kn +m− 1. Observe that when α is empty, then F
(1)
α,Kn

:= IN .

Note that each column of F
(1)
α,Tκ

contains exactly one entry of 1, and all other entries

are zero. The matrix F
(1)
α,Tκ

characterizes the first order B-splines (i.e. the piecewise

constant splines) with the knot sequence {κik} defined by α. For the given α, define

τα,Tκ,k :=



0, for k = 1−m, . . . , 0

κik , for k = 1, . . . , |α|

1, for k = |α|+ 1, . . . , qα.

(3.17)
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It is easy to verify that for each k ∈ {1, . . . , |α|+ 1} and ` ∈ {1, . . . ,Kn},

(
F

(1)
α,Tκ

)
(k+m−1),(`+m−1)

= (Eα,Tκ)k` =


1, if κ`−1 ∈ [τα,Tκ,k−1, τα,Tκ,k)

0, otherwise.

(3.18)

For each p = 1, . . . ,m, we further introduce the following diagonal matrices

Ξ
(p)
α,Tκ

:=

Im−p 0

0 Σp,Tκ

 (3.19)

= diag

 1, . . . , 1,︸ ︷︷ ︸
(m−p)−copies

p

τα,Tκ,1 − τα,Tκ,1−p
,

p

τα,Tκ,2 − τα,Tκ,2−p
, . . . ,

p

τα,Tκ,|α|+p − τα,Tκ,|α|

 ,

where Ξ
(p)
α,Tκ

is of order qα, and by using the definition of the matrix ∆p,Tκ in (3.5),

∆̂p,Tκ :=

Im−p 0

0 ∆p,Tκ

 (3.20)

= diag

 1, . . . , 1,︸ ︷︷ ︸
(m−p)−copies

κ1 − κ1−p
p

,
κ2 − κ2−p

p
, . . . ,

κKn+p−1 − κKn−1

p

 ∈ RN×N .

In addition, define the following two matrices of order r ∈ N:

Ŝ(r) :=



1 1 1 . . . 1

1 1 . . . 1

1 . . . 1

. . .
...

1


, and D̂(r) :=

(
Ŝ(r)

)−1
=



1 −1

1 −1

. . .
. . .

1 −1

1


.

(3.21)
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Here multiplication by the matrix Ŝ(r) from right acts as discrete integration, while D̂(r)

is similar to a difference matrix.

With the above notation, we define F
(p)
α,Tκ

inductively: F
(1)
α,Tκ

is defined in (3.16), and

F
(p)
α,Tκ

:= D̂(qα) · Ξ(p−1)
α,Tκ

· F (p−1)
α,Tκ

· ∆̂p−1,Tκ · Ŝ(N) ∈ Rqα×N , p = 2, . . . ,m. (3.22)

Since D̂(qα), Ξ
(p−1)
α,Tκ

, ∆̂p−1,Tκ , and Ŝ(N) are all invertible, each F
(p)
α,Tκ

has full row rank by

induction. Furthermore, it is easy to see that if α is the empty set, then α = {1, . . . ,Kn−1}

so that F
(1)
α,Tk

is the identity matrix IN for any Tκ, which further shows via induction in

(3.22) that F
(p)
α,Tκ

= IN for any p = 2, . . . ,m and any Tκ.

It is shown below that F
(m)
α,Tκ

constructed above is a suitable choice for Fα in the

piecewise linear formulation of b̂P,Tκ in (3.12).

Proposition 3.3.1. For any index set α ⊆ {1, . . . ,Kn−1}, the columns of
(
F

(m)
α,Tκ

)T
form

a basis of the null space of (D̃m,Tκ)α•.

Proof. To simplify notation, we use Fα,p to denote F
(p)
α,Tκ

and drop the subscript Tκ in

D̃p,Tκ , ∆p,Tκ , and ∆̂p,Tκ for p = 1, . . . ,m; see (3.5)-(3.6) for the definitions of ∆p,Tκ and

D̃p,Tκ respectively.

Suppose that α is empty. Then F
(1)
α,Kn

:= IN , and by induction, F
(m)
α,Kn

:= IN , whose

columns form a basis of RN . Hence, the result holds for empty α. Therefore, consider

nonempty α. We first show that the matrix product

(
D(N−1)

)
(α+m−1)•F

T
α,1 = 0.
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Since the first (m− 1) columns of
(
D(N−1)

)
(α+m−1)• contain all zero entries and

(
F Tα,1

)
•,1:(m−1)

=

Im−1

0

 ∈ RN×(m−1),

we see that the first (m − 1) columns of
(
D(N−1)

)
(α+m−1)•F

T
α,1 have all zero entries. (If

m = 1, this result holds trivially.) Moreover, for each j with m ≤ j ≤ qα := |α| + m, we

see, in light of (3.16) and (3.18), that

(Fα,1)j• =

 0, . . . , 0︸ ︷︷ ︸
ik−1+m−1

, 1, . . . , 1︸ ︷︷ ︸
ik−ik−1

, 0, . . . , 0︸ ︷︷ ︸
Kn−ik

 .

where k = j − m + 1, i0 := 0, and i|α|+1 := Kn. Note that for each s ∈ α, the row(
D(N−1)

)
(s+m−1)• is of the form (0, . . . , 0︸ ︷︷ ︸

s+m−2

,−1, 1, 0, . . . , 0︸ ︷︷ ︸
Kn−1−s

). Using the fact that ik−1, ik ∈

α ∪ {0,Kn} for any k = 1, . . . , |α| + 1, we deduce that if s ∈ α, then s /∈ {ik−1, ik} for

k = 1, . . . , |α|+ 1. This shows that
(
D(N−1)

)
(s+m−1)• ·

(
F Tα,1

)
•j = 0, ∀ s ∈ α. Hence the

matrix product
(
D(N−1)

)
(α+m−1)•F

T
α,1 = 0.

It is easy to show via (3.6), (3.16), and the above result that the proposition holds

when m = 1. Consider m ≥ 2 for the rest of the proof. Let S0 := IN , and Sp :=

∆̂m−p · Ŝ(N) · Sp−1 for p = 1, . . . ,m − 1, where Ŝ(N) is defined in (3.21). It follows from

the definition of Sp and (3.22) that Fα,m = Q · Fα,1 · Sm−1 for a suitable matrix Q. We

next show via induction on p that

D̃p · STp =

[
0(N−p)×p IN−p

]
, ∀ p = 0, 1, . . . ,m− 1. (3.23)
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Clearly, this result holds for p = 0. Given p ≥ 1 and assuming that (3.23) holds for p− 1,

it follows from (3.6), (3.22), and the induction hypothesis that

D̃p · STp =
(

∆−1
m−pD

(N−p)D̃p−1

)
·
(
STp−1 (Ŝ(N))T ∆̂m−p

)
= ∆−1

m−pD
(N−p)

[
0(N−(p−1))×(p−1) IN−(p−1)

] (
Ŝ(N)

)T
∆̂m−p

= ∆−1
m−pD

(N−p)
[
1(N−(p−1))×(p−1)

(
Ŝ(N−(p−1))

)T] ∆̂m−p

= ∆−1
m−p

[
0(N−p)×p IN−p

]
∆̂m−p

= ∆−1
m−p

[
0(N−p)×p ∆m−p

]
=

[
0(N−p)×p IN−p

]
,

where the second to last equality is a consequence of (3.20). This gives rise to (3.23).

Combining the above results, we have

(D̃m)α• · F Tα,m =
((
D(Kn−1)

)
α• D̃m−1

)
·
(
QFα,1 Sm−1

)T
=
(
D(Kn−1)

)
α• · D̃m−1 · STm−1 · F Tα,1 ·QT

=
(
D(Kn−1)

)
α•

[
0Kn×(m−1) IKn

]
F Tα,1 ·QT

=
(
D(N−1)

)
(α+m−1)• · F

T
α,1 ·QT = 0.

Recall that Fα,m has full row rank. Hence, the qα columns of F Tα,m are linearly independent.

Additionally, since D̃m is of full row rank as indicated after (3.6), so is (D̃m)α•. Therefore,

rank[(D̃m)α•] = |α| and the null space of (D̃m)α• has dimension (Kn+m−1−|α|), which

is equal to qα in light of the fact that |α|+ |α| = Kn − 1. Therefore the columns of F Tα,m

form a basis for the null space of (D̃m)α•.
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Before ending this section, we present a structural property of F
(p)
α,Tκ

and a prelim-

inary uniform bound for
∥∥F (m)

α,Tκ

∥∥
∞, which will be useful later (cf. Corollary 3.3.1 and

Proposition 3.3.3).

Lemma 3.3.3. For any m,Kn ∈ N, any knot sequence Tκ ∈ TKn and any index set α

defined in (3.11), the following hold:

(1) For each p = 1, . . . ,m − 1, F
(p)
α,Tκ

=

Im−p 0

0 W
(p)
α,Tκ

 for some matrix W
(p)
α,Tκ

∈

R(|α|+p)×(Kn+p−1).

(2)
∥∥F (m)

α,Tκ

∥∥
∞ ≤

(
2m

cκ,1
·max

(
1,
cκ,2
Kn

)
·N
)m−1

·
(
Kn

)m
, where N = Kn +m− 1.

Proof. (1) Fix m, Kn, Tκ ∈ TKn , and α. We prove this result by induction on p. By the

definition of F
(1)
α,Tκ

in (3.16), we see that statement (1) holds for p = 1 with W
(p)
α,Tκ

= Eα,Tκ .

Now suppose statement (1) holds for p = 1, . . . , p ′ with p ′ ≤ m− 2, and consider p ′ + 1.

In view of the recursive definition (3.22) and the definitions of D̂(qα), Ξ
(p)
α,Tκ

, ∆̂p,Tκ , and

Ŝ(N) given in (3.19), (3.20), and (3.21), we deduce via the induction hypothesis that

F
(p ′+1)
α,Tκ

= D̂(qα) · Ξ(p ′)
α,Tκ
· F (p ′)

α,Tκ
· ∆̂p ′,Tκ · Ŝ(N)

= D̂(qα) ·

Im−p ′ 0

0 Σp ′,Tκ

 ·
Im−p ′ 0

0 W
(p ′)
α,Tκ

 ·
Im−p ′ 0

0 ∆p ′,Tκ

 · Ŝ(N)

= D̂(qα) ·

Ŝ(m−p ′) 1(m−p ′)×(Kn+p ′−1)

0 ?

 =

I(m−p ′−1) 0

0 ?′

 ,

where ? and ?′ are suitable submatrices, and the last two equalities follow from the struc-

ture of Ŝ(N) and D̂(qα). Letting W
(p ′+1)
α,Tκ

:= ?′, we obtain the desired equality via induction.
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(2) It follows from the definition of F
(1)
α,Tκ

in (3.16) that
∥∥F (1)

α,Tκ

∥∥
∞ ≤ Kn. Further-

more, by (3.22) and the definitions of D̂(qα), Ξ
(p)
α,Tκ

, ∆̂p,Tκ , and Ŝ(N) given in (3.19), (3.20),

and (3.21), we have, for each p = 1, . . . ,m− 1,

∥∥F (p+1)
α,Tκ

∥∥
∞ =

∥∥∥D̂(qα) · Ξ(p)
α,Tκ
· F (p)

α,Tκ
· ∆̂p,Tκ · Ŝ(N)

∥∥∥
∞

≤
∥∥D̂(qα)

∥∥
∞ ·
∥∥Ξ

(p)
α,Tκ

∥∥
∞ ·
∥∥F (p)

α,Tκ

∥∥
∞ ·
∥∥∆̂p,Tκ

∥∥
∞ ·
∥∥Ŝ(N)

∥∥
∞

≤ 2 · mKn

cκ,1
·
∥∥F (p)

α,Tκ

∥∥
∞ ·max

(
1,
cκ,2
Kn

)
·N,

where we use (3.15) to bound
∥∥Ξ

(p)
α,Tκ

∥∥
∞ and

∥∥∆̂p,Tκ

∥∥
∞ in the last inequality. In view of

this result and ‖F (1)
α,Tκ
‖∞ ≤ Kn, the desired inequality follows.

More properties of F
(m)
α,Tκ

will be shown in Proposition 3.3.3 and Corollary 3.3.1.

3.3.3 Approximation of the B-spline Collocation Matrix

This section is concerned with the construction of the matrix Xm,Tκ,Ln , which ap-

proximates a certain B-spline collocation matrix. Moreover, we may think of (Xm,Tκ,Ln)ij

as an approximation of BTκ
m,i

(
j−1
Ln

)
, for all i = 1, . . . , N and j = 1, . . . , Ln. Consequently,

we may use Xm,Tκ,Ln to construct Λ̃Tκ,Kn,Ln , which approximates ΛKn,P,Tκ . Additionally,

Xm,Tκ,Ln is constructed in a way such that the product F
(m)
α,Tκ
· Xm,Tκ,Ln can be easily

computed via inductive principles; this is the main motivation for constructing Xm,Tκ,Ln .

For a given Kn, let Ln ∈ N with Ln > Kn/cκ,1, which will be taken later to hold for all

large n; see Property H in Section 3.3.4. For a given knot sequence Tκ ∈ TKn of (Kn + 1)

knots on [0, 1] with Tκ = {0 = κ0 < κ1 < · · · < κKn = 1}, define ẼTκ,Ln ∈ RKn×Ln as

[
ẼTκ,Ln

]
j`

:= I[κj−1,κj)

(
`− 1

Ln

)
, ∀ j = 1, . . . ,Kn, ` = 1, . . . , Ln, (3.24)
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where I[κj−1,κj) is the indicator function on the interval [κj−1, κj). For each j = 1, . . . ,Kn,

let `j be the cardinality of the index set {` ∈ N |Lnκj−1 + 1 ≤ ` < Lnκj + 1}. Hence, we

have

ẼTκ,Ln =



1T`1

1T`2

. . .

1T`Kn


∈ RKn×Ln .

Let L′n := Ln +m− 1, and for each p = 1, . . . ,m, define

Γp :=

I(m−p) 0

0 L−1
n · I(Ln+p−1)

 ∈ RL
′
n×L′n , and S̃

(p)
Ln

:= Γp · Ŝ(L′n) ∈ RL
′
n×L′n ,

where Ŝ(r) is defined in (3.21). We then define the matrices Xp,Tκ,Ln ∈ RN×L′n for the

given Tκ and Ln inductively as:

X1,Tκ,Ln :=

Im−1 0

0 ẼTκ,Ln

 , and Xp,Tκ,Ln := D̂(N) · ∆̂−1
p−1,Tκ

·Xp−1,Tκ,Ln · S̃
(p−1)
Ln

,

(3.25)

for each p = 2, . . . ,m. Note that X1,Tκ,Ln is of full row rank for any Tκ, Ln, and hence, so

is Xp,Tκ,Ln for each p = 2, . . . ,m, since D̂(N), ∆̂−1
p−1,Tκ

, Ŝ(L′n), and Γp−1 are all invertible.

Finally, define the matrix

Λ̃Tκ,Kn,Ln :=
Kn

Ln
·
(
Xm,Tκ,Ln

)
1:N,1:Ln

·
[(
Xm,Tκ,Ln

)
1:N,1:Ln

]T
∈ RN×N . (3.26)

It will be shown later (cf. Proposition 3.3.5) that Λ̃Tκ,Kn,Ln approximates ΛKn,P,Tκ for all

large n when Ln is suitably chosen.
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As discussed in Section 3.2.3, the proof of the uniform Lipschitz property boils

down to establishing certain uniform bounds in the `∞-norm, including uniform bounds

on ‖
(
Ξ′αFαΛKn,P,Tκ F

T
α

)−1‖∞, where Ξ′α := K−1
n Ξ

(m)
α,Tκ

. Therefore it is essential to study

FαΛ̃Tκ,Kn,Ln F
T
α , which approximates FαΛKn,P,Tκ F

T
α . In view of the definition of Λ̃Tκ,Kn,Ln ,

we see that the former matrix product is closely related to F
(m)
α,Tκ

Xm,Tκ,Ln for a given index

set α, knot sequence Tκ, and Ln ∈ N. In what follows, we demonstrate certain important

properties of F
(m)
α,Tκ

Xm,Tκ,Ln to be used in the subsequent development.

Lemma 3.3.4. Fix m ∈ N. For any given α, Tκ, and Ln, the following hold:

(1) For each p = 2, . . . ,m, F
(p)
α,Tκ
·Xp,Tκ,Ln = D̂(qα) · Ξ(p−1)

α,Tκ
· F (p−1)

α,Tκ
·Xp−1,Tκ,Ln · S̃

(p−1)
Ln

.

(2) For each p = 1, . . . ,m − 1, there exists a matrix Zp,α,Tκ,Ln ∈ R(qα−m+p)×(Ln+p−1)

such that

F
(p)
α,Tκ
·Xp,Tκ,Ln =

Im−p 0

0 Zp,α,Tκ,Ln

 ∈ Rqα×L
′
n .

Proof. (1) It follows from the definitions of F
(p)
α,Tκ

in (3.22) and Xp,Tκ,Ln in (3.25) respec-

tively and Ŝ(N) · D̂(N) = I that for each p = 2, . . . ,m,

F
(p)
α,Tκ
·Xp,Tκ,Ln =

(
D̂(qα) · Ξ(p−1)

α,Tκ
· F (p−1)

α,Tκ
· ∆̂p−1,Tκ · Ŝ(N)

)
·
(
D̂(N) · ∆̂−1

p−1,Tκ
·Xp−1,Tκ,Ln · S̃

(p−1)
Ln

)
= D̂(qα) · Ξ(p−1)

α,Tκ
· F (p−1)

α,Tκ
·Xp−1,Tκ,Ln · S̃

(p−1)
Ln

.

(2) When p = 1, it is easy to see that

F
(1)
α,Tκ
·X1,Tκ,Ln =

Im−1 0

0 Eα,Tκ


Im−1 0

0 ẼTκ,Ln

 =

Im−1 0

0 Z1,α,Tκ,Ln

 ,
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where Z1,α,Tκ,Ln := Eα,Tκ · ẼTκ,Ln . Hence, statement (2) holds for p = 1. Suppose

statement (2) holds for p = 1, . . . , p ′, and consider p ′ + 1. In view of statement (1), the

definitions of Γp ′ and S̃
(p′)
Ln

, (3.19) for Ξ
(p ′)
α,Tκ

, and the induction hypothesis, we have

F
(p ′+1)
α,Tκ

·Xp ′+1,Tκ,Ln = D̂(qα) · Ξ(p ′)
α,Tκ
· F (p ′)

α,Tκ
·Xp ′,Tκ,Ln · S̃

(p ′)
Ln

= D̂(qα) · Ξ(p ′)
α,Tκ
· F (p ′)

α,Tκ
·Xp ′,Tκ,Ln · Γp ′ · ŜL

′
n

= D̂(qα) ·

Im−p ′ 0

0 Σp ′,Tκ

 ·
Im−p ′ 0

0 Zp ′,α,Tκ,Ln

 ·
Im−p ′ 0

0 L−1
n · ILn+p ′−1

 · Ŝ(L′n)

= D̂(qα) ·

Ŝ(m−p ′) 1(m−p ′)×(Ln+p ′−1)

0 ?

 =

I(m−p ′−1) 0

0 ?′

 ,

where ? and ?′ are suitable submatrices, and the last two equalities follow from the struc-

ture of Ŝ(L′n) and D̂(qα). Letting Zp ′+1,α,Tκ,Ln := ?′, we arrive at the desired equality via

induction.

In what follows, we develop an inductive formula to compute Zp,α,Tκ,Ln . For nota-

tional simplicity, we use Zp, Yp, and τs in place of Zp,α,Tκ,Ln , F
(p)
α,Tκ
·Xp,Tκ,Ln , and τα,Tκ,s

(cf. (3.17)) respectively for fixed α, Tκ, and Ln. For each p = 2, . . . ,m, it follows from

statement (1) of Lemma 3.3.4 that for any j = 1, . . . , |α|+ p and k = 1, . . . , Ln + p− 1,

[
Zp
]
j,k

=
[
D̂(qα) · Ξ(p−1)

α,Tκ
· Yp−1 · S̃(p−1)

Ln

]
j+m−p, k+m−p

=
[
D̂(qα)Ξ

(p−1)
α,Tκ

]
(j+m−p)•

·
[
Yp−1S̃

(p−1)
Ln

]
•(k+m−p)

.
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In light of (3.19), we have, for any j = 1, . . . , |α|+ p,

(
D̂(qα) · Ξ(p−1)

α,Tκ

)
(j+m−p)•

=



0, . . . , 0︸ ︷︷ ︸
m−p

, 1,− p−1
τ1−τ2−p , 0, . . . , 0︸ ︷︷ ︸

|α|+p−2

 if j = 1

 0, . . . , 0︸ ︷︷ ︸
j+m−p−1

, p−1
τj−1−τj−p ,−

p−1
τj−τj−p+1

, 0, . . . , 0︸ ︷︷ ︸
|α|−j+p−1

 if 1 < j < |α|+ p

0, . . . , 0︸ ︷︷ ︸
|α|+m−1

, p−1
τ|α|+p−1−τ|α|

 if j = |α|+ p.

Moreover, by virtue of Lemma 3.3.4, we have

Yp−1 · S̃(p−1)
Ln

= Yp−1 · Γp−1 · Ŝ(L′n) =

Im−p+1 0

0
Zp−1

Ln

 · Ŝ(L′n)

=


Im−p 0 0

0 1 0

0 0
Zp−1

Ln

 · Ŝ
(L′n) =



Ŝ(m−p) 1m−p 1(m−p)×(Ln+p−2)

0 1 1TLn+p−2

0 0
Zp−1·Ŝ(Ln+p−2)

Ln


.

This shows in particular that for each j = 2, . . . , |α|+ p and k = 2, . . . , Ln + p− 1,

[
Yp−1 · S̃(p−1)

Ln

]
j+m−p, k+m−p

= L−1
n

[
Zp−1 · Ŝ(Ln+p−2)

]
j−1, k−1

= L−1
n ·

k−1∑
`=1

[
Zp−1

]
j−1, `

.

Combining the above results, we have, for any p ≥ 2, j = 1, . . . , |α|+p, and k = 1, . . . , Ln+

p− 1,

[
Zp
]
j, k

=

qα∑
s=1

[
D̂(qα) · Ξ(p−1)

α,Tκ

]
j+m−p, s

·
[
Yp−1 · S̃(p−1)

Ln

]
s, k+m−p

(3.27)
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=



δj,1 if k = 1

1− p−1
Ln(τ1−τ2−p)

∑k−1
`=1

[
Zp−1

]
1,`

if j = 1, and k > 1

p−1
Ln(τj−1−τj−p)

∑k−1
`=1

[
Zp−1

]
j−1,`

− p−1
Ln(τj−τj−p+1)

∑k−1
`=1

[
Zp−1

]
j,`

if 1 < j < |α|+ p, and k > 1

p−1
Ln(τ|α|+p−1−τ|α|)

∑k−1
`=1

[
Zp−1

]
|α|+p−1,`

if j = |α|+ p, and k > 1.

The above results on Zp,α,Tκ,Ln will be exploited to establish uniform bounds for the

uniform Lipschitz property in the next section (cf. Proposition 3.3.2).

3.3.4 Preliminary Uniform Bounds

This section establishes uniform bounds and uniform approximation error bounds

on several of the constructed matrices. These results lay a solid foundation for the proof

of Theorem 3.2.1.

The first result of this section (cf. Proposition 3.3.2) shows that the entries of each

row of Zp,α,Tκ,Ln introduced in Lemma 3.3.4 are sufficiently close to the corresponding

values of a B-spline defined on a certain knot sequence for large Ln. Hence, each row

of Zp,α,Tκ,Ln can be approximated by an appropriate B-spline; more importantly, the

approximation error is shown to be uniformly bounded, regardless of α and Tκ. This

result forms a cornerstone for many critical uniform bounds in the proof of the uniform

Lipschitz property.

Recall in Section 3.3.2 that for a given Kn ∈ N, knot sequence Tκ ∈ TKn , and index

set α ⊆ {1, . . . ,Kn−1} defined in (3.11), the complement of α is given by α = {i1, . . . , i|α|}

with 1 ≤ i1 < · · · < i|α| ≤ Kn − 1. For the given α and Tκ, define the following knot
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sequence with the usual extension κis = 0 for s < 0 and κis = 1 for s > |α|+ 1:

Vα,Tκ :=
{

0 = κi0 < κi1 < κi2 < · · · < κi|α| < κi|α|+1
= 1
}
. (3.28)

Let
{
B
Vα,Tκ
p,j

}|α|+p
j=1

be the B-splines of order p on [0, 1] defined by Vα,Tκ . With this notation,

we present the following proposition.

Proposition 3.3.2. Given Kn, Ln ∈ N, let Mn ∈ N with Mn ≥ m · Kn/cκ,1. Then for

each p = 1, . . . ,m, any Tκ ∈ TKn, any index set α, any j = 1, . . . , |α| + p, and any

k = 1, . . . , Ln,

∣∣∣∣[Zp,α,Tκ,Ln]j, k −BVα,Tκ
p,j

(
k − 1

Ln

)∣∣∣∣ ≤ 6 ·
(
2p−1 − 1

)
·
(
Mn

)p−1

Ln
, ∀ n ∈ N.

Proof. We prove this result by induction on p. Given arbitrary Kn, Ln ∈ N, Tκ ∈ TKn , and

α defined in (3.11), we use Zp to denote Zp,α,Tκ,Ln to simplify notation. Consider p = 1

first. It follows from the proof of statement (2) of Lemma 3.3.4 that Z1 = Eα,Tκ · ẼTκ,Ln .

In view of the definitions of Eα,Tκ and ẼTκ,Ln in (3.16) and (3.24) respectively, we have,

for any j = 1, . . . , |α|+ 1 and k = 1, . . . , Ln,

[
Z1

]
j, k

=

Kn∑
`=1

[
Eα,Tκ

]
j, `
·
[
ẼTκ,Ln

]
`, k

=

Kn∑
`=1

I[κij−1
,κij ) (κ`−1) · I[κ`−1,κ`)

(
k − 1

Ln

)

= I[κij−1
,κij )

(
k − 1

Ln

)
= B

Vα,Tκ
1,j

(
k − 1

Ln

)
. (3.29)

This shows that the proposition holds for p = 1.
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Suppose that the proposition holds for p = 1, . . . , p̂ with 1 ≤ p̂ ≤ m − 1. Consider

p = p̂+ 1 now. Define

θp̂,α,Tκ,Ln := 2Mn max
j=1,...,|α|+p̂

(
max

k=2,...,Ln

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
j, `
−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,j (x) dx

∣∣∣∣∣
)
. (3.30)

We show below that
∣∣[Zp̂+1]j,k − B

Vα,Tκ
p̂+1,j (k−1

Ln
)
∣∣ ≤ θp̂,α,Tκ,Ln for any j = 1, . . . , |α| + p̂ + 1

and k = 1, . . . , Ln. To see this, consider the following cases via the entry formula of Zp̂+1

in (3.27):

(i) k = 1 and j = 1, . . . , |α|+p̂+1. In view of (3.27), we have [Zp̂+1]j,1 = δj,1 = B
Vα,Tκ
p̂+1,j (0)

for each j. This implies that
∣∣[Zp̂+1]j,1 −B

Vα,Tκ
p̂+1,j (0)

∣∣ = 0 ≤ θp̂,α,Tκ,Ln for each j.

(ii) j = 1 and k = 2, . . . , Ln. It follows from (3.2) that

B
Vα,Tκ
p̂+1,1(x) = B

Vα,Tκ
p̂+1,1(0)− p̂

κi1 − κi1−p̂

∫ x

0
B
Vα,Tκ
p̂,1 (t)dt

= 1− p̂

κi1 − κi1−p̂

∫ x

0
B
Vα,Tκ
p̂,1 (t)dt.

Since each τs in (3.27) is τα,Tκ,s defined in (3.17), we have τ1 = κi1 and τ2−p̂−1 =

κi1−p̂ . Hence,

∣∣∣∣[Zp̂+1

]
1,k
−BVα,Tκ

p̂+1,1

(k − 1

Ln

)∣∣∣∣ =
p̂

κi1 − κi1−p̂

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
1,`
−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,1 (t)dt

∣∣∣∣∣
≤ θp̂,α,Tκ,Ln ,

where the last inequality follows from (3.15) due to p̂
κis−κis−p̂

≤ p̂ · Kn/cκ,1 ≤ Mn

for any s.
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(iii) j = 2, . . . , |α|+ p̂ and k = 2, . . . , Ln. It follows from the integral form of (3.2) that

B
Vα,Tκ
p̂+1,j (x) =

p̂

κij−1 − κij−p̂−1

∫ x

0
B
Vα,Tκ
p̂,j−1 (t)dt− p̂

κij − κij−p̂

∫ x

0
B
Vα,Tκ
p̂,j (t)dt.

Using this equation, (3.27) and (3.30), and an argument similar to that of Case (ii),

we have

∣∣∣∣[Zp̂+1

]
j,k
−BVα,Tκ

p̂+1,j

(k − 1

Ln

)∣∣∣∣
≤ p̂

κij−1 − κij−p̂−1

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
j−1,`

−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,j−1 (t)dt

∣∣∣∣∣
+

p̂

κij − κij−p̂

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
j,`
−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,j (t)dt

∣∣∣∣∣ ≤ θp̂,α,Tκ,Ln .

(iv) j = |α|+ p̂+ 1 and k = 2, . . . , Ln. We have from (3.2) that

B
Vα,Tκ
p̂+1,|α|+p̂+1(x) =

p̂

κi|α|+p̂ − κi|α|

∫ x

0
B
Vα,Tκ
p̂,|α|+p̂(t)dt.

This, along with (3.27) and an argument similar to that of Case (ii), leads to

∣∣∣∣[Zp̂+1

]
|α|+p̂+1,k

−BVα,Tκ
p̂+1,|α|+p̂+1

(k − 1

Ln

)∣∣∣∣
=

p̂

κi|α|+p̂ − κi|α|

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
|α|+p̂,` −

∫ k−1
Ln

0
B
Vα,Tκ
p̂,|α|+p̂(t)dt

∣∣∣∣∣ ≤ θp̂,α,Tκ,Ln .

This shows that
∣∣[Zp̂+1]j,k − B

Vα,Tκ
p̂+1,j (k−1

Ln
)
∣∣ ≤ θp̂,α,Tκ,Ln for any j = 1, . . . , |α| + p̂ + 1 and

k = 1, . . . , Ln.

Finally, we show that the upper bound θp̂,α,Tκ,Ln attains the specified uniform bound,

regardless of α and Tκ. When p̂ = 1, in light of (3.29) and B
Vα,Tκ
p̂,j (x) = I[κij−1

,κij )(x) on
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[0, 1), we derive via straightforward computation that for any j = 1, . . . , |α|+ p̂ and each

k = 2, . . . , Ln, ∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
j, `
−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,j (x) dx

∣∣∣∣∣ ≤ 1

Ln
. (3.31)

This implies that θp̂,α,Tκ,Ln ≤ 2Mn/Ln ≤ 6 · (2p̂− 1) · (Mn)p̂/Ln. In what follows, consider

2 ≤ p̂ ≤ m − 1. Letting Cp̂ := 6 · (2p̂−1 − 1), the induction hypothesis states that∣∣[Zp̂]j,k − BVα,Tκ
p̂,j (k−1

Ln
)
∣∣ ≤ Cp̂ · (Mn)p̂−1/Ln for any j = 1, . . . , |α| + p̂ and k = 1, . . . , Ln.

Moreover, for each j, the B-spline B
Vα,Tκ
p̂,j is continuous on [0, 1] and is differentiable except

at (at most) finitely many points in [0, 1]. By the derivative formula (3.2), we have, for

any x ∈ [0, 1] where the derivative exists,

∣∣∣∣(BVα,Tκ
p̂,j (x)

)′∣∣∣∣ =

∣∣∣∣∣ p̂− 1

κij−1 − κij−p̂
B
Vα,Tκ
p̂−1,j−1(x)− p̂− 1

κij − κij−p̂+1

B
Vα,Tκ
p̂−1,j (x)

∣∣∣∣∣
≤ 2(p̂− 1)Kn

cκ,1
, (3.32)

where we use the upper bound on B-splines and the fact that p̂−1
κis−κis−p̂+1

≤ (p̂−1)Kn/cκ,1

for any s. Since Mn ≥ m ·Kn/cκ,1, we have (p̂ − 1)Kn/cκ,1 ≤ Mn. This further implies

via p̂ ≥ 2 that

∣∣∣∣(BVα,Tκ
p̂,j (x)

)′∣∣∣∣ ≤ 2(p̂− 1)Kn

cκ,1
≤ 2Mn ≤ 2(Mn)p̂−1. (3.33)

For each fixed j = 1, . . . , |α|+ p̂+ 1, we apply Lemma 3.3.1 with ñ := Ln, a := 0, b := 1,

sk := k/Ln, % := 1/Ln, f(x) := B
Vα,Tκ
p̂,j (x), v = (vk) :=

(
[Zp̂]j,k

)
, µ1 := Cp̂

(Mn)p̂−1

Ln
, and

µ2 := 2(Mn)p̂−1 to obtain that for each k = 2, . . . , Ln,

∣∣∣∣∣
k−1∑
`=1

1

Ln

[
Zp̂
]
j, `
−
∫ k−1

Ln

0
B
Vα,Tκ
p̂,j (x) dx

∣∣∣∣∣ ≤ Cp̂ · (Mn)p̂−1

Ln
+

3(Mn)p̂−1

Ln
=
(
Cp̂ + 3

)(Mn)p̂−1

Ln
.
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Note that the above upper bound is independent of α, Tκ, j and k. By using this result,

(3.30), and Cp̂ = 6 · (2p̂−1 − 1), we deduce the following uniform bound for θp̂,α,Tκ,Ln

independent of α and Tκ:

θp̂,α,Tκ,Ln ≤ 2Mn ·
(
Cp̂ + 3

)(Mn)p̂−1

Ln
= 6 · (2p̂ − 1) · (Mn)p̂

Ln
.

Therefore, the proposition holds by the induction principle.

The uniform error bound established in Proposition 3.3.2 yields the following im-

portant result for the matrix F
(m)
α,Tκ

constructed in Section 3.3.2.

Proposition 3.3.3. For any given m,Kn ∈ N, any knot sequence Tκ ∈ TKn, and any index

set α and its associated knot sequence Vα,Tκ defined in (3.28), the B-splines {BVα,Tκ
m,` }

qα
`=1

and {BTκ
m,j}Nj=1 satisfy for each ` = 1, . . . , qα,

N∑
j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x) = B

Vα,Tκ
m,` (x), ∀ x ∈ [0, 1]. (3.34)

Proof. Consider m = 1 first. Recall that κi0 = 0, κi|α|+1
= κiqα = 1, and F

(1)
α,Tκ

= Eα,Tκ

(cf. (3.16)). It follows from (3.17) and (3.18) that for each ` = 1, . . . , qα and any x ∈ [0, 1],

Kn∑
j=1

[
F

(1)
α,Tκ

]
`,j
BTκ

1,j(x)

=

Kn−1∑
j=1

I[κi`−1
, κi` )

(κj−1) · I[κj−1, κj)(x) + I[κi`−1
, κi` )

(κKn−1) · I[κKn−1, κKn ](x)

=


I[κi`−1

,κi` )
(x) if ` ∈ {1, . . . , qα − 1}

I[κiqα−1
,κiqα ](x) if ` = qα

= B
Vα,Tκ
1,` (x).
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In what follows, consider m ≥ 2. Recall that when α is the empty set, qα =

N = Kn + m − 1, F
(m)
α,Tκ

= IN , B
V∅,Tκ
m,` = BTκ

m,` for each `, and Zm,∅,Tκ,Ln = Xm,Tκ,Ln ∈

Rqα×(Ln+m−1) (cf. Lemma 3.3.4). Motivated by these observations and F
(m)
α,Tκ
·Xm,Tκ,Ln =

Zm,α,Tκ,Ln for any α and Tκ (cf. Lemma 3.3.4), a key idea for the subsequent proof is to

approximate BTκ
m,j and B

Vα,Tκ
m,` by Xm,Tκ,Ln and Zm,α,Tκ,Ln respectively, where approxima-

tion errors can be made arbitrarily small by choosing a sufficiently large Ln in view of

Proposition 3.3.2.

Fix m, Kn, α, and Tκ. Let Mn := dm · Kn/cκ,1e. Hence both Mn and N :=

Kn + m − 1 are fixed natural numbers. Since we shall choose a sequence of sufficiently

large Ln independent of the above-mentioned fixed numbers, we write Ln as Ls below to

avoid notational confusion. In order to apply Proposition 3.3.2, we first consider rational

x in [0, 1). Let x∗ ∈ [0, 1) be an arbitrary but fixed rational number, and let (Ls) be an

increasing sequence of natural numbers (depending on x∗) such that Ls → ∞ as s → ∞

and for each s, x∗ = i∗s−1
Ls

for some i∗s ∈ {1, . . . , Ls}. (Here i∗s depends on x∗ and Ls

only.) In light of the observations B
V∅,Tκ
m,` = BTκ

m,` and Zm,∅,Tκ,Ls = Xm,Tκ,Ls , it follows

from Proposition 3.3.2 that for each ` = 1, . . . , qα and each s,

∣∣∣[Xm,Tκ,Ls

]
`, i∗s
−BTκ

m,`(x∗)
∣∣∣ =

∣∣∣∣[Zm,∅,Tκ,Ls]`, i∗s −BV∅,Tκ
m,`

( i∗s − 1

Ls

)∣∣∣∣ ≤ 6 (2m − 1)Mm−1
n

Ls
.

(3.35)

By using Zm,α,Tκ,Ls = F
(m)
α,Tκ
· Xm,Tκ,Ls (cf. Lemma 3.3.4), we thus have, for each ` =

1, . . . , qα,

∣∣∣∣∣∣
N∑
j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x∗)−B

Vα,Tκ
m,` (x∗)

∣∣∣∣∣∣
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≤
N∑
j=1

∣∣∣[F (m)
α,Tκ

]
`,j
·
(
BTκ
m,j(x∗)−

[
Xm,Tκ,Ls

]
j,i∗s

)∣∣∣
+

∣∣∣∣∣∣
N∑
j=1

[
F

(m)
α,Tκ

]
`,j
·
[
Xm,Tκ,Ls

]
j,i∗s
−BVα,Tκ

m,` (x∗)

∣∣∣∣∣∣
≤

N∑
j=1

∣∣∣[F (m)
α,Tκ

]
`,j

∣∣∣ · ∣∣∣BTκ
m,j(x∗)−

[
Xm,Tκ,Ls

]
j,i∗s

∣∣∣+

∣∣∣∣[Zm,α,Tκ,Ls]`,i∗s −BVα,Tκ
m,`

( i∗s − 1

Ls

)∣∣∣∣
≤ N ·

[(
2m

cκ,1
·max

(
1,
cκ,2
Kn

)
·N
)m−1

·
(
Kn

)m] · 6(2m−1 − 1)Mm−1
n

Ls

+
6 (2m−1 − 1)Mm−1

n

Ls
,

where the last inequality follows from the bounds given in statement (2) of Lemma 3.3.3,

(3.35), and Proposition 3.3.2. By virtue of the fact that L−1
s → 0 as s → ∞, we have∑N

j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x∗) = BVα,Tκ

m,` (x∗). This shows that (3.34) holds for all rational x ∈

[0, 1). Since BTκ
m,j and B

Vα,Tκ
m,` are continuous on [0, 1] for any j, `, Tκ, and α when m ≥ 2,

we conclude via the density of rational numbers in [0, 1) that (3.34) holds for all x ∈ [0, 1).

Finally, the continuity of BTκ
m,j and B

Vα,Tκ
m,` also shows that (3.34) holds at x = 1.

Using Proposition 3.3.3, we derive tight uniform bounds for both
∥∥(F

(m)
α,Tκ

)T
∥∥
∞ and∥∥K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

∥∥
∞ in the next corollary; these bounds are crucial for the proof of The-

orem 3.2.1 (cf. Section 3.3.5). We introduce more notation. Let e` be the `th standard

basis (column) vector in the Euclidean space, i.e.,
[
e`
]
k

= δ`,k. Moreover, for a given vec-

tor v = (v1, . . . , vk) ∈ Rk, the number of sign changes of v is defined as the largest integer

rv ∈ Z+ such that for some 1 ≤ j1 < · · · < jrv ≤ k, vji · vji+1 < 0 for each i = 1, . . . , rv

[14, page 138]. Clearly, e` has zero sign changes for each `.

Corollary 3.3.1. For any m ∈ N, any knot sequence Tκ ∈ TKn, and any index set α

defined in (3.11), the following hold:
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(1) F
(m)
α,Tκ

is a nonnegative matrix,
∥∥(F

(m)
α,Tκ

)T
∥∥
∞ = 1, and

(2)
∥∥K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

∥∥
∞ ≤

m
cκ,1

.

Proof. When α is the empty set, F
(m)
α,Tκ

is the identity matrix and
∥∥K−1

n Ξ
(m)
α,Tκ

∥∥
∞ ≤

m
cκ,1

(using (3.15)) so that the corollary holds. We thus consider nonempty α as follows.

(1) Observe that the knot sequence Tκ can be formed by inserting additional knots

into the knot sequence Vα,Tκ . By Proposition 3.3.3, we see that for each ` = 1, . . . , qα,∑N
j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x) = B

Vα,Tκ
m,` (x) =

∑qα
i=1[e`

]
i
B
Vα,Tκ
m,i (x) for all x ∈ [0, 1]. Since e` has

zero sign changes, we deduce via [14, Lemma 27, Chapter XI] that
(
F

(m)
α,Tκ

)
`,• has zero sign

changes for each ` = 1, . . . , qα. This shows that either
(
F

(m)
α,Tκ

)
`,• ≥ 0 or

(
F

(m)
α,Tκ

)
`,• ≤ 0. In

view of the nonnegativity of BTκ
m,j and (3.34), the latter implies that B

Vα,Tκ
m,` (x) ≤ 0 for all

x ∈ [0, 1]. But this contradicts the fact that B
Vα,Tκ
m,` (x) > 0 when x is in the interior of the

support of B
Vα,Tκ
m,` . Therefore, F

(m)
α,Tκ

is a nonnegative matrix.

When m = 1, it is clear that ‖(F (m)
α,Tκ

)T ‖∞ = 1. Consider m ≥ 2 below. Thanks to

the nonnegativity of F
(m)
α,Tκ

, we have ‖(F (m)
α,Tκ

)T ‖∞ = ‖(F (m)
α,Tκ

)T ·1qα‖∞. By the construction

of F
(m)
α,Tκ

in (3.22) and the structure of D̂(qα), Ξ
(m−1)
α,Tκ

, F
(m−1)
α,Tκ

, ∆̂m−1,Tκ , and Ŝ(N) given

by (3.19), (3.20), (3.21), and statement (1) of Lemma 3.3.3, we have

1Tqα · F
(m)
α,Tκ

= 1Tqα · D̂
(qα) · Ξ(m−1)

α,Tκ
· F (m−1)

α,Tκ
· ∆̂m−1,Tκ · Ŝ(N)

= eT1 ·
(

Ξ
(m−1)
α,Tκ

· F (m−1)
α,Tκ

· ∆̂m−1,Tκ

)
· Ŝ(N) = eT1 ·

1 0

0 ?

 · Ŝ(N)

= eT1 · Ŝ(N) = 1TN .

This shows that ‖(F (m)
α,Tκ

)T · 1qα‖∞ = 1, completing the proof of statement (1).
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(2) It follows from (3.34) that for each ` = 1, . . . , qα,
∑N

j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x) =

0 except on [κi`−m , κi` ], i.e., the support of B
Vα,Tκ
m,` . Note that is := s if s < 0, and

i|α|+p := Kn + p − 1 for any p = 1, . . . ,m; furthermore, κi = 0 if i ≤ 0 and κi = 1

for i ≥ |α| + 1. Additionally, for any r = 1, . . . ,Kn, the B-splines BTκ
m,j that are not

identically zero on [κr−1, κr] are linearly independent when restricted to [κr−1, κr]. Hence,

if
∑N

j=1

[
F

(m)
α,Tκ

]
`,j
BTκ
m,j(x) = B

Vα,Tκ
m,` (x) = 0,∀ x ∈ [κr−1, κr] for some r, then

[
F

(m)
α,Tκ

]
`,j

= 0

for each j = r, r + 1, . . . , r + m − 1. This, along with the fact that B
Vα,Tκ
m,` (x) = 0

except on [κi`−m , κi` ], shows that
[
F

(m)
α,Tκ

]
`,j

= 0 for all j = 1, 2, . . . , i`−m + m − 1 and

j = i` + 1, i` + 2, . . . , N . Moreover, by the nonnegativity of F
(m)
α,Tκ

and
∥∥(F

(m)
α,Tκ

)T
∥∥
∞ = 1,

we see that all nonzero entries of F
(m)
α,Tκ

are less than or equal to one. Therefore, for each

` = 1, . . . , qα,

∥∥∥∥(K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ

)
`,•

∥∥∥∥
∞

= K−1
n

m

κi` − κi`−m

i∑̀
j=i`−m+m

[
F

(m)
α,Tκ

]
`,j

≤ K−1
n ·

m

κi` − κi`−m
·
(
i` − i`−m −m+ 1

)
.

Since κi` − κi`−m ≥
cκ,1
Kn

(
i` − i`−m − m + 1

)
> 0 (see the discussions before (3.15)), we

obtain, for each ` = 1, . . . , qα,
∥∥(K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

)
`,•
∥∥
∞ ≤ m/cκ,1. This completes the proof

of statement (2).

We exploit Proposition 3.3.2 to derive more uniform bounds and uniform error

bounds. Many of these bounds require Ln to be sufficiently large and satisfy suitable

order conditions with respect to Kn. We introduce these order conditions as follows. Let

(Kn) be an increasing sequence of natural numbers with Kn → ∞ as n → ∞. We say

that a sequence (Ln) of natural numbers satisfies
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Property H: if there exist two increasing sequences (Mn) and (Jn) of natural numbers

with Mn ≥ m·Kn/cκ,1 for each n and (Jn)→∞ as n→∞ such that Ln = Jn ·Mm+1
n

for each n, where cκ,1 > 0 is used to define TKn in (3.14), and m is the fixed spline

order.

Note that the sequence (Ln) implicitly depends on the sequence (Kn) through (Mn) in

this property.

Define the truncated submatrix of Zm,α,Tκ,Ln ∈ Rqα×(Ln+m−1):

Hα,Tκ,Ln :=
(
Zm,α,Tκ,Ln

)
1:qα, 1:Ln

∈ Rqα×Ln . (3.36)

The importance of Hα,Tκ,Ln is illustrated in the following facts for given α and Tκ ∈ TKn :

(a) It follows from statement (2) of Lemma 3.3.4 that F
(m)
α,Tκ
· Xm,Tκ,Ln = Zm,α,Tκ,Ln .

Hence, by (3.36), we obtain

Hα,Tκ,Ln =
(
Zm,α,Tκ,Ln

)
1:qα,1:Ln

= F
(m)
α,Tκ
·
(
Xm,Tκ,Ln

)
1:N,1:Ln

.

(b) In light of the definition of Λ̃Tκ,Kn,Ln (cf. (3.26)) and the result in (a), we have

K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· Λ̃Tκ,Kn,Ln

(
F

(m)
α,Tκ

)T
=

Ξ
(m)
α,Tκ

Ln
· F (m)

α,Tκ

(
Xm,Tκ,Ln

)
1:N,1:Ln

·
(
F

(m)
α,Tκ

(
Xm,Tκ,Ln

)
1:N,1:Ln

)T
=

1

Ln
· Ξ(m)

α,Tκ
·Hα,Tκ,Ln ·

(
Hα,Tκ,Ln

)T
. (3.37)

This matrix will be used in Section 3.3.5 to approximate

K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ

ΛKn,P,Tκ
(
F

(m)
α,Tκ

)T
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in the proof of Theorem 3.2.1.

(c) Note that F
(m)
α,Tκ

is the identity matrix when α is the empty set; see the comments

below (3.22). This observation, along with the result in (a), shows that if α is the

empty set, then
(
Xm,Tκ,Ln

)
1:N,1:Ln

= Hα,Tκ,Ln . Moreover, it follows from (3.37) that

when α is the empty set, Λ̃Tκ,Kn,Ln = Kn
Ln
Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T
. These results will be

used in Proposition 3.3.5.

With the definition of Hα,Tκ,Ln , we establish a uniform error bound between a B-

spline Gramian matrix and (Ln)−1 · Ξ
(m)
α,Tκ
· Hα,Tκ,Ln ·

(
Hα,Tκ,Ln

)T
. In light of (3.37),

this result is critical to obtaining a uniform bound of the `∞-norm of the matrix prod-

uct
(
Ξ′αFαΛKn,P,Tκ F

T
α

)−1
, a key step toward the uniform Lipschitz property. To this

end, we first introduce a B-spline Gramian matrix. Consider the mth order B-splines{
B
Vα,Tκ
m,j

}|α|+m
j=1

corresponding to the knot sequence Vα,Tκ defined in (3.28) associated with

any index set α and Tκ ∈ TKn . Specifically, define the Gramian matrix Gα,Tκ ∈ Rqα×qα

(where we recall qα := |α|+m) as

[
Gα,Tκ

]
i, j

:=

〈
B
Vα,Tκ
m,i , B

Vα,Tκ
m,j

〉
∥∥BVα,Tκ

m,i

∥∥
L1

, ∀ i, j = 1, . . . , qα. (3.38)

Proposition 3.3.4. Let (Kn) be an increasing sequence with Kn → ∞ as n → ∞, and

(Ln) be of Property H defined by (Jn) and (Mn). Let Gα,Tκ and Hα,Tκ,Ln be defined for

Tκ ∈ TKn and α. Then there exists n∗ ∈ N, which depends on (Ln) only and is independent

of Tκ and α, such that for any Tκ ∈ TKn with n ≥ n∗ and any index set α,

∥∥∥∥Gα,Tκ − 1

Ln
· Ξ(m)

α,Tκ
·Hα,Tκ,Ln ·

(
Hα,Tκ,Ln

)T∥∥∥∥
∞
≤ 6 · cκ,1 · (3 · 2m−1 − 2)

Jn
, ∀ n ≥ n∗,
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where Ξ
(m)
α,Tκ

is defined in (3.19).

Proof. Given arbitrary α, Tκ ∈ TKn , and (Ln) of Property H, we use H and Ξ(m) to

denote Hα,Tκ,Ln and Ξ
(m)
α,Tκ

respectively to simplify notation. Also take rk := k−1
Ln

for

k = 1, . . . , Ln. When m = 1, Gα,Tκ is diagonal (see the summary of B-splines at the

beginning of Section 3.2 for the reason), and so is H · HT . Using
(
‖BVα,Tκ

m,j ‖L1

)−1
=

m
κij−κij−m

=
[
Ξ(m)

]
j,j

and a result similar to (3.31), the desired result follows easily. We

consider m ≥ 2 next. It follows from the definition of H ∈ Rqα×Ln and Proposition 3.3.2

that for each j = 1, . . . , qα and k = 1, . . . , Ln,

∣∣∣[H]j,k −BVα,Tκ
m,j (rk)

∣∣∣ =
∣∣∣[Zm,α,Tκ,Ln]j,k −BVα,Tκ

m,j (rk)
∣∣∣ ≤ Cm(Mn)m−1

Ln
≤ Cm
Jn(Mn)2

(3.39)

for any n ∈ N, where Cm := 6 · (2m−1 − 1). Since 0 ≤ BVα,Tκ
m,j (x) ≤ 1 for each j, and

[
H
]
j,`
·
[
H
]
k,`
−BVα,Tκ

m,j (r`) ·B
Vα,Tκ
m,k (r`)

=
([
H
]
j,`
−BVα,Tκ

m,j (r`)
)
·
([
H
]
k,`
−BVα,Tκ

m,k (r`)
)

+B
Vα,Tκ
m,j (r`) ·

([
H
]
k,`
−BVα,Tκ

m,k (r`)
)

+B
Vα,Tκ
m,k (r`) ·

([
H
]
j,`
−BVα,Tκ

m,j (r`)
)
,

we deduce, via (3.39), that for each j, k = 1, . . . , qα and ` = 1, . . . , Ln,

∣∣∣[H]j,` · [H]k,` −BVα,Tκ
m,j (r`) ·B

Vα,Tκ
m,k (r`)

∣∣∣ ≤ ( Cm
Jn(Mn)2

)2

+
2Cm

Jn(Mn)2
, ∀ n ∈ N.

Since m ≥ 2,
(
B
Vα,Tκ
m,j (x)B

Vα,Tκ
m,k (x)

)
is continuous and differentiable on [0, 1] except at (at

most) finitely many points in [0, 1]. In light of (3.33) we have, for any x ∈ [0, 1] where the
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derivative exists,

∣∣∣∣(BVα,Tκ
m,j (x)B

Vα,Tκ
m,k (x)

)′∣∣∣∣ =

∣∣∣∣(BVα,Tκ
m,j

)′
(x)B

Vα,Tκ
m,k (x) +B

Vα,Tκ
m,j (x)

(
B
Vα,Tκ
m,k

)′
(x)

∣∣∣∣ ≤ 4Mn.

(3.40)

Combining these results with
(
‖BVα,Tκ

m,j ‖L1

)−1
= m

κij−κij−m
=
[
Ξ(m)

]
j,j

, we apply Lemma 3.3.1

with ñ := Ln, a := 0, b := 1, sk := k/Ln, % := 1/Ln, f(x) := B
Vα,Tκ
m,j (x) · BVα,Tκ

m,k (x),

v := (v`) =
(
[H]j,` · [H]k,`

)
, µ1 :=

(
Cm

Jn(Mn)2

)2
+ 2Cm

Jn(Mn)2 , and µ2 := 4Mn to obtain n∗ ∈ N

depending on (Ln) only such that for any j, k = 1, . . . , qα,

∣∣∣∣ 1

Ln

[
Ξ(m) ·H ·HT

]
j, k
−
[
Gα,Tκ

]
j, k

∣∣∣∣ =

∣∣∣∣∣∣ 1

Ln

[
Ξ(m) ·H ·HT

]
j, k
−

〈
B
Vα,Tκ
m,j , B

Vα,Tκ
m,k

〉
∥∥BVα,Tκ

m,j

∥∥
L1

∣∣∣∣∣∣
=

m

κij − κij−m

∣∣∣∣∣
Ln∑
`=1

v`
Ln
−
∫ 1

0
f(t)dt

∣∣∣∣∣ ≤ Mn ·
[( Cm
Jn(Mn)2

)2
+

2Cm
Jn(Mn)2

+
6Mn

Ln

]

≤ 3Cm + 6

JnMn
, ∀ n ≥ n∗,

where we use Ln = Jn · (Mn)m+1. Since Gα,Tκ has qα columns and qα = |α| + m ≤

Kn +m− 1 ≤ m ·Kn ≤ cκ,1Mn, we may deduce that for any α and Tκ ∈ TKn ,

∥∥∥∥Gα,Tκ − 1

Ln
· Ξ(m) ·H ·HT

∥∥∥∥
∞
≤ qα ·

3Cm + 6

JnMn
≤ cκ,1 · (3Cm + 6)

Jn
, ∀ n ≥ n∗.

The proof is completed by noting that 3Cm + 6 = 6 · (3 · 2m−1 − 2).

An immediate consequence of Proposition 3.3.4 is the invertibility of

Ξ
(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T
/Ln

and the uniform bound of its inverse in the `∞-norm.
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Corollary 3.3.2. Let (Kn) be an increasing sequence with Kn →∞ as n→∞, and (Ln)

be of Property H defined by (Jn) and (Mn). Then there exists n′∗ ∈ N, which depends on

(Ln) only, such that for any Tκ ∈ TKn with n ≥ n′∗, any index set α, and any n ≥ n′∗,

1
Ln

Ξ
(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T
is invertible, and

∥∥( 1

Ln
Ξ

(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T )−1∥∥
∞ ≤

3ρm
2
,

where ρm is a positive constant depending on m only.

Proof. Choose arbitrary α, Tκ ∈ TKn , and (Ln) of Property H. It follows from [64, Theo-

rem I] (cf. Theorem 3.2.2) that the Gramian matrix Gα,Tκ is invertible and there exists a

positive constant ρm such that for any Tκ ∈ TKn and any index set α, ‖(Gα,Tκ)−1‖∞ ≤ ρm.

Furthermore, it follows from Proposition 3.3.4 that for any Tκ ∈ TKn and any index set α,

‖Gα,Tκ− 1
Ln

Ξ
(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T ‖∞ ≤ 6cκ,1(3·2m−1−2)/Jn, ∀n ≥ n∗. Since Jn →∞

as n→∞, we deduce from Lemma 3.3.2 that there exists n′∗ ∈ N with n′∗ ≥ n∗ such that for

any Tκ ∈ TKn with n ≥ n′∗, any index set α, and any n ≥ n′∗, 1
Ln

Ξ
(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T
is invertible, and

∥∥( 1
Ln

Ξ
(m)
α,Tκ

Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T )−1∥∥
∞ ≤

3
2ρm.

For any Kn ∈ N and Tκ ∈ TKn , let {BTκ
m,i}Ni=1 be the B-splines of order m defined

by the knot sequence Tκ, where we recall that N := Kn +m− 1. Note that BTκ
m,i is equal

to B
Vα,Tκ
m,i when α is the empty set. For the given Tκ, define the N ×N matrix Λ̂Kn,Tκ as

[
Λ̂Kn,Tκ

]
i,j

:= Kn ·
〈
BTκ
m,i, B

Tκ
m,j

〉
, ∀ i, j = 1, . . . , N. (3.41)

Clearly, Λ̂Kn,Tκ is positive definite and invertible. The following result presents important

properties of Λ̂Kn,Tκ . In particular, it shows via Λ̂Kn,Tκ that Λ̃Tκ,Kn,Ln approximates
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ΛKn,P,Tκ with a uniform error bound, which is crucial to the proof of the uniform Lipschitz

property. Note that the constant ρm > 0 used below is given in [64, Theorem I] (cf.

Theorem 3.2.2) and depends on m only.

Proposition 3.3.5. Let (Kn) be an increasing sequence with Kn → ∞ as n → ∞, and

(Ln) be of Property H defined by (Jn) and (Mn). The following hold:

(1) For any Kn and Tκ ∈ TKn, ‖
(
Λ̂Kn,Tκ

)−1‖∞ ≤ mρm/cκ,1;

(2) There exists n∗ ∈ N, depending on (Ln) only, such that for any Tκ ∈ TKn with

n ≥ n∗,

∥∥∥Λ̃Tκ,Kn,Ln − Λ̂Kn,Tκ

∥∥∥
∞
≤ 6 · cκ,2 · cκ,1 · (3 · 2m−1 − 2)

Jn
, ∀ n ≥ n∗;

(3) For any n, Kn, P ∈ Pn, and Tκ ∈ TKn,

∥∥∥ΛKn,P,Tκ − Λ̂Kn,Tκ

∥∥∥
∞
≤ (2m− 1)

(
6m2cωcκ,2

cκ,1
+ 3cω

)
Kn

n
.

Proof. (1) For any Tκ ∈ TKn , it follows from (3.38) and (3.41) that when α is the empty set,

G∅,Tκ = K−1
n ·Ξ

(m)
∅,Tκ ·Λ̂Kn,Tκ . Hence, in light of ‖Ξ(m)

∅,Tκ‖∞ ≤ mKn/cκ,1 and ‖
(
G∅,Tκ

)−1‖∞ ≤

ρm for any Tκ ∈ TKn , we have

∥∥∥(Λ̂Kn,Tκ)−1
∥∥∥
∞

= K−1
n

∥∥∥(G∅,Tκ)−1 · Ξ(m)
∅,Tκ

∥∥∥
∞
≤ K−1

n · ρm ·
mKn

cκ,1
=

mρm
cκ,1

, ∀ Tκ ∈ TKn .

(2) Recall from the comment below (3.37) that Λ̃Tκ,Kn,Ln = Kn
Ln
Hα,Tκ,Ln

(
Hα,Tκ,Ln

)T
when α is the empty set. Also, noting from the proof of statement (1) that Λ̂Kn,Tκ =

Kn ·
(
Ξ

(m)
∅,Tκ

)−1 ·G∅,Tκ , we obtain via Proposition 3.3.4 that there exists n∗ ∈ N, depending

98



on (Ln) only, such that for any Tκ ∈ TKn with n ≥ n∗,

∥∥Λ̃Tκ,Kn,Ln − Λ̂Kn,Tκ
∥∥
∞ = Kn ·

∥∥∥∥(Ξ(m)
∅,Tκ

)−1 ·
( 1

Ln
Ξ

(m)
∅,TκH∅,Tκ,Ln

(
H∅,Tκ,Ln

)T −G∅,Tκ)∥∥∥∥
∞

≤ Kn ·
∥∥(Ξ(m)

∅,Tκ

)−1∥∥
∞ ·
∥∥∥∥ 1

Ln
Ξ

(m)
∅,TκH∅,Tκ,Ln

(
H∅,Tκ,Ln

)T −G∅,Tκ∥∥∥∥
∞

≤ Kn ·
cκ,2
Kn
· 6 · cκ,1 · (3 · 2m−1 − 2)

Jn

=
6 · cκ,2 · cκ,1 · (3 · 2m−1 − 2)

Jn
, ∀ n ≥ n∗.

(3) Consider an arbitrary knot sequence Tκ ∈ TKn given by Tκ = {0 = κ0 <

κ1 < · · · < κKn−1 < κKn = 1} with the usual extension. Furthermore, let P ∈ Pn

be a design point sequence given by P = {0 = x0 < x1 < · · · < xn = 1}. Recall the

design matrix X̂ ∈ R(n+1)×N with [X̂]`,i = BTκ
m,i(x`) for each ` and i, and ΛKn,P,Tκ =

Kn · X̂TΘnX̂ ∈ RN×N with Θn = diag
(
x1 − x0, x2 − x1, . . . , xn+1 − xn

)
. When m = 1,

both Λ̂Kn,Tκ and ΛKn,P,Tκ are diagonal matrices, and the desired bound follows easily

from an argument similar to that of Proposition 3.3.4. Hence, it suffices to consider

m ≥ 2 below. For any fixed i, j = 1, . . . , N , we assume that there are (ñi + 1) design

points in P on the support [κi−m, κi] of BTκ
m,i. Specifically, there exists ri ∈ Z+ such that:

(i) xri , xri+1, . . . , xri+ñi ∈ [κi−m, κi]; (ii) xri = 0 or xri−1 < κi−m; and (iii) xri+ñi = 1 or

xri+ñi+1 > κi. Hence, letting ω` := x` − x`−1 for ` = 1, . . . , n + 1, it follows from the

definitions of ΛKn,P,Tκ and Λ̂Kn,Tκ that

∣∣∣∣[ΛKn,P,Tκ − Λ̂Kn,Tκ

]
i, j

∣∣∣∣
= Kn

∣∣∣∣∣∣
ri+ñi∑
`=ri

ω` ·BTκ
m,i(x`) ·B

Tκ
m,j(x`)−

∫ κi

κi−m

BTκ
m,i(x)BTκ

m,j(x) dx

∣∣∣∣∣∣
≤ Kn

∣∣∣∣∣∣
ri+ñi−1∑
`=ri

ω` ·BTκ
m,i(x`) ·B

Tκ
m,j(x`)−

∫ xri+ñi

xri

BTκ
m,i(x)BTκ

m,j(x) dx

∣∣∣∣∣∣
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+Kn

∫ xri

κi−m

BTκ
m,i(x)BTκ

m,j(x) dx

+Kn

∫ κi

xri+ñi

BTκ
m,i(x)BTκ

m,j(x) dx+Kn · ωri+ñiB
Tκ
m,i(xri+ñi) ·B

Tκ
m,j(xri+ñi)

≤ Kn

∣∣∣∣∣∣
ri+ñi∑
`=ri+1

ω`−1B
Tκ
m,i(x`−1)BTκ

m,j(x`−1)−
∫ xri+ñi

xri

BTκ
m,i(x)BTκ

m,j(x) dx

∣∣∣∣∣∣+ 3cω
Kn

n
,

using the fact that for each i and x ∈ [0, 1], 0 ≤ BTκ
m,i(x) ≤ 1 and max`(xri − κi−m, κi −

xri+ñi , ω`) ≤ cω/n.

By virtue of (3.32) and (3.40), it is easy to verify that
∣∣∣(BTκ

m,i(x)BTκ
m,j(x)

)′∣∣∣ ≤ 4mKn
cκ,1

whenever the derivative exists on [0, 1]. We apply Lemma 3.3.1 to the first term on the

right hand side with ñ := ñi, a := xri , b := xri+ñi , sk := xri+k, % := cω/n, f(x) :=

BTκ
m,i(x)BTκ

m,j(x), which is continuous on [0, 1] and is differentiable except at (at most)

finitely many points, v = (v`) ∈ Rñi given by v` := BTκ
m,i(xri+`−1)BTκ

m,j(xri+`−1), µ1 := 0,

and µ2 := 4mKn/cκ,1, and we obtain

Kn

∣∣∣∣∣∣
ri+ñi∑
`=ri+1

ω`−1B
Tκ
m,i(x`−1)BTκ

m,j(x`−1)−
∫ xri+ñi

xri

BTκ
m,i(x)BTκ

m,j(x) dx

∣∣∣∣∣∣
≤ Kn ·

3

2
· 4mKn

cκ,1
· cω
n
·
(
κi − κi−m

)
≤ 6mK2

ncω
ncκ,1

· mcκ,2
Kn

=
6m2cωcκ,2

cκ,1
· Kn

n
.

Combining the above results yields
∣∣[ΛKn,P,Tκ − Λ̂Kn,Tκ ]i, j

∣∣ ≤ (6m2cωcκ,2
cκ,1

+ 3cω
)
Kn
n for any

i, j = 1, . . . , N . It is noted that BTκ
m,iB

Tκ
m,j ≡ 0 on [0, 1] whenever |i − j| ≥ m. Hence

both ΛKn,P,Tκ and Λ̂Kn,Tκ are banded matrices with bandwidth m. Thus, for any n, Kn,

P ∈ Pn, and Tκ ∈ TKn ,

∥∥∥ΛKn,P,Tκ − Λ̂Kn,Tκ

∥∥∥
∞
≤ (2m− 1)

(
6m2cωcκ,2

cκ,1
+ 3cω

)
Kn

n
.
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This completes the proof of statement (3).

3.3.5 Proof of the Main Result

In this section, we use the results established in the previous sections to show that

the uniform Lipschitz property stated in Theorem 3.2.1 holds. Fix the B-spline order

m ∈ N. Let the strictly increasing sequence (Kn) be such that Kn → ∞ and Kn/n → 0

as n→∞. Consider the sequence (Ln):

Ln := Kn ·
(⌈

mKn

cκ,1

⌉)m+1

, ∀ n ∈ N.

Clearly, (Ln) satisfies Property H as Jn := Kn, and Mn := dmKncκ,1
e depends on (Kn) only.

For any P ∈ Pn, Tκ ∈ TKn , and any index set α defined in (3.11), recall that

qα = |α| + m, N = Kn + m − 1, and ΛKn,P,Tκ ∈ RN×N . We construct the following

matrices based on the development in the past subsections: F
(m)
α,Tκ

∈ Rqα×N (cf. (3.22)),

Ξ
(m)
α,Tκ
∈ Rqα×qα (cf. (3.19)), Xm,Tκ,Ln ∈ RN×(Ln+m−1) (cf. (3.25)), Λ̃Tκ,Kn,Ln ∈ RN×N (cf.

(3.26)), and Hα,Tκ,Ln ∈ Rqα×Ln (cf. (3.36)). In light of Proposition 3.3.1 and (3.12),

b̂αP,Tκ(ȳ) =
(
F

(m)
α,Tκ

)T · (F (m)
α,Tκ

ΛKn,P,Tκ
(
F

(m)
α,Tκ

)T )−1 · F (m)
α,Tκ

ȳ.

Note that

∥∥∥∥(F (m)
α,Tκ

)T
·
(
F

(m)
α,Tκ
· ΛKn,P,Tκ

(
F

(m)
α,Tκ

)T)−1
· F (m)

α,Tκ

∥∥∥∥
∞

≤
∥∥∥(F (m)

α,Tκ

)T∥∥∥
∞
·
∥∥∥∥Kn

(
Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· ΛKn,P,Tκ

(
F

(m)
α,Tκ

)T)−1
∥∥∥∥
∞
·
∥∥∥K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

∥∥∥
∞
.

(3.42)
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By Corollary 3.3.1, we have the uniform bounds
∥∥(F (m)

α,Tκ

)T∥∥
∞ = 1 and

∥∥K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ

∥∥
∞ ≤

m/cκ,1, regardless of Kn, α, Tκ ∈ TKn .

We now develop a uniform bound for
∥∥Kn

(
Ξ

(m)
α,Tκ

F
(m)
α,Tκ
·ΛKn,P,Tκ ·

(
F

(m)
α,Tκ

)T )−1∥∥
∞ on

the right hand side of (3.42). Recall from (3.37) that

K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· Λ̃Tκ,Kn,Ln

(
F

(m)
α,Tκ

)T
=

1

Ln
· Ξ(m)

α,Tκ
·Hα,Tκ,Ln ·

(
Hα,Tκ,Ln

)T
.

By Corollary 3.3.2, we deduce the existence of ñ? ∈ N, which depends on (Kn) only, such

that for any Tκ ∈ TKn with n ≥ ñ?, α, and n ≥ ñ?, K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· Λ̃Tκ,Kn,Ln ·

(
F

(m)
α,Tκ

)T
is

invertible and
∥∥Kn

[
Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· Λ̃Tκ,Kn,Ln ·

(
F

(m)
α,Tκ

)T ]−1∥∥
∞ ≤

3ρm
2 . Moreover, noting that

∥∥∥K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· Λ̃Tκ,Kn,Ln ·

(
F

(m)
α,Tκ

)T −K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· ΛKn,P,Tκ ·

(
F

(m)
α,Tκ

)T∥∥∥
∞

≤
∥∥∥K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

∥∥∥
∞
·
∥∥∥Λ̃Tκ,Kn,Ln − ΛKn,P,Tκ

∥∥∥
∞
·
∥∥∥(F (m)

α,Tκ

)T∥∥∥
∞

and using Proposition 3.3.5 as well as the uniform bounds for both
∥∥(F (m)

α,Tκ

)T∥∥
∞ and∥∥K−1

n Ξ
(m)
α,Tκ

F
(m)
α,Tκ

∥∥
∞ from Corollary 3.3.1, we further deduce via Lemma 3.3.2 that there

exists n∗ ∈ N with n∗ ≥ ñ? such that for any α, P ∈ Pn, and Tκ ∈ TKn with n ≥ n∗,

K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· ΛKn,P,Tκ ·

(
F

(m)
α,Tκ

)T
is invertible and

∥∥∥∥(K−1
n Ξ

(m)
α,Tκ

F
(m)
α,Tκ
· ΛKn,P,Tκ ·

(
F

(m)
α,Tκ

)T)−1
∥∥∥∥
∞
≤ 9ρm

4
.

Finally, combining the above three uniform bounds, we conclude, in light of (3.42),

that the theorem holds with the positive constant c∞ := 9mρm/(4cκ,1) depending only on

m and cκ,1, and n∗ ∈ N depending on (Kn) only (when m, cω, cκ,1, cκ,2 are fixed).
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3.4 Summary

This chapter establishes a critical uniform Lipschitz property for a B-spline estima-

tor subject to general nonnegative derivative constraints with (possibly) unevenly spaced

design points and/or knots. Subsequent chapters will consider the B-spline estimator rate

of convergence for a variety of nonnegative derivative constraints.
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CHAPTER IV

Nonnegative Derivative Constrained B-spline Estimator:

Bias, Stochastic Error, and Convergence Rate in the

Supremum Norm

In the previous chapter, we established a uniform Lipschitz property for a nonneg-

ative derivative constrained B-spline estimator (c.f. Theorem 3.2.1). In this chapter, we

will apply that result in order to bound the estimator risk (or error) in the supremum

norm. Moreover, the risk associated with a given estimator can be decomposed into the

sum of two terms: (i) the bias, which stems from approximating a true function by another

function (e.g., a spline), and (ii) the stochastic error, which arises from random error or

noise. The goal of this chapter is to bound both of these quantities in the supremum norm

for the nonnegative derivative constrained B-spline estimator of Chapter III. We will then

use the results from this chapter to demonstrate that this estimator achieves the optimal

asymptotic performance with respect to the supremum norm over a suitable Hölder class

in Chapter V, for certain nonnegative derivative constraints.
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4.1 Introduction

Measuring the performance of an estimator boils down to bounding the estimator

bias and stochastic error. For an unconstrained B-spline estimator, standard techniques

are often used to bound both of these quantities [40, 77]. However, the nonnegative

derivative constraints on the B-spline estimator from Chapter III complicate the analysis

of this estimator’s bias, even though the uniform Lipschitz property of the previous chapter

has already been established. Specifically, the remaining difficulty in bounding the bias in

the supremum norm arises in showing that each smooth nonnegative derivative constrained

function f can be accurately approximated by a spline fB with the same nonnegative

derivative constraint. Once the existence of such a spline is verified for each f , the uniform

Lipschitz property of Chapter III may then be applied to produce a bound on the estimator

bias with the same order of magnitude as the approximation error, ‖f − fB‖∞. Standard

techniques and the uniform Lipschitz property may then be used to bound the constrained

B-spline estimator stochastic error, establish the estimator consistency, and provide the

estimator convergence rate.

This chapter is organized as follows. In Section 4.2, we demonstrate that, under

certain conditions, each nonnegative derivative constrained function in a suitable Hölder

class may be accurately approximated by a spline with the same nonnegative derivative

constraint. This result is then used in Section 4.3, along with the uniform Lipschitz

property, to bound the Chapter III nonnegative derivative constrained B-spline estimator

bias and stochastic error in the supremum norm. The consistency and convergence rate

of this estimator are also established in this section. A summary is given in Section 4.4.
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Notation: Given a function g : [a, b] → R, denote its supremum-norm (or simply

sup-norm) by ‖g‖∞ := supx∈[a,b] |g(x)|. Also, let E denote the expectation operator, let

P(A) denote the probability of an event A, and let f (`) denote the `th derivative of the

function f . Finally, we write Y ∼ N (0, σ2) if Y is a mean zero, normal random variable

with variance σ2.

4.2 Nonnegative Derivative Constrained Spline Approximations

In this section, we consider the problem of approximating a nonnegative derivative

constrained function in an appropriate Hölder class by a spline with the same constraint,

for a suitable fixed spline knot sequence. Moreover, we will explore the accuracy and

limitations of such spline approximations. The results from this section will prove invalu-

able in measuring the performance of the Chapter III nonnegative derivative constrained

B-spline estimator f̂BP,Tκ (c.f. (3.7)-(3.8)) in Section 4.3.

For fixed m ∈ N, recall the set of constrained functions Sm given by (3.1) in Chap-

ter III. Fix r ∈ (m− 1,m] and L > 0. Define γ := r − (m− 1) and the Hölder class

Hr
L :=

{
f : [0, 1]→ R

∣∣∣ |f (m−1)(x1)− f (m−1)(x2)| ≤ L|x1 − x2|γ ,∀x1, x2 ∈ [0, 1]
}
, (4.1)

so we may then construct the family of functions Sm,H(r, L) := Sm ∩Hr
L. Fix constants

cκ,1, cκ,2 > 0 such that 0 < cκ,1 ≤ 1 ≤ cκ,2. For each Kn ∈ N, define the family of knot

sequences TKn just as in (3.14). Finally, for each Tκ ∈ TKn , define the set of constrained

splines

STκ+,m :=
{
fB : [0, 1]→ R

∣∣∣ fB is an order m spline with knots in Tκ and fB ∈ Sm
}
.

(4.2)
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It is known that for each Kn ∈ N, Tκ ∈ TKn , and f ∈ Hr
L, there exists an order m

spline fB with knot sequence Tκ such that ‖f − fB‖∞ ≤ cK−rn , where c > 0 is a constant

independent of f , depending only on m, r, L, and cκ,2. Such an accurate approximation

of f is called a Jackson type approximation [14, pg. 149]. In our work, we are interested

in finding Jackson type approximations of functions f ∈ Sm,H(r, L) that preserve the

nonnegative derivative constraint of f ∈ Sm; such a constraint preserving Jackson type

approximation is critical in the performance analysis of the Chapter III constrained B-

spline estimator. To this end, we wish to determine whether or not the following statement

(J) holds for each m ∈ N.

(J) There exists a constant c∞,m > 0 depending only on m, r, L, and cκ,2 such that

for each Kn ∈ N, Tκ ∈ TKn , and f ∈ Sm,H(r, L), there exists an order m spline

fB ∈ STκ+,m satisfying ‖f − fB‖∞ ≤ c∞,mK−rn .

By [6, 16], (J) holds for m = 1, with c∞,1 := Lcrκ,2 (take fB to be the piecewise

constant least squares approximation or interpolant of f). Similarly, when m = 2, (J)

holds, with c∞,2 := Lcrκ,2 [5, 6, 80] (take fB to be the piecewise linear interpolant of f at

the knots in Tκ). In what follows, we examine statement (J) for higher order derivative

constraints.

In Section 4.2.1, we will see that (J) holds for m = 3 (c.f. Proposition 4.2.1). How-

ever, in Section 4.2.2, we will show that (J) does not hold for m > 3 (c.f. Proposition 4.2.2).

In spite of this, we will still be able to demonstrate that a weaker version of (J) holds

for m > 3 in Proposition 4.2.3. Moreover, if we restrict f to an appropriate subclass of

Sm,H(r, L) (c.f. (4.3)), then we can show that statement (J) holds when Sm,H(r, L) in (J)

is replaced by that subclass.
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4.2.1 Third Order Spline Approximation with Increasing Second Derivative

In this section, we will see that (J) holds for m = 3. Moreover, suppose that m = 3,

so that r ∈ (2, 3]. We have the following proposition.

Proposition 4.2.1. Statement (J) holds for m = 3, with c∞,3 :=
3Lcrκ,2

2 .

A proof of this result for evenly spaced knots is given in [38]. Moreover, if cκ,1 =

cκ,2 = 1, so that Tκ := T := {0 < K−1
n < 2K−1

n < · · · < 1}, then for each f ∈ S3,H(r, L),

there exists fB ∈ ST+,3 such that

‖f − fB‖∞ ≤
3

2
K−2
n sup
|x−y|≤K−1

n

|f ′′(x)− f ′′(y)| ≤ 3

2
LK−rn ,

since f ∈ Hr
L. If instead cκ,1 and cκ,2 are any fixed constants with 0 < cκ,1 ≤ 1 ≤ cκ,2,

then it follows from an argument similar to that of [38] that (J) holds for m = 3 with

c∞,3 := 3L
2 c

r
κ,2.

Alternatively, fix f ∈ S3,H(r, L). If we let L(x, f ′, κi−1, κi) denote the linear inter-

polant of the convex function f ′ on [κi−1, κi] for i = 1, . . . ,Kn, and

M := max
i

∫ κi

κi−1

(
L(x, f ′, κi−1, κi)− f ′(x)

)
dx,

then by [58], which permits unevenly spaced knots, there exists fB ∈ STκ+,3 such that

‖f − fB‖∞ ≤ 10M . Furthermore, by the discussion following the statement of (J),

‖f − fB‖∞ ≤ 10M ≤ 10 max
i

∫ κi

κi−1

L

(
cκ,2
Kn

)1+γ

dx ≤ 10L

(
cκ,2
Kn

)r
,

where γ := r − (m− 1).
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An additional proof of Proposition 4.2.1 independently constructed by the thesis

author is given in Appendix A.

4.2.2 Lower Bound for Higher Order Derivative Constraints

By Section 4.2.1, we now have that (J) holds when m = 1, 2, 3. In this section, we

show that (J) does not hold when m > 3 in the following proposition. This result is an

application of the main theorem in [39].

Proposition 4.2.2. Fix m > 3, r ∈ (m− 1,m], L > 0, and Tκ := {0 = κ0 < κ1 < · · · <

κKn = 1}. (We need not have Tκ ∈ TKn.) Then there exists c̃m > 0 depending only on m

and L, as well as a function f ∈ Sm,H(r, L) such that for all fB ∈ STκ+,m, ‖f−fB‖∞ ≥ c̃m
K3
n

.

Proof. Suppose that L = 1 first. As in [39], let ACloc be the family of functions defined

on [0, 1] that are absolutely continuous on each closed subinterval of (0, 1). Define

4m
+W

m
∞ := {f : [0, 1]→ R | f (m−1) ∈ ACloc, ‖f (m)‖∞ ≤ 1, f ∈ Sm},

so that 4m
+W

m
∞ is a constrained Sobolev class. Note that if f ∈ 4m

+W
m
∞ , then by the

Mean Value Theorem,

|f (m−1)(x1)− f (m−1)(x2)| ≤ |x1 − x2| max
x∈(x1,x2)

|f (m)(x)| ≤ |x1 − x2| ≤ |x1 − x2|γ .

Hence each f ∈ 4m
+W

m
∞ is also in Sm,H(r, 1) when r ∈ (m−1,m], so4m

+W
m
∞ ⊆ Sm,H(r, 1).

Also let L∞([0, 1]) denote the set of all bounded (Lebesgue) measurable functions

defined on [0, 1], and define

4m
+L∞ := {f : [0, 1]→ R | f ∈ L∞([0, 1]), f ∈ Sm}.
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Now let M∗ := MKn+m−1
∗ be the space of order m splines with knots in Tκ, and note that

M∗ has dimension (Kn+m−1). LetM :=MKn+m−1 ⊆ L∞([0, 1]) be the collection of all

linear manifolds (i.e., affine spaces) M of dimension (Kn+m−1) such that M∩4m
+L∞ 6= ∅.

Note thatM∗∩4m
+L∞ = STκ+,m. By applying the main theorem in [39] (with n = Kn+m−1,

p = q = ∞, and s = r = m), we have that there exists a constant c > 0 depending only

on m such that

sup
f∈4m+Wm

∞

inf
fB∈ STκ+,m

‖f − fB‖∞ = sup
f∈4m+Wm

∞

inf
fB∈M∗∩4m+L∞

‖f − fB‖∞

≥ inf
M∈M

sup
f∈4m+Wm

∞

inf
fB∈M∩4m+L∞

‖f − fB‖∞ =
c

(Kn +m− 1)3
≥ c

m3K3
n

.

Hence, there exists f ∈ 4m
+W

m
∞ ⊆ Sm,H(r, 1) such that ‖f − fB‖∞ ≥ c

2m3K3
n

for all

fB ∈ STκ+,m. Taking c̃m := c
2m3 completes the proof when L = 1.

Suppose now that 0 < L 6= 1. By the previous argument, there exists f ∈ Sm,H(r, 1)

such that ‖f − fB‖∞ ≥ c̃m
K3
n

for all fB ∈ STκ+,m. Hence, f̀ := Lf ∈ Sm,H(r, L), and

‖f̀ − fB‖∞ = ‖Lf − fB‖∞ = L‖f − L−1fB‖∞ ≥
Lc̃m
K3
n

for all gB := L−1fB ∈ STκ+,m. Replacing c̃m with Lc̃m completes the proof.

Remark 4.2.1. By Proposition 4.2.2, there exists a function f ∈ Sm,H(r, L) such that

‖f − fB‖∞ ≥ c̃m
K3
n

for all fB ∈ STκ+,m when m > 3. Since the constrained B-spline estimator

f̂BP,Tκ from Chapter III belongs to STκ+,m, the above result provides an asymptotic lower

bound on the performance of this estimator over Sm,H(r, L) for a given Kn, i.e.,

sup
f∈Sm,H(r,L)

E
(
‖f − f̂BP,Tκ‖∞

)
≥ c̃m
K3
n

.
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We will later see in Chapter V how this lower bound on the estimator performance

prevents f̂BP,Tκ from achieving the optimal convergence rate in the sup-norm uniformly over

Sm,H(r, L) when m > 3 (c.f. Corollary 5.5.1, Remark 5.5.1, and the following discussion).

In the next section, we demonstrate that although (J) fails for m > 3, a weaker version

of this statement still holds for such m.

4.2.3 Spline Approximation of Functions with Derivatives Bounded Uniformly

away from Zero

Choose constants L′ and L, with 0 ≤ L′ ≤ L, and consider the class of functions

Sm,H(r, L′, L) :=
{
f ∈ Sm

∣∣∣L′|x1 − x2|γ ≤ |f (m−1)(x1)− f (m−1)(x2)| ≤ L|x1 − x2|γ ,

∀x1, x2 ∈ [0, 1]
}
⊆ Sm,H(r, L). (4.3)

The goal of this section is to prove the following result. Note that if L′ = 0, this result

does not hold for m > 3, by Proposition 4.2.2.

Proposition 4.2.3. Suppose that L′ > 0, and let γ := r − (m− 1). Then there exists

cB :=
(
Lc1+γ

κ,2

)m−1
(
m− 2

L′cγκ,1

)m−2(
6cκ,2
cκ,1

)(m−1) log(m−1)

(m− 1)(m−1) log(m−1) > 0,

such that for all Kn ∈ N, Tκ ∈ TKn, and f ∈ Sm,H(r, L′, L), there exists fB ∈ STκ+,m

satisfying ‖f − fB‖∞ ≤ cBK−rn .

Given p ∈ N, let {BTκ
p,k}

K+p−1
k=1 again denote the (K + p − 1) B-splines of or-

der p with knot sequence Tκ := {κ0 < κ1 < · · · < κK}, and the usual extension.

Fix Kn ∈ N and Tκ ∈ TKn . Recall the matrices D(k) ∈ Rk×(k+1) (c.f. (3.4)) and

∆p,Tκ ∈ R(Kn+p−1)×(Kn+p−1) (c.f. (3.5)) from the previous chapter. Additionally, de-
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fine the matrices D̃
(m)
p,Tκ
∈ R(Kn+m−1−p)×(Kn+m−1) for each m ∈ N and p = 0, 1, . . . ,m

inductively:

D̃
(m)
0,Tκ

:= I, and D̃
(m)
p,Tκ

:= ∆−1
m−p,Tκ ·D

(Kn+m−1−p) · D̃(m)
p−1,Tκ

. (4.4)

Note that D̃
(m)
m,Tκ

is equal to D̃m,Tκ (c.f. (3.6)) from Chapter III. In order to establish

Proposition 4.2.3, we will need the following lemma.

Lemma 4.2.1. Suppose that m > 2 and let γ := r − (m − 1). Then for each j =

0, 1, 2, . . . ,m− 2, there exists

c
(j+2)
b :=

(
Lc1+γ

κ,2

)j+1
(
m− 2

L′cγκ,1

)j (
6cκ,2
cκ,1

) j+1
j+1

+ j+1
j

+···+ j+1
2

j∏
`=1

(`+ 1)
j+1
` > 0, (4.5)

such that for g ∈ Sj+2,H(j+1+γ, L′, L), there exists ĝ =
∑Kn+j+1

k=1 b̂
(j+2)
k BTκ

j+2,k satisfying

(i) ‖g − ĝ‖∞ ≤ c(j+2)
b /Kj+1+γ

n , and

(ii) D̃
(j+2)
j+2,Tκ

b̂ (j+2) ≥ m−2−j
m−2 L′cγκ,1K

−γ
n ,

where we define
∏j
`=1(`+ 1)

j+1
` and

(
6cκ,2
cκ,1

) j+1
j+1

+ j+1
j

+···+ j+1
2

to be 1 when j = 0.

Proof. We proceed by induction on j. Consider j = 0 first. For any g ∈ S2,H(1 +γ, L′, L),

let ĝ =
∑Kn+1

k=1 b̂
(2)
k BTκ

2,k be the piecewise linear interpolant of g, so that b̂
(2)
k = g(κk−1) for

all k = 1, . . . ,Kn + 1. By the discussion following statement (J), ‖g− ĝ‖∞ ≤
Lc1+γ
κ,2

K1+γ
n

, so (i)

holds for j = 0.

Next, we show that (ii) holds for j = 0. For all i = 1, . . . ,Kn − 1, we have that

(
D̃

(2)
2,Tκ

b̂2

)
i

=

[
g(κi+1)− g(κi)

κi+1 − κi
− g(κi)− g(κi−1)

κi − κi−1

]
=

[∫ κi+1

κi
g′(x)dx

κi+1 − κi
−

∫ κi
κi−1

g′(x)dx

κi − κi−1

]
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=
1

κi − κi−1

∫ κi

κi−1

[
g′
(
κi+1 − κi
κi − κi−1

(x− κi−1) + κi

)
− g′(x)

]
dx

≥ L′

κi − κi−1

∫ κi

κi−1

[(
κi+1 − κi
κi − κi−1

(x− κi−1) + κi

)
− x
]γ

dx

≥ L′

κi − κi−1
(κi − κi−1) min{(κi − κi−1)γ , (κi+1 − κi)γ} ≥ L′cγκ,1K

−γ
n .

The second to last inequality follows from the fact that if we define

`i(x) :=

(
κi+1 − κi
κi − κi−1

(x− κi−1) + κi

)
− x,

then

`′i(x) =


κi+1−κi
κi−κi−1

− 1 if κi+1−κi
κi−κi−1

6= 1

0 otherwise.

Thus, `i(x) is either constant on [κi−1, κi] or achieves its minimum when x = κi−1 or

x = κi. Hence, the result holds for j = 0.

Fix j ∈ {1, 2, . . . ,m − 2}, and assume that the result holds for (j − 1). Let g ∈

Sj+2,H(j + 1 + γ, L′, L). Then by the induction hypothesis, there exists

c
(j+1)
b =

(
Lc1+γ

κ,2

)j (m− 2

L′cγκ,1

)(j−1)(
6cκ,2
cκ,1

)( j
j
+ j
j−1

+···+ j
2

) j−1∏
`=1

(`+ 1)
j
` > 0 (4.6)

such that for some φ :=
∑Kn+j

j=1 b̂
(j+1)
k BTκ

j+1,k, we have both

‖g′ − φ‖∞ ≤ c(j+1)
b /Kj+γ

n and D̃
(j+1)
j+1,Tκ

b̂ (j+1) ≥ m− 1− j
m− 2

L′cγκ,1K
−γ
n .

Define

qj :=


2

cκ,1

j

√√√√(m− 2) c
(j+1)
b (j + 1)

L′cγκ,1

 , (4.7)
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and note that since

c
(j+1)
b =

(
Lc1+γ

κ,2

)j (m− 2

L′cγκ,1

)j−1(
6cκ,2
cκ,1

)( j
j
+ j
j−1

+···+ j
2

) j−1∏
`=1

(`+ 1)
j
`

≥ Lc1+γ
κ,2

(
Lc1+γ

κ,2 (m− 2)

L′cγκ,1

)j−1

≥ Lc1+γ
κ,2

for all j = 1, . . . ,m− 2, we have

2

cκ,1

j

√√√√(m− 2) c
(j+1)
b (j + 1)

L′cγκ,1
≥ 2

cκ,1

j

√√√√(m− 2)Lc1+γ
κ,2 (j + 1)

L′cγκ,1
≥ 2.

Hence,

qj :=


2

cκ,1

j

√√√√(m− 2) c
(j+1)
b (j + 1)

L′cγκ,1

 ≤
3

cκ,1

j

√√√√(m− 2) c
(j+1)
b (j + 1)

L′cγκ,1
. (4.8)

Let rj :=
⌊

Kn
qj(j+1)

⌋
, and define the points τ`,p := κ[(j+1)`+p]qj for all ` = 0, 1, . . . , rj

and p = 0, 1, . . . , j. (If [(j + 1)` + p]qj > Kn, define τ`,p := κ[(j+1)`+p]qj := 1.) Consider

the knot sequence

Tτ := {0 := τ0,0 < τ0,1 < · · · < τ0,j < τ1,0 < τ1,1 < · · · < τ1,j < · · · < τrj ,0}.

Associated with the knot sequence Tτ , is the set of order (j+1) B-splines {BTτ
j+1,s}

rj(j+1)+j
s=1

with the usual left and right extension such that
∑rj(j+1)+j

s=1 BTτ
j+1,s(x) = 1 for all x ∈ [0, 1].

Note that for each s = `(j + 1), the support of BTτ
j+1,s is [τ`−1,0, τ`,0] for ` = 1, . . . , rj .
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Define the vector d := (ds) ∈ Rrj(j+1)+j such that

ds :=


(j + 1)ν` when s = `(j + 1)

0 otherwise

where ν` :=

∫ τ`,0
τ`−1,0

(g′(x)− φ(x)) dx

τ`,0 − τ`−1,0
, (4.9)

for ` = 1, 2, . . . , rj . Moreover, ν` denotes the average value of g′ − φ on [τ`−1,0, τ`,0]. Also,

let

φ̃ := φ+

rj(j+1)+j∑
s=1

dsB
Tτ
j+1,s = φ+

Kn+j∑
k=1

ak B
Tκ
j+1,k =

Kn+j∑
k=1

(̂b(j+1) + a)k B
Tκ
j+1,k, (4.10)

where a := (ak) ∈ RKn+j is determined by d. Finally, define ĝ such that ĝ(x) := g(0) +∫ x
0 φ̃(t)dt for all x ∈ [0, 1].

We will first show that ‖g − ĝ‖∞ ≤ c
(j+2)
b /Kj+1+γ

n , where c
(j+2)
b is given by (4.5).

Note that for any ` = 1, 2, . . . , rj ,

∫ τ`,0

τ`−1,0

g′(t)− φ̃(t) dt =

∫ τ`,0

τ`−1,0

g′(t)− φ(t) dt− (j + 1)ν`

∫ τ`,0

τ`−1,0

BTτ
j+1,`(j+1)(t) dt (4.11)

= ν`(τ`,0 − τ`−1,0)− (j + 1)ν`
τ`,0 − τ`−1,0

j + 1
= 0.

Also, for any x ∈ [0, 1], x ∈ [τ`−1,0, τ`,0] for some ` = 1, 2, . . . , rj , or x ∈ [τrj ,0, 1]. Consider

the following two cases:

Case 1: x ∈ [τ`−1,0, τ`,0] for some ` = 1, 2, . . . , rj . Then by (4.11) and the induction

hypothesis,

|g(x)− ĝ(x)| =
∣∣∣∣∫ x

0
g′(t)− φ̃(t) dt

∣∣∣∣ ≤ ∫ x

τ`−1,0

|g′(t)− φ̃(t)| dt

≤
∫ x

τ`−1,0

|g′(t)− φ(t)| dt+ (j + 1) |ν`|
∫ τrj ,0

0

∣∣∣BTτ
j+1,`(j+1)(x)

∣∣∣ dx
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≤ 2(τ`,0 − τ`−1,0)c
(j+1)
b /Kj+γ

n ≤
2c

(j+1)
b cκ,2qj(j + 1)

Kj+1+γ
n

.

Case 2: x ∈ [τrj ,0, 1]. Then

|g(x)− ĝ(x)| =
∣∣∣∣∫ x

0
g′(t)− φ̃(t) dt

∣∣∣∣ =

∣∣∣∣∣
∫ x

τrj ,0

g′(t)− φ(t) dt

∣∣∣∣∣ ≤
∫ x

τrj ,0

|g′(t)− φ(t)| dt

≤ (x− ττrj ,0)
c

(j+1)
b

Kj+γ
n

≤
2c

(j+1)
b cκ,2qj(j + 1)

Kj+1+γ
n

.

Therefore, for all x ∈ [0, 1], by (4.6) and (4.8)

|g(x)− ĝ(x)| ≤
2c

(j+1)
b cκ,2qj(j + 1)

Kj+1+γ
n

≤
2c

(j+1)
b cκ,2(j + 1)

Kj+1+γ
n

3

cκ,1

j

√√√√(m− 2) c
(j+1)
b (j + 1)

L′cγκ,1

=
6cκ,2
cκ,1

(j + 1)
j+1
j

(
m− 2

L′cγκ,1

) 1
j (
c

(j+1)
b

) j+1
j 1

Kj+1+γ
n

=
6cκ,2
cκ,1

(
6cκ,2
cκ,1

)( j+1
j

+ j+1
j−1

+···+ j+1
2

)
(j + 1)

j+1
j

j−1∏
`=1

(`+ 1)
j+1
`

(
m− 2

L′cγκ,1

) 1
j
(
m− 2

L′cγκ,1

)(j−1) j+1
j

×
(
Lc1+γ

κ,2

)j j+1
j 1

Kj+1+γ
n

= c
(j+2)
b /Kj+1+γ

n

Hence, (i) holds by induction.

Next we will show that D̃
(j+2)
j+2,Tκ

b̂ (j+2) ≥ m−2−j
m−2 L′cγκ,1K

−γ
n , where

ĝ =

Kn+j+1∑
k=1

b̂
(j+2)
k BTκ

j+2,k.

Consider the jth derivative of φ̃− φ,

(φ̃− φ)(j) =

rj(j+1)+j∑
s=1

dsB
Tτ
j+1,s

(j)

=

rj(j+1)∑
s=1

(
D̃

(j+1)
j,Tτ

d
)
s
1[κs(qj−1),κsqj )
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on [0, τrj ,0) = [0, κrjqj(j+1)) via Lemma 3.2.1 of Chapter III. Note that by (4.9), only every

(j + 1)th entry of d is nonzero, and hence ‖D̃(j+1)
1,Tτ

d‖∞ ≤ Kn
qjcκ,1

(j+1)c
(j+1)
b

Kj+γ
n

. By induction,

and using (3.5), and (3.6), for p = 2, . . . , j we have

‖D̃(j+1)
p,Tτ

d‖∞ = ‖∆−1
j+1−p,TτD

(rj(j+1)+j−p)D̃
(j+1)
p−1,Tτ

d‖∞ ≤
2Kn

qjcκ,1
‖D̃(j+1)

p−1,Tτ
d‖∞

≤ 2p−1

(
Kn

qjcκ,1

)p (j + 1)c
(j+1)
b

Kj+γ
n

.

Taking p = j gives us that the jth derivative of
∑rj(j+1)+j

s=1 dsB
Tτ
j+1,s is bounded in the

supremum norm by
2j−1 (j+1)c

(j+1)
b

qjj c
j
κ,1K

γ
n

.

Now, recall from (4.10) that φ̃ − φ =
∑rj(j+1)+j

s=1 dsB
Tτ
j+1,s =

∑Kn+j
k=1 ak B

Tκ
j+1,k for

some a ∈ RKn+j determined by d. By Lemma 3.2.1, the jth derivative of φ̃ − φ is

given by
∑Kn

k=1

(
D̃

(j+1)
j,Tκ

a
)
k
1[κk−1,κk) on [0, 1), which is bounded in the supremum norm

by
2j−1 (j+1)c

(j+1)
b

qjj c
j
κ,1K

γ
n

, via the above discussion. By (4.7),

‖D̃(j+1)
j+1,Tκ

a‖∞ = ‖D(Kn−1)D̃
(j+1)
j,Tκ

a‖∞ ≤ ‖D(Kn−1)‖∞‖D̃(j+1)
j,Tκ

a‖∞

≤
2j (j + 1)c

(j+1)
b

qjjc
j
κ,1K

γ
n

≤
L′cγκ,1
m− 2

K−γn . (4.12)

Finally, on [0, 1), the (j + 1)th derivative of ĝ is given by

(ĝ)(j+1) =

(
Kn+j+1∑
k=1

b̂
(j+2)
k BTκ

j+2,k

)(j+1)

=

Kn∑
k=1

(D̃
(j+2)
j+1,Tκ

b̂(j+2))k1[κk−1,κk),

which is equal to the jth derivative of φ̃, given by

(φ̃)(j) =

(
Kn+j∑
k=1

(̂b(j+1) + a)k B
Tκ
j+1,k

)(j)

=

Kn∑
k=1

(D̃
(j+1)
j,Tκ

(̂b(j+1) + a))k1[κk−1,κk).
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Hence,

D̃
(j+2)
j+2,Tκ

b̂(j+2) = DKn−1D̃
(j+2)
j+1,Tκ

b̂(j+2) = D(Kn−1)D̃
(j+1)
j,Tκ

(
b̂(j+1) + a

)
= D̃

(j+1)
j+1,Tκ

(
b̂(j+1) + a

)
≥ D̃(j+1)

j+1,Tκ
b̂(j+1) − 1‖D̃(j+1)

j+1,Tκ
a‖∞

≥ m− 1− j
m− 2

L′cγκ,1K
−γ
n −

L′cγκ,1
m− 2

K−γn =
m− 2− j
m− 2

L′cγκ,1K
−γ
n ,

via the induction hypothesis, and (4.12). Thus, (ii) holds completing the proof.

The following argument demonstrates that Proposition 4.2.3 holds.

Proof of Proposition 4.2.3. Taking j = m − 2 and applying Lemma 4.2.1, we have that

there exists

c
(m)
b :=

(
Lc1+γ

κ,2

)m−1
(
m− 2

L′cγκ,2

)m−2(
6cκ,2
cκ,1

)m−1
m−1

+m−1
m−2

+···+m−1
2

m−2∏
`=1

(`+ 1)
m−1
` > 0

such that for all Kn ∈ N, Tκ ∈ TKn , and g ∈ Sm,H(m − 1 + γ, L′, L) there exists ĝ :=∑Kn+m−1
k=1 b̂

(m)
k BTκ

m,k such that ‖g − ĝ‖∞ ≤
c
(m)
b

Km−1+γ
n

and D̃
(m)
m,Tκ

b̂(m) ≥ 0 implying that

ĝ ∈ STκ+,m. Additionally, we have that

m−1∑
`=2

m− 1

`
≤ (m− 1)

∫ m−1

1

dx

x
≤ (m− 1) log(m− 1),

so,
(

6cκ,2
cκ,1

)m−1
m−1

+m−1
m−2

+···+m−1
2 ≤

(
6cκ,2
cκ,1

)(m−1) log(m−1)
. Also,

log

(
m−2∏
`=1

(`+ 1)
m−1
`

)
= (m− 1)

m−2∑
`=1

log(`+ 1)

`
≤ 2(m− 1)

m−2∑
`=1

log(`+ 1)

`+ 1

≤ 2(m− 1)

∫ m−1

1

log x

x
dx = (m− 1)(log(m− 1))2,
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and thus
∏m−2
`=1 (` + 1)

m−1
` ≤ (m − 1)(m−1)(log(m−1)). Combining these results, we have

that c
(m)
b ≤ cB. Taking fB := ĝ completes the proof of Proposition 4.2.3.

We have presented several different results on the accuracy and limitations of ap-

proximating functions f ∈ Sm,H(r, L) with splines fB ∈ STκ+,m. We will utilize these results,

along with the uniform Lipschitz property, to measure the performance of the nonnegative

derivative constrained B-spline estimator from Chapter III in the next section.

4.3 Bias and Stochastic Error

In this section we apply the uniform Lipschitz property of the constrained B-spline

estimator established in Theorem 3.2.1, along with the spline approximation results from

Section 4.2, to the nonparametric estimation of smooth nonnegative derivative constrained

functions in a Hölder class. Let L and r be positive constants and m := dre ∈ N so that

r ∈ (m− 1,m]. Given a sequence of design points (xi)
n
i=0 on [0, 1], consider the following

regression problem:

yi = f(xi) + σεi, i = 0, 1, . . . , n, (4.13)

where f is an unknown true function in Sm,H(r, L), the εi’s are independent standard

normal errors, σ is a positive constant, and the yi’s are samples. The goal of shape

constrained estimation is to construct an estimator f̂ that preserves the specified shape of

the true function characterized by Sm. In the asymptotic analysis of such an estimator,

we are particularly interested in its uniform convergence on the entire interval [0, 1], as

well as the convergence rate of supf∈Sm,H(r,L) E(‖f̂ − f‖∞), when the sample size n is

sufficiently large. With the help of the uniform Lipschitz property and the results from

Section 4.2, we show that for general nonnegative derivative constraints (i.e., m ∈ N is
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arbitrary), the constrained B-spline estimator (3.7) achieves uniform convergence on [0, 1]

for possibly unevenly spaced design points and knots. We also provide a convergence

rate. In Chapter V, we will see that this convergence rate is optimal in certain instances

(c.f. Corollary 5.5.1 and Remark 5.5.1). These results pave the way for further study of

the convergence rate of estimators subject to general nonnegative derivative constraints.

We discuss the asymptotic performance of the constrained B-spline estimator (3.7)

as follows. Consider the set Pn in (3.13) for a given cω ≥ 1 and the collection of knot

sequences TKn in (3.14) for fixed 0 < cκ,1 ≤ 1 ≤ cκ,2. For each n ∈ N, let P := (xi)
n
i=1 ∈ Pn

be a sequence of design points on [0, 1] and let Tκ ∈ TKn be a given sequence of knots,

where (Kn) is an increasing sequence of natural numbers. Let y = (yi)
n
i=0 ∈ Rn+1 be the

sample data vector given in (4.13). For a given m and a true function f ∈ Sm,H(r, L),

consider the constrained B-spline estimator, denoted by f̂BP,Tκ in (3.7), and its B-spline

coefficient vector b̂P,Tκ defined in (3.9). Moreover, we introduce the vector of noise-free

data ~f := (f(x0), f(x1), . . . , f(xn))T ∈ Rn+1 and define fP,Tκ :=
∑N

k=1 bkB
Tκ
m,k, where

N := Kn +m− 1, {BTκ
m,k}

N
k=1 denotes the set of N order m B-splines with knot sequence

Tκ and the usual extension, and bP,Tκ = (bk) ∈ RN is the B-spline coefficient vector

characterized by the optimization problem in (3.9) when y is replaced by KnX̂
TΘn

~f :

bP,Tκ := arg min
D̃m,Tκ b≥0

1

2
bT ΛKn,P,Tκ b− bT

(
KnX̂

TΘn
~f
)
. (4.14)

Note that for each true f , E(‖f̂BP,Tκ − f‖∞) ≤ ‖f − fP,Tκ‖∞ + E(‖fP,Tκ − f̂
B
P,Tκ
‖∞),

where ‖f − fP,Tκ‖∞ pertains to the estimator bias and E(‖fP,Tκ − f̂
B
P,Tκ
‖∞) corresponds

to the stochastic error. We develop uniform bounds for these two terms in the succeeding
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propositions via the uniform Lipschitz property and the results from Section 4.2. For

notational simplicity, define γ := r − (m− 1) for Sm,H(r, L).

Proposition 4.3.1. Let q := min{2+γ, r}. Fix m ∈ N, and constants cω ≥ 1 (c.f. (3.13)),

0 < cκ,1 ≤ 1 ≤ cκ,2 (c.f. (3.14)), L > 0, and r ∈ (m − 1,m] (c.f. (4.1)). Let (Kn) be an

increasing sequence of natural numbers with Kn → ∞ and Kn/n → 0 as n → ∞. Then

there exists Cb > 0 depending only on m,L, cκ,1, and cκ,2, as well as n̂1 ∈ N depending

only on (Kn) (and the fixed constants m, cω, cκ,1, cκ,2) such that

sup
f∈Sm,H(r,L), P∈Pn, Tκ∈TKn

∥∥ f − fP,Tκ ∥∥∞ ≤ Cb ·
(
Kn)−q, ∀ n ≥ n̂1.

Proof. Fix an arbitrary true function f ∈ Sm,H(r, L). For any given P ∈ Pn and Tκ ∈ TKn ,

we write fP,Tκ as f to simplify notation.

By Proposition 4.2.1 and the discussion following statement (J), if m = 1, 2, or

3, then there exists a spline fB ∈ STκ+,m and a constant c∞,m such that ‖f − fB‖∞ ≤

c∞,mK
−r
n ≤ 3Lc3κ,2

2 K−qn . Alternatively, if m > 3, then define g := f (m−3) ∈ S3,H(r + 3 −

m,L). By Proposition 4.2.1, there exists a constant c∞,3, as well as a spline gB ∈ STκ+,m

such that ‖g − gB‖∞ ≤ c∞,3K
m−r−3
n ≤ 3Lc3κ,2

2 K
−(2+γ)
n . If we define fB : [0, 1] → R such

that

fB(x) :=

m−4∑
k=0

f (k)(0)

k!
xk +

∫ x

0

∫ t1

0
. . .

∫ tm−4

0
gB(tm−3) dtm−3 · · · dt2 dt1,

then fB ∈ Sm,H(r, L) and

∣∣f(x)− fB(x)
∣∣ ≤ ∫ x

0

∫ t1

0
· · ·
∫ tm−4

0
|g(tm−3)− gB(tm−3)| dtm−3 · · · dt2 dt1

≤
∫ x

0

∫ t1

0
· · ·
∫ tm−4

0

3Lc3
κ,2

2
K−(2+γ)
n dtm−3 · · · dt2 dt1
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≤
3Lc3

κ,2

2(m− 3)!
K−(2+γ)
n ≤

3Lc3
κ,2

2
K−qn ,

for all x ∈ [0, 1], where we define
∫ x

0

∫ t1
0 · · ·

∫ tm−4

0 h(tm−3) dtm−3 · · · dt2 dt1 :=
∫ x

0 h(t1) dt1

for any integrable function h if m = 4. In either case, we have ‖f − fB‖∞ ≤
3Lc3κ,2

2 K−qn .

In view of ‖f−f‖∞ ≤ ‖f−fB‖∞+‖fB−f‖∞, it remains to establish a uniform bound

on ‖fB − f‖∞. We introduce the vector ~fB := (fB(x0), fB(x1), . . . , fB(xn))T ∈ Rn+1.

Since fB ∈ STκ+,m is an order m spline with knot sequence Tκ, there exists b̃ ∈ RN such that

fB =
∑N

k=1 b̃kB
Tκ
m,k. Thus, we have X̂b̃ = ~fB, where X̂ is the design matrix corresponding

to the design point sequence P and the B-splines {BTκ
m,k}

N
k=1 (cf. Section 3.2.1). This

shows that 1
2‖K

1/2
n Θ

1/2
n (X̂b̃ − ~fB)‖22 = 0. Moreover, since D̃m,Tκ b̃ ≥ 0 (c.f. (3.5)) via

Lemma 3.2.1, we deduce that

b̃ = arg min
D̃m,Tκ b≥0

1

2
bT ΛKn,P,Tκ b− bT

(
KnX̂

TΘn
~fB

)
.

(See Section 3.2.1 for the definitions of Θn and ΛKn,P,Tκ .) By using the definition of f

before (4.14) and the uniform Lipschitz property of Theorem 3.2.1, we obtain a positive

constant c∞, depending only on m and cκ,1, and a natural number n∗, depending only on

(Kn),m, cω, cκ,1, and cκ,2, such that for any P ∈ Pn, Kn, and Tκ ∈ TKn with n ≥ n∗,

∥∥f − fB∥∥∞ ≤ ∥∥bP,Tκ − b̃∥∥∞ ≤ c∞ ·
∥∥∥KnX̂

TΘn
~f −KnX̂

TΘn
~fB

∥∥∥
∞

≤ c∞ ·
∥∥KnX̂

TΘn

∥∥
∞ ·
∥∥∥~f − ~fB

∥∥∥
∞

≤ c∞ ·
∥∥KnX̂

TΘn

∥∥
∞ ·

3Lc3
κ,2

2
K−qn , (4.15)
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where we use
∥∥~f − ~fB

∥∥
∞ ≤ ‖f − fB‖∞ and the uniform bound for ‖f − fB‖∞ established

above. We further show that
∥∥KnX̂

TΘn

∥∥
∞ attains a uniform bound independent of

P ∈ Pn, Kn, and Tκ ∈ TKn as long as n is large enough. It follows from the definition of

X̂ and the non-negativity, upper bound, and support of the BTκ
m,k’s (given at the beginning

of Section 3.2) that for each k = 1, . . . , N ,

∥∥∥(KnX̂
TΘn)k•

∥∥∥
∞

= Kn

n∑
i=0

BTκ
m,k(xi) · (xi+1 − xi) ≤ Kn

n∑
i=0

I[κk−m, κk](xi) · (xi+1 − xi)

≤ Kn

(
κk − κk−m +

cω
n

)
≤ cκ,2m+

cωKn

n
,

where the term cω/n comes from the fact that κk is in the interval [xr, xr+1) for some design

points xr, xr+1. Since Kn/n → 0 as n → ∞, we obtain n̄1 ∈ N (depending only on (Kn)

and cω) such that for any n ≥ n̄1,
∥∥(KnX̂

TΘn)k•
∥∥
∞ ≤ cκ,2(m+ 1) for each k = 1, . . . , N

so that
∥∥KnX̂

TΘn

∥∥
∞ ≤ cκ,2(m+ 1) for any P ∈ Pn, Kn, and Tκ ∈ TKn . Combining this

with (4.15) yields that for any n ≥ max(n∗, n̄1), ‖f − fB‖∞ ≤
c∞3L(m+1) c4κ,2

2 K−qn for any

f ∈ Sm,H(r, L), P ∈ Pn, Kn, and Tκ ∈ TKn .

Setting n̂1 := max(n∗, n̄1) (depending only on (Kn) and the fixed constants m, cω,

cκ,1, cκ,2), we conclude that

sup
f∈Sm,H(r,L), P∈Pn, Tκ∈TKn

‖ f − f ‖∞ ≤ Cb ·K−qn , ∀ n ≥ n̂1,

where Cb :=
[c∞(m+1)cκ,2+1]3Lc3κ,2

2 .

The next result provides a uniform bound on the bias of f̂BP,Tκ over the function

class Sm,H(r, L′, L) ⊆ Sm,H(r, L) (defined in (4.3)), when L′ > 0. This bound is asymp-

totically better than the bound in Proposition 4.3.1. However, a uniform bound with this

123



asymptotic rate cannot be extended to all of Sm,H(r, L) when m > 3 (c.f. Remark 4.2.1).

The proof of this result is similar to that of Proposition 4.3.1 and is therefore omitted;

the argument relies on Proposition 4.2.3 and the uniform Lipschitz property.

Proposition 4.3.2. Fix m ∈ N, and constants cω ≥ 1, 0 < cκ,1 ≤ 1 ≤ cκ,2, L ≥ L′ > 0,

and r ∈ (m− 1,m]. Let (Kn) be an increasing sequence of natural numbers with Kn →∞

and Kn/n→ 0 as n→∞. Then there exists C ′b > 0 depending only on m, r, L, L′, cκ,1, and

cκ,2, as well as n̂1 ∈ N depending only on (Kn) (and the fixed constants m, cω, cκ,1, cκ,2)

such that

sup
f∈Sm,H(r,L′,L), P∈Pn, Tκ∈TKn

∥∥ f − fP,Tκ ∥∥∞ ≤ C ′b ·
(
Kn)−r, ∀ n ≥ n̂1.

In the following proposition, we derive a uniform bound on the stochastic error of

the estimator f̂BP,Tκ over all of Sm,H(r, L).

Proposition 4.3.3. Fix m ∈ N, and constants cω ≥ 1, 0 < cκ,1 ≤ 1 ≤ cκ,2, L > 0,

r ∈ (m − 1,m], and define q := min{2 + γ, r}. Let (Kn) be an increasing sequence of

natural numbers with Kn → ∞, Kn/n → 0, Kn/(n
1/q ·

√
log n) → 0 as n → ∞. Then

there exist a positive constant Cs and n̂2 ∈ N, both depending only on (Kn) (and the fixed

constants m, cω, cκ,1, cκ,2, σ), such that

sup
f∈Sm,H(r,L), P∈Pn, Tκ∈TKn

E
(∥∥∥f̂BP,Tκ − fP,Tκ∥∥∥∞ ) ≤ Cs ·

√
Kn log n

n
, ∀ n ≥ n̂2.

Proof. Fix a true function f ∈ Sm,H(r, L). Given arbitrary P ∈ Pn, Kn, and Tκ ∈ TKn , let

~ε := (εi) ∈ Rn+1, ωi := xi+1−xi for i = 0, 1, . . . , n, and define ξk :=
(√
nKn X̂

TΘn

)
k• ~ε =

√
nKn

∑n
i=0 ωiB

Tκ
m,k(xi)εi for each k = 1, . . . , N . (See Section 3.2.1 for the definitions of
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X̂ and Θn.) Since each εi ∼ N (0, 1) and the εi’s are independent, we have ξk ∼ N (0, σ̄2
k),

where σ̄2
k = ‖(

√
nKn X̂

TΘn)k•‖22 ≥ 0. By the proof of Proposition 4.3.1, there exists

n̄1 ∈ N (depending only on (Kn) and cω) such that if n ≥ n̄1, then for any P ∈ Pn, Kn,

and Tκ ∈ TKn , ‖(KnX̂
TΘn)k•‖∞ ≤ cκ,2(m+ 1) for each k = 1, . . . , N . Therefore, by using

n ·
(
BTκ
m,k(xi)ωi

)2 ≤ nωi ·
(
BTκ
m,k(xi)ωi

)
≤ cω ·

(
BTκ
m,k(xi)ωi

)
for each i, we have, for any

P ∈ Pn, Kn, and Tκ ∈ TKn with n ≥ n̄1,

∥∥∥(√nKn X̂
TΘn

)
k•

∥∥∥2

2
=

n∑
i=0

Kn · n
(
BTκ
m,k(xi)ωi

)2
≤ cω

n∑
i=0

KnB
Tκ
m,k(xi)ωi

= cω
∥∥(KnX̂

TΘn)k•
∥∥
∞ ≤ cωcκ,2(m+ 1), ∀ k = 1, . . . , N.

This shows that σ̄2
k ≤ cωcκ,2(m+1) for each k = 1, . . . , N . Letting ξ := (ξ1, . . . , ξN )T ∈ RN ,

we see that σξ =
√
nKnX̂

TΘnσ~ε =
√
nKnX̂

TΘn(y−~f). Hence, we deduce, via the uniform

Lipschitz property of Theorem 3.2.1, that there exist a positive constant c∞ and n∗ ∈ N

(depending on (Kn),m, cω, cκ,1, cκ,2 only) such that for any f ∈ Sm,H(r, L), P ∈ Pn, Kn,

and Tκ ∈ TKn with n ≥ n∗,

∥∥∥f̂BP,Tκ − fP,Tκ∥∥∥∞ ≤ ∥∥b̂P,Tκ − b̄P,Tκ∥∥∞ ≤ c∞ ·√Kn/n ·
∥∥∥√nKnX̂

TΘn

(
y − ~f

)∥∥∥
∞

= c∞ ·
√
Kn/n · σ · ‖ξ‖∞ = c̃ ·

√
Kn/n · ξ̄, (4.16)

where ξ̄ := ‖ξ‖∞ = maxk=1,...,N |ξk| and c̃ := c∞σ > 0.

Define σ̀ :=
√
cωcκ,2(m+ 1), and consider the random variable Zξ ∼ N (0, σ̀2). Since

the variance of ξk satisfies σ̄2
k ≤ cωcκ,2(m+ 1) = σ̀2 for each k, we have, for any u ≥ 0,

P
(
|Zξ| ≥

u

c̃

√
n

Kn

)
≥ P

(
|ξk| ≥

u

c̃

√
n

Kn

)
, ∀ k = 1, . . . , N.
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Recall n̂1 := max(n̄1, n∗) from the proof of Proposition 4.3.1. By (4.16), the above in-

equality, and the implication: Y ∼ N (0, σ2) =⇒ P(|Y | ≥ v) ≤ exp
(
− v2

2σ2

)
for any v ≥ 0,

we have that for any u ≥ 0, f ∈ Sm,H(r, L), P ∈ Pn, Kn, and Tκ ∈ TKn with n ≥ n̂1,

P
(
‖f̂BP,Tκ − fP,Tκ‖∞ ≥ u

)
≤ P

(
ξ̄ ≥ u

c̃

√
n

Kn

)
≤ N · P

(
|Zξ| ≥

u

c̃

√
n

Kn

)
≤ N · exp

(
− u2n

2 σ̀2 c̃2Kn

)
.

Let Wn := c̃ σ̀
√

2Kn logn
q·n . It follows from the above result and

∫ ∞
v

e−t
2/(2σ2)dt ≤ e−v2/(2σ2)σ

√
π/2

for any v ≥ 0 that for any f ∈ Sm,H(r, L), P ∈ Pn, Kn, and Tκ ∈ TKn with n ≥ n̂1,

E
(∥∥f̂BP,Tκ − fP,Tκ∥∥∞) =

∫ ∞
0

P
(∥∥f̂BP,Tκ − fP,Tκ∥∥∞ ≥ t) dt

≤ Wn +

∫ ∞
Wn

P
(∥∥f̂BP,Tκ − fP,Tκ∥∥∞ ≥ t) dt ≤ Wn +N ·

∫ ∞
Wn

exp

(
− n t2

2 c̃2 σ̀2Kn

)
dt

≤ Wn +Nc̃ σ̀

√
πKn

2n
exp

(
− W 2

nn

2c̃2σ̀2Kn

)
= Wn + c̃ σ̀ ·

√
πKn

2n
· (Kn +m− 1) · n−

1
q .

Since Kn/(n
1/q ·
√

log n) → 0 as n → ∞, there exist a constant Cs > 0 and n̂2 ∈ N with

n̂2 ≥ n̂1 (depending on (Kn),m, cω, cκ,1, cκ,2, and σ only) such that for any f ∈ Sm,H(r, L),

P ∈ Pn, Kn, and Tκ ∈ TKn with n ≥ n̂2,

E
(∥∥f̂BP,Tκ − fP,Tκ∥∥∞) ≤ Cs ·

√
Kn log n

n
.

This leads to the desired uniform bound for the stochastic error.

Combining Propositions 4.3.1 and 4.3.3, we obtain the following theorem.
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Theorem 4.3.1. Fix m ∈ N, and constants cω ≥ 1, 0 < cκ,1 ≤ 1 ≤ cκ,2, L > 0,

r ∈ (m−1,m], and let q := min{2+γ, r}. Let (Kn) be a sequence of natural numbers with

Kn → ∞, Kn/n → 0, Kn/(n
1/q ·
√

log n) → 0 as n → ∞. Then there exist two positive

constants Cb, Cs and n̂? ∈ N depending on (Kn),m, r, L, cω, cκ,1, cκ,2, and σ only such that

sup
f∈Sm,H(r,L), P∈Pn Tκ∈TKn

E
(∥∥∥f − f̂BP,Tκ∥∥∥∞ ) ≤ Cb ·

(
Kn)−q+Cs ·

√
Kn log n

n
, ∀ n ≥ n̂?.

A specific choice of (Kn) that satisfies the conditions in Theorem 4.3.1 is Kn =⌈(
n

logn

)1/(2q+1)
⌉
. This result demonstrates the uniform convergence of the constrained

B-spline estimator f̂BP,Kn to the true function f on the entire interval [0, 1], and the consis-

tency of this B-spline estimator, including the consistency at the two boundary points, even

if design points are not equally spaced. Note that the monotone and convex least-squares

estimators are inconsistent at the boundary points due to non-negligible asymptotic bias

[27, 51, 81], which is known as the spiking problem.

Remark 4.3.1. In addition to the uniform convergence, Theorem 4.3.1 also gives an

asymptotic convergence rate of the constrained B-spline estimator in the sup-norm, subject

to general nonnegative derivative constraints. Moreover, the convergence rate is on the

order of
(

logn
n

) q
2q+1

, where q := min{2 + γ, r}. We will see in Chapter V that this rate is

optimal when m = 1, 2, or 3 (c.f. Corollary 5.5.1 and Remark 5.5.1).

We conclude this section with the following theorem, which follows from Proposi-

tions 4.3.2 and 4.3.3. Suppose we restrict the true function f to Sm,H(r, L′, L) ⊆ Sm,H(r, L)

(c.f. (4.3)), for a fixed L′ > 0. This last result gives us a faster rate of convergence over

the subclass Sm,H(r, L′, L) when m > 3. To this end, we take Kn =
⌈(

n
logn

)1/(2r+1)
⌉

to

obtain a convergence rate on the order of
( logn

n

)r/(2r+1)
.
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Theorem 4.3.2. Fix m ∈ N, and constants cω ≥ 1, 0 < cκ,1 ≤ 1 ≤ cκ,2, L ≥ L′ > 0, and

r ∈ (m − 1,m]. Let (Kn) be a sequence of natural numbers with Kn → ∞, Kn/n → 0,

Kn/(n
1/q ·

√
log n) → 0 as n → ∞. Then there exist two positive constants C ′b, Cs and

n̂? ∈ N depending on (Kn),m, r, L, L′, cω, cκ,1, cκ,2, and σ only such that

sup
f∈Sm,H(r,L′,L), P∈Pn Tκ∈TKn

E
(∥∥∥f − f̂BP,Tκ∥∥∥∞ ) ≤ Cb·

(
Kn)−r+Cs·

√
Kn log n

n
, ∀ n ≥ n̂?.

4.4 Summary

In this chapter, we obtained several results on the accuracy and limitations of ap-

proximating smooth nonnegative derivative constrained functions by splines with the same

nonnegative derivative constraint. These results were then used in conjunction with the

uniform Lipschitz property of Chapter III to provide asymptotic upper bounds on the bias

and stochastic error of the nonnegative derivative constrained B-spline estimator.
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CHAPTER V

Nonnegative Derivative Constrained Estimation: Minimax

Lower Bound in the Supremum Norm

In the previous chapter, we applied the uniform Lipschitz property of Chapter III

to establish asymptotic upper bounds on the bias and stochastic error of a constrained

B-spline estimator with respect to the supremum-norm. In this chapter, we will develop

minimax asymptotic lower bounds on certain nonparametric estimation problems with

nonnegative derivative constraints. It follows from results in Chapters III-V that under

suitable conditions on either the order of the derivative constraint or the function class

under consideration, the constrained B-spline estimator proposed in Chapter III achieves

the optimal asymptotic performance under the supremum-norm.

5.1 Introduction

With various applications in science and engineering, there has been a substantial

interest in the nonparametric estimation of functions subject to nonnegative derivative

constraints such as monotonicity or convexity [22, 52, 73, 70, 79]. However, the nonsmooth
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inequality constraints of such problems complicate the asymptotic performance analysis

of constraint preserving estimators. In particular, the minimax performance analysis of

constrained estimators becomes even more difficult when the supremum-norm is used as

the performance metric. In this chapter, we establish minimax lower bounds for a large

variety of nonparametric estimation problems over suitable Hölder or Sobolev function

classes subject to nonnegative derivative constraints, with respect to the supremum-norm.

This is done by constructing an appropriate collection of functions (called hypotheses [77,

Section 2]) that satisfy the pre-specified nonnegative derivative constraint. We then com-

bine these results with those from Chapters III-IV to demonstrate, in certain cases, the

optimal performance of the previously introduced constrained B-spline estimator.

This chapter is organized as follows. In Section 5.2, descriptions of the minimax

lower bounds for general constrained nonparametric estimation problems are given; the

main result of this chapter, Theorem 5.2.1, is stated, and the required conditions on the

hypothesis functions are presented. The hypothesis functions are then constructed in

Section 5.3. In Section 5.4 it is demonstrated that these hypotheses meet the required

conditions of Section 5.2, thus proving Theorem 5.2.1. Several important corollaries to

this theorem that tie in results from earlier chapters are presented in Section 5.5. Finally,

a summary is given in Section 5.6.

Notation: Given a function g : [a, b] → R, denote its supremum-norm (or simply

sup-norm) by ‖g‖∞ := supx∈[a,b] |g(x)|, and its L2-norm by ‖g‖L2 :=
(∫ b

a (g(x))2 dx
)1/2

.

Let E denote the expectation operator and let f (`) denote the `th derivative of the function
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f . Additionally, denote the pth integral of g from a to b by

I(p)
[a,b](g) :=


∫ b
a g(t1) dt1 if p = 1

∫ b
a

∫ tp
a . . .

∫ t2
a g(t1) dt1 . . . dtp−1 dtp otherwise.

Finally, for two sequences of positive numbers (an) and (bn), we write that an � bn if there

exist positive constants c1, c2, such that c1 ≤ lim infn→∞ an/bn ≤ lim supn→∞ an/bn ≤ c2.

5.2 Problem Formulation

Fix m ∈ N, r ∈ (m − 1,m] and L > 0. Let γ := r − m + 1. Recall the family

Sm of univariate functions on [0, 1] subject to a general nonnegative derivative constraint,

from (3.1) in Chapter III, the Hölder class of functions Hr
L defined in (4.1) in Chapter IV,

and Sm,H(r, L) := Sm ∩Hr
L.

Consider the regression problem

yi = f(xi) + σεi, (5.1)

where the xi’s are evenly spaced design points on the unit interval, i.e., xi = i/n for

all i = 0, 1, . . . , n, n denotes the sample size, f : [0, 1] → R is an unknown function

in Sm,H(r, L), and the εi’s are iid standard normal errors. Our goal is to establish a

lower bound under the sup-norm on the minimax risk associated with the collection of

estimators that preserve the nonnegative derivative constraint of f ∈ Sm,H(r, L), for this

nonparametric model. Specifically, the main result of this chapter is presented in the

following theorem.
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Theorem 5.2.1. Fix m ∈ N, and r ∈ (m − 1,m] and consider the regression problem

given by (5.1). There exists a positive constant c such that

lim inf
n→∞

inf
f̂n

sup
f∈Sm,H(r,L)

( n

log n

) r
2r+1 E

(
‖f̂n − f‖∞

)
≥ c, (5.2)

where inf
f̂n

denotes the infimum over all constrained estimators f̂n ∈ Sm on [0, 1].

It follows from Theorem 5.2.1 that for m = 1, 2, or 3 the constrained B-spline

estimator f̂BP,Tκ proposed in Chapter III (c.f. (3.7)-(3.8)) satisfies

c
( log n

n

) r
2r+1 ≤ inf

f̂n

sup
f∈Sm,H(r,L)

E
(
‖f̂n − f‖∞

)
≤ sup

f∈Sm,H(r,L)
E
(
‖f̂BP,Tκ − f‖∞

)
≤ C

( log n

n

) r
2r+1

, (5.3)

for all n sufficiently large, via Theorem 4.3.1 and Remark 4.3.1 of Chapter IV. Conse-

quently,

inf
f̂n

sup
f∈Sm,H(r,L)

E
(
‖f̂n − f‖∞

)
�
( log n

n

) r
2r+1 � sup

f∈Sm,H(r,L)
E
(
‖f̂BP,Tκ − f‖∞

)
, (5.4)

proving that f̂BP,Tκ is an (asymptotically) optimally performing estimator over the con-

strained function class Sm,H(r, L), for such m.

Our strategy to substantiate Theorem 5.2.1, motivated by [77, Theorem 2.10],

amounts to constructing a class of hypothesis functions that lie in the function class

Sm,H(r, L). These functions will maintain a suitable distance from each other in the sup-

norm, while staying sufficiently close to each other under the L2-norm. Moreover, this

family of Mn hypotheses fj,n, j = 0, 1, . . . ,Mn must satisfy the following three conditions:

(C1) each fj,n ∈ Sm,H(r, L), j = 0, 1, . . . ,Mn;
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(C2) whenever j 6= k, ‖fj,n − fk,n‖∞ ≥ 2sn > 0, where sn � (log n/n)r/(2r+1);

(C3) there must exist a fixed constant c0 ∈ (0, 1/8) such that for all n sufficiently large,

1

Mn

Mn∑
j=1

K(Pj , P0) ≤ c0 log(Mn),

where Pj denotes the distribution of (Yj,1, . . . , Yj,n), Yj,i = fj,n(Xi)+ξi, i = 1, . . . , n,

Xi = i/n, the ξi’s are iid random variables, and K(P,Q) denotes the Kullback

divergence between the two probability measures P and Q [41], i.e.,

K(P,Q) :=


∫

log
dP

dQ
dP, if P � Q

+∞, otherwise.

We will specify Mn in the later development. In addition, we assume that there exists a

constant p∗ > 0 (independent of n and fj,n) such that K(Pj , P0) ≤ p∗
∑n

i=1

(
fj,n(Xi) −

f0,n(Xi)
)2

. This assumption holds true if the iid random variables ξi ∼ N(0, σ2) (cf. [77,

(2.36)] or [77, Section 2.5, Assumption B]). Hence, the constrained regression problem

defined in (5.1) satisfies this assumption.

In other words, once a family of functions {fj,n} satisfying the above three conditions

is constructed, then the minimax lower bound over Sm,H(r, L) given by Theorem 5.2.1 will

hold, for some constant c > 0 depending on m, r, L, and p∗ only. In view of this, the goal

of this chapter is to construct a family of suitable functions fj,n satisfying (C1)-(C3).
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5.3 Construction of Hypothesis Functions

Let (Kn) be the increasing sequence of positive integers given by

Kn :=

⌈(
n

log n

) 1
2r+1

⌉
, (5.5)

and fix n large. For that fixed n, define κi := i
Kn

for each i = 0, 1, . . . ,Kn. In this section,

we construct the functions fj,n, j = 0, 1, . . . ,Mn that satisfy conditions (C1)-(C3) of the

previous section. To this end, we begin by constructing increasing functions h
[1]
p,n , h

[2]
p,n :

[0, κ2p ] → R inductively for p = 1, 2, . . . ,m. Our procedure for constructing the fj,n’s

involves (i) using h
[1]
m,n and h

[2]
m,n to construct the gj,n’s (cf. (5.14)-(5.15) and (5.16)-(5.17))

and (ii) integrating the gj,n’s a total of (m − 1) times to produce the fj,n’s (c.f. (5.18)).

We choose h
[1]
m,n and h

[2]
m,n for this procedure for the following reasons.

(i) In order to meet (C1), each gj,n = f
(m−1)
j,n must be increasing. Both h

[1]
m,n and h

[2]
m,n

(used in the construction of each gj,n) meet this requirement.

(ii) In view of (C2), the distance (measured with respect to the sup-norm) between

fj,n and fk,n for j 6= k must be non-small. The fj,n’s are constructed such that

fj,n(x) = fk,n(x) when j 6= k for all x outside of two small subintervals of [0, 1].

On these subintervals, fj,n − fk,n will be equal to the (m − 1)th integral of either

h
[2]
m,n−h[1]

m,n or h
[1]
m,n−h[2]

m,n (c.f. Lemma 5.3.3). This integral is on the order of Km−1
n

times smaller than h
[2]
m,n− h[1]

m,n in the sup-norm. Although this integral is relatively

small, it will still be large enough for the fj,n’s to meet (C2).

(iii) The (m− 1)th integral of h
[2]
m,n − h[1]

m,n, is on the order of Km−1
n times smaller than

h
[2]
m,n − h[1]

m,n in the sup-norm, and even smaller in the L2-norm. Since the fj,n’s are
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constructed such that |fj,n − fk,n| is equal to |I(m−1)
[0,·] (h

[2]
m,n − h[1]

m,n)| (where I(m−1)

is defined in Section 5.1) on two small subintervals of [0, 1] and zero elsewhere for

j 6= k (c.f. Lemma 5.3.3), the L2-norm of fj,n − fk,n will be sufficiently small and

allow the fj,n’s to meet (C3).

With these ideas in mind, we proceed to construct the auxiliary functions h
[1]
p,n and h

[2]
p,n, for

p = 1, . . . ,m and establish two technical lemmas in Section 5.3.1. In Section 5.3.2, we use

the constructions and results from Section 5.3.1 to (i) construct the gj,n’s, (ii) construct

the hypotheses fj,n, j = 0, 1, . . . ,Mn by integrating each gj,n a total of (m−1) times, and

(iii) establish Lemma 5.3.3, which will pave the way for the proof of Theorem 5.2.1.

5.3.1 Construction of Auxiliary Functions

We will now construct the auxiliary functions h
[1]
p,n and h

[2]
p,n to be used in the subse-

quent constructions. Let c0 ∈ (0, 1
8), and p∗ be the positive constant indicated at the end

of condition (C3) in the previous section. Choose

L = min

{
L

2m
,
m!

2mm

√
γ c0

2m+3p∗(2r + 1)

}
. (5.6)

Define the following functions h
[1]
p,n, h

[2]
p,n : [0, κ2p ] → R recursively for p = 1, 2, . . . ,m as

follows. First let

h
[1]
1,n(x) =


0 if x ∈ [0, κ1]

LK1−γ
n (x− κ1) if x ∈ (κ1, κ2]

(5.7)

and

h
[2]
1,n(x) =


LK1−γ

n x if x ∈ [0, κ1]

LK−γn if x ∈ (κ1, κ2].

(5.8)
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Then for p = 2, . . . ,m, define

h[1]
p,n(x) =


h

[1]
p−1,n(x) if x ∈ [0, κ2p−1 ]

h
[2]
p−1,n(x− κ2p−1) + h

[1]
p−1,n(κ2p−1) if x ∈ (κ2p−1 , κ2p ]

(5.9)

and

h[2]
p,n(x) =


h

[2]
p−1,n(x) if x ∈ [0, κ2p−1 ]

h
[1]
p−1,n(x− κ2p−1) + h

[2]
p−1,n(κ2p−1) if x ∈ (κ2p−1 , κ2p ]

. (5.10)

Figure 5.1 contains plots of these functions for p = 1, 2, 3, 4. Note that both h
[1]
1,n and

h
[2]
1,n are continuous. By induction, so are h

[1]
p,n and h

[2]
p,n for p = 2, . . . ,m. Additionally,

for 1 < p ≤ m, the first “half” of h
[1]
p,n (i.e., the part defined on [0, κ2p−1 ]) is identical to

h
[1]
p−1,n, and the second “half” of h

[1]
p,n (i.e., the part defined on (κ2p−1 , κ2p ]), when shifted

appropriately, is identical to h
[2]
p−1,n. An analogous relationship holds for h

[2]
p,n, h

[2]
p−1,n on

[0, κ2p−1 ], and h
[1]
p−1,n on (κ2p−1 , κ2p ].

For each p = 1, . . . ,m, define ϕp : [0, κ2m ]→ R such that for all x ∈ [0, κ2m ],

ϕ1(x) := (h[2]
m,n − h[1]

m,n)(x) and ϕp(x) := I(p−1)
[0,x] (ϕ1), p = 2, . . . ,m. (5.11)

Note that on [0, κ2p ],

ϕ1(x) = (h[2]
m,n − h[1]

m,n)(x) = (h
[2]
m−1,n − h

[1]
m−1,n)(x) = · · · = (h[2]

p,n − h[1]
p,n)(x). (5.12)

Also, on [0, κ2m ], the `th derivative

ϕ(`)
p (x) = ϕp−`(x), for all ` = 1, . . . , p− 1. (5.13)
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Figure 5.1: Plot of h
[1]
p,n and h

[2]
p,n for p = 1, 2, 3, 4.
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The following two lemmas will be useful in Section 5.3.2.

Lemma 5.3.1. For each p = 1, . . . ,m, ϕ
(`)
p (κ2p) = 0 for ` = 0, 1, . . . , p− 1. Note that for

p = m, we define ϕ
(`)
m (κ2m) as the `th right derivative of ϕm at κ2m.

Proof. We prove this result by induction on p. For p = 1, by virtue of (5.12),

ϕ1(κ2) = (h
[2]
1,n − h

[1]
1,n)(κ2) = LK−γn − LK−γn = 0.

Hence, the result holds for p = 1. Fix p ∈ N with 1 < p ≤ m and assume that the result

holds for (p− 1). In what follows, we show that the result then holds for p.

Consider ` = 0 first. Since ϕp is (p− 1) times differentiable, by Taylor expansion

ϕp(κ2p) =

p−2∑
q=0

ϕ
(q)
p (κ2p−1)

(
2p−1

Kn

)q
q!

+ I(p−1)
[κ2p−1 ,κ2p ](ϕ

(p−1)
p ).

By (5.13) and the induction hypothesis, we have ϕ
(q)
p (κ2p−1) = ϕp−q(κ2p−1) = ϕ

(q−1)
p−1 (κ2p−1)

= 0 for q = 1, . . . , p− 2. Hence, by the above display,

ϕp(κ2p) = ϕp(κ2p−1) + I(p−1)
[κ2p−1 ,κ2p ](ϕ

(p−1)
p ) = ϕp(κ2p−1) + I(p−1)

[κ2p−1 ,κ2p ](h
[2]
m,n − h[1]

m,n)

= ϕp(κ2p−1) + I(p−1)
[κ2p−1 ,κ2p ]

(
(h

[1]
p−1,n − h

[2]
p−1,n)( · − κ2p−1) + ϕ1(κ2p−1)

)
= ϕp(κ2p−1) + I(p−1)

[0,κ2p−1 ](h
[1]
p−1,n − h

[2]
p−1,n) = ϕp(κ2p−1)− ϕp(κ2p−1) = 0,

where we use (5.7)-(5.13), and ϕ1(κ2p−1) = ϕ
(p−2)
p−1 (κ2p−1) = 0 via (5.13) and the induction

hypothesis.
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Next consider ` = 1, . . . , p− 2. We have that

ϕ(`)
p (κ2p) =

p−`−2∑
q=0

ϕ
(`+q)
p (κ2p−1)

(
2p−1

Kn

)q
q!

+ I(p−`−1)
[κ2p−1 ,κ2p ](ϕ

(p−1)
p ).

In view of ϕ
(`+q)
p (κ2p−1) = ϕp−`−q(κ2p−1) = 0 for all q = 0, 1, . . . , p− `− 2 via (5.13) and

the induction hypothesis, we have by the above display, and (5.7)-(5.13),

ϕ(`)
p (κ2p) = I(p−`−1)

[κ2p−1 ,κ2p ](ϕ1) = I(p−`−1)
[κ2p−1 ,κ2p ](h

[2]
p,n − h[1]

p,n)

= I(p−`−1)
[κ2p−1 ,κ2p ]

[
(h

[1]
p−1,n − h

[2]
p−1,n)( · − κ2p−1) + ϕ1(κ2p−1)

]
= −I(p−`−1)

[0,κ2p−1 ](ϕ1) = −ϕp−`(κ2p−1) = 0.

Finally, if ` = p− 1, then by (5.7)-(5.13),

ϕ(p−1)
p (κ2p) = ϕ1(κ2p) = h[2]

p,n(κ2p)− h[1]
p,n(κ2p)

=
(
h

[1]
p−1,n(κ2p−1) + h

[2]
p−1,n(κ2p−1)

)
−
(
h

[2]
p−1,n(κ2p−1) + h

[1]
p−1,n(κ2p−1)

)
= 0.

Hence the result holds by induction.

Lemma 5.3.2. Let r ∈ (m− 1,m] and γ = r − (m− 1). For ϕm : [0, κ2m ]→ R,

L

m!
K−rn ≤ ‖ϕm‖∞ ≤

L 2m
m

m!
K−rn .

Proof. Suppose that m = 1. Then it is easy to see via Figure 5.1 that

‖ϕ1‖∞ = ‖h[2]
1,n − h

[1]
1,n‖∞ = LK−γn ,

139



so the result holds for m = 1.

Therefore, consider m > 1. Let dTm−1 denote dt1 . . . dtm−2 dtm−1. On [0, κ1], we

have that ϕ1(x) = h
[2]
1,n(x)− h[1]

1,n(x) = LK1−γ
n x. Hence, if m = 2,

‖ϕ2‖∞ ≥ ϕ2 (κ1) = I(1)
[0,κ1](ϕ1) =

∫ κ1

0
LK1−γ

n t1 dt1 =
L

2!
K−rn ,

and if m > 2,

‖ϕm‖∞ ≥ ϕm (κ1) = I(m−1)
[0,κ1] (ϕ1) =

∫ κ1

0

∫ tm−1

0
. . .

∫ t2

0
LK1−γ

n t1 dTm−1 =
L

m!
K−rn .

We claim that |ϕ1(x)| ≤ LK−γn for all x ∈ [0, κ2p ] for p = 1, . . . ,m, and prove this

claim by induction on p. Certainly this claim holds for p = 1, via (5.7)-(5.8) and (5.11).

If 1 < p ≤ m, and the result holds for (p− 1), we need only show that |ϕ1(x)| ≤ LK−γn on

(κ2p−1 , κ2p ]. If x ∈ (κ2p−1 , κ2p ], then by (5.9)-(5.12) and Lemma 5.3.1,

|ϕ1(x)| = |(h[2]
p,n − h[1]

p,n)(x)| = |(h[1]
p−1,n − h

[2]
p−1,n)(x− κ2p−1) + ϕ1(κ2p−1)|

= |(h[1]
p−1,n − h

[2]
p−1,n)(x− κ2p−1)| ≤ LK−γn ,

since (x− κ2p−1) ∈ [0, κ2p−1 ].

Now by the established claim, we complete the proof by observing that

‖ϕm‖∞ ≤ I(m−1)
[0,κ2m ](‖ϕ1‖∞) ≤ I(m−1)

[0,κ2m ](LK
−γ
n ) =

L 2m
m−1

(m− 1)!
K−rn ≤

L 2m
m

m!
K−rn .
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Now that we have established the previous two preliminary results, we are ready to

construct the hypothesis functions using h
[1]
m,n and h

[2]
m,n in the next section.

5.3.2 Construction of the Hypotheses

In what follows, we construct the (m−1)th derivatives of the fj,n’s, namely the gj,n’s,

j = 0, 1, . . . ,Mn. We then integrate the gj,n’s to create the fj,n’s. Later in Section 5.4, we

will demonstrate that the fj,n’s meet conditions (C1)-(C3) of Section 5.2.

To this end, we consider two different cases in constructing the gj,n’s.

Case 1: r ∈ (m − 1,m), so that γ = r −m + 1 ∈ (0, 1). In this case, let Mn :=

bKγ
nc − 1 ∈ N and define g0,n : [0, 1]→ R such that

g0,n(x) :=


i 2m−1LK−γn + h

[1]
m,n(x− iK−γn ) if x ∈ [iK−γn , iK−γn + κ2m)

(i+ 1)2m−1LK−γn if x ∈ [iK−γn + κ2m , (i+ 1)K−γn )

(5.14)

for all appropriate i ∈ Z+, where h
[1]
m,n is defined in (5.9). Note that we assume that n is

large enough so that κ2m < K−γn , and hence, g0,n is well defined. Define the intervals

Ij := [(j − 1)K−γn , (j − 1)K−γn + κ2m) ⊆ [0, 1]

for each j = 1, . . . ,Mn. For each such j, we define gj,n : [0, 1]→ R such that

gj,n(x) :=


(j − 1)2m−1LK−γn + h

[2]
m,n(x− (j − 1)K−γn ) if x ∈ Ij

g0,n(x) otherwise,

(5.15)

141



where h
[2]
m,n is defined in (5.10). Hence, gj,n(x) = g0,n(x) for all x ∈ [0, 1] \ Ij . For x ∈ Ij ,

gj,n(x)− g0,n(x) = h[2]
m,n(x− (j − 1)K−γn )− h[1]

m,n(x− (j − 1)K−γn ) = ϕ1(x− (j − 1)K−γn ).

Furthermore, g0,n is continuous, since (i) h
[1]
m,n is continuous on [0, κ2m ], and (ii) it can be

shown by induction that h
[1]
m,n(κ2m) = 2m−1LK−γn ; thus for each i,

i 2m−1LK−γn + h[1]
m,n(iK−γn + κ2m − iK−γn ) = (i+ 1)2m−1LK−γn .

A similar argument shows that gj,n is continuous, for j = 1, . . . ,Mn.

In Figure 5.2 a plot of several of the gj,n’s near the origin is given for m = 1, 2, 3.

Case 2: r = m, so that γ = 1. In this case, let Mn := bKn2m c − 1 ∈ N and define

g0,n : [0, 1]→ R such that

g0,n(x) := i 2m−1LK−1
n + h

[1]
j,n(x− i 2mK−1

n ) if x ∈ [i 2mK−1
n , (i+ 1)2mK−1

n ) (5.16)

for all appropriate i ∈ Z+, where h
[1]
m,n is defined in (5.9). Also, define the intervals

Ij := [(j − 1)2mK−1
n , j 2mK−1

n ) ⊆ [0, 1]

for each j = 1, . . . ,Mn and let gj,n : [0, 1]→ R be such that

gj,n(x) :=


(j − 1)2m−1LK−1

n + h
[2]
m,n(x− (j − 1)2mK−1

n ) if x ∈ Ij

g0,n(x) otherwise,

(5.17)
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Figure 5.2: Plot of the gj,n’s near the origin, γ ∈ (0, 1)
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where h
[2]
m,n is defined in (5.10). In this case, we again have that, gj,n(x) = g0,n(x) for all

x ∈ [0, 1] \ Ij and for all x ∈ Ij ,

gj,n(x)− g0,n(x) = (h[2]
m,n − h[1]

m,n)(x− (j − 1)2mK−1
n ) = ϕ1(x− (j − 1)2mK−1

n ).

In Figure 5.3 a plot of several of the gj,n’s near the origin is given for m = 1, 2, 3. By an

argument similar to Case 1, each gj,n, j = 0, 1, . . . ,Mn, is continuous on [0, 1].

Finally, in either case, define the jth hypothesis function fj,n : [0, 1]→ R such that

fj,n(x) := I(m−1)
[0,x] (gj,n), ∀ x ∈ [0, 1]. (5.18)

Now that we have constructed the hypothesis functions, we will establish one more

lemma, before demonstrating that the hypotheses satisfy conditions (C1)-(C3) in Sec-

tion 5.4.

Lemma 5.3.3. If γ ∈ (0, 1), then for each j = 1, . . . ,Mn, we have that

fj,n(x)− f0,n(x) =


ϕm(x− (j − 1)K−γn ) if x ∈ Ij

0 otherwise,

and alternatively, if γ = 1, then for each j = 1, . . . ,Mn, we have that

fj,n(x)− f0,n(x) =


ϕm(x− (j − 1)2mK−1

n ) if x ∈ Ij

0 otherwise,

where ϕm is defined in (5.11).
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Figure 5.3: Plot of the gj,n’s near the origin, γ = 1
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Proof. Certainly, the result holds for m = 1 by (5.11) and (5.14)-(5.18). In what follows,

consider m > 1. We have the following two cases.

Case 1: γ ∈ (0, 1), so each fj,n is given by (5.14)-(5.15), and (5.18). Fix j = 1, . . . ,Mn.

If x ∈ [0, (j − 1)K−γn ), then via (5.15), and (5.18),

(fj,n − f0,n)(x) = I(m−1)
[0,x] (gj,n − gj,0) = 0. (5.19)

Suppose that x ∈ Ij := [(j − 1)K−γn , (j − 1)K−γn + κ2m). Then by (5.11), (5.14)-(5.15),

and (5.18),

(fj,n − f0,n)(x) = I(m−1)
[0,x] (gj,n − gj,0) = I(m−1)

[(j−1)K−γn ,x]

(
(h[2]
m,n − h[1]

m,n)( · − (j − 1)K−γn )
)

= I(m−1)

[0, x−(j−1)K−γn ]
(ϕ1) = ϕm(x− (j − 1)K−γn ). (5.20)

Finally, consider x ∈ [(j − 1)K−γn + κ2m , 1]. By Lemma 5.3.1, (5.11)-(5.15), and (5.18),

0 = ϕ(p)
m (κ2m) = ϕm−p(κ2m) = I(m−p−1)

[0,κ2m ] (h[2]
m,n − h[1]

m,n)

= I(m−p−1)

[(j−1)K−γn , (j−1)K−γn +κ2m ]

(
(h[2]
m,n − h[1]

m,n)( · − (j − 1)K−γn )
)

= I(m−p−1)

[(j−1)K−γn , (j−1)K−γn +κ2m ]

(
gj,n − g0,n

)
= I(m−p−1)

[0, (j−1)K−γn +κ2m ]

(
gj,n − g0,n

)
= (fj,n − f0,n)(p)((j − 1)K−γn + κ2m), (5.21)

for p = 0, 1, . . . ,m − 1. Since gj,n − g0,n is continuous by the discussion below (5.14)-

(5.15), fj,n−f0,n is (m−1) times continuously differentiable. Hence, via Taylor expansion

and (5.21),

(fj,n − f0,n)(x) = (fj,n − f0,n)(x)
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−
m−2∑
p=0

(fj,n − f0,n)(p)
(

(j − 1)K−γn + κ2m

)(
x− [(j − 1)K−γn + κ2m ]

)p
p!

= I(m−1)

[(j−1)K−γn +κ2m , x]

(
(fj,n − f0,n)(m−1)

)
= I(m−1)

[(j−1)K−γn +κ2m , x]
(gj,n − g0,n)

= 0, (5.22)

and the result holds for Case 1.

Case 2: γ = 1 so each fj,n is given by (5.16)-(5.17), and (5.18). Again, fix j = 1, . . . ,Mn.

Using arguments similar to those in (5.19), (5.20), and (5.21)-(5.22), demonstrates that

Case 2 holds for all x ∈ [0, (j − 1)2mK−1
n ), [(j − 1)2mK−1

n , j 2mK−1
n ), and [j 2mK−1

n , 1],

respectively.

Now that we have constructed the hypotheses and established the previous result,

we are ready to show that these functions meet conditions (C1)-(C3) from Section 5.2.

5.4 Proof of the Main Result

We use the previous constructions and results to establish Theorem 5.2.1 in the

following proof.

Proof. In each of the following two cases, we demonstrate that the fj,n’s of (5.18) meet

conditions (C1)-(C3).

Case 1: γ ∈ (0, 1), so that Mn = bKγ
nc − 1, and the gj,n’s are given by (5.14)-

(5.15). We show that the fj,n’s meet conditions (C1), (C2), and (C3), in (1), (2), and (3)

respectively.

(1) For all n (and Kn) sufficiently large, the following properties of each gj,n can be

easily verified via Figure 5.2: for x, y ∈ [0, 1], suppose that
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(i) 0 < |x− y| ≤ κ2m . Then

max
j

|gj,n(x)− gj,n(y)|
|x− y|

≤ |g1,n(x)− g1,n(y)|
|x− y|

∣∣∣
x=κ1, y=κ2m−1

≤ LK1−γ
n .

(ii) κ2m < |x− y| ≤ K−γn . Then

max
j
|gj,n(x)− gj,n(y)| ≤ |g0,n(x)− g0,n(y)|

∣∣
x=0, y=κ2m

≤ 2m−1LK−γn .

(iii) K−γn < |x − y| ≤ 1. Without loss of generality, let x < y with y = qK−γn + s(x, y)

for some q ∈ N and 0 ≤ s(x, y) < K−γn . It follows from (5.6) that

max
j

|gj,n(x)− gj,n(y)|
|x− y|

≤ |g1,n(x)− g1,n(y)|
|x− y|

∣∣∣
x=κ1, y=qK−γn +κ2m−1

≤ 2m−1(q + 1)LK−γn

qK−γn + (2m − 2)K−1
n

≤ 2m−1(q + 1)LK−γn

qK−γn
≤ 2mL ≤ L.

Since each gj,n is nondecreasing, each fj,n given by (5.18) belongs to Sm (c.f. (3.1)).

To see that each fj,n is in the Hölder class Hr
L, we consider the following three scenerios:

(1.1) 0 < |x− y| ≤ κ2m . Then, by (i) and (5.6), we have that

|f (m−1)
j,n (x)− f (m−1)

j,n (y)|
|x− y|γ

=
|f (m−1)
j,n (x)− f (m−1)

j,n (y)|
|x− y|

|x− y|1−γ

≤ L̄K1−γ
n κ1−γ

2m ≤ 2mL ≤ L.

(1.2) κ2m < |x− y| ≤ K−γn . Then, by (ii) and (5.6), we have that

|f (m−1)
j,n (x)− f (m−1)

j,n (y)|
|x− y|γ

≤ 2m−1LK−γn
|x− y|γ

≤ 2m−1L̄K−γn κ−γ2m ≤ 2mL ≤ L.
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(1.3) 1
Kγ
n
< |x− y| ≤ 1. By (iii), we obtain

|f (m−1)
j,n (x)− f (m−1)

j,n (y)|
|x− y|γ

≤
|f (m−1)
j,n (x)− f (m−1)

j,n (y)|
|x− y|

≤ L.

Thus, each fj,n ∈ Sm,H(r, L), so the fj,n’s satisfy (C1).

(2) Suppose that j 6= k. By Lemma 5.3.3, we have that fj,n(x) = f0,n(x) = fk,n(x)

for all x ∈ [0, 1] \ (Ij ∪ Ik). Hence, |fj,n(x)− fk,n(x)| = 0 on [0, 1] \ (Ij ∪ Ik). Also,

|fj,n(x)− fk,n(x)| = |fj,n(x)− f0,n(x)| = |ϕm(x− (j − 1)K−γn )| ∀ x ∈ Ij ,

and similarly, |fj,n(x) − fk,n(x)| = |ϕm(x − (k − 1)K−γn )| ∀ x ∈ Ik. Therefore, in view of

Lemma 5.3.2, we see that the fj,n’s meet condition (C2) with sn := L
2m!

⌈(
n

logn

) 1
2r+1

⌉−r
�(

logn
n

) r
2r+1

, as

‖fj,n − fk,n‖∞ = ‖ϕm‖∞ ≥
L

m!
K−rn = 2sn.

(3) By the discussion following the statement of (C3) in Section 5.2, there exists

p∗ > 0, independent of n and fj,n, such that K(Pj , P0) ≤ p∗
∑n

i=1(fj,n(Xi) − f0,n(Xi))
2

where Xi = i
n , for all j = 1, . . . ,Mn. Also,

i

n
∈
[
(j−1)K−γn , (j−1)K−γn +κ2m

)
=⇒

⌈
n(j − 1)K−γn

⌉
≤ i ≤

⌊
n
(
(j − 1)K−γn + κ2m

)⌋
.

Let aj :=
⌈
n(j − 1)K−γn

⌉
and bj :=

⌊
n
(

(j − 1)K−γn + κ2m

)⌋
. Then by Lemma 5.3.2,

Lemma 5.3.3, (5.5), and (5.6), for n sufficiently large,

K(Pj , P0) ≤ p∗
n∑
i=1

(
fj,n

(
i

n

)
− f0,n

(
i

n

))2

= p∗

bj∑
i=aj

(
fj,n

(
i

n

)
− f0,n

(
i

n

))2
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= p∗

bj∑
i=aj

(
ϕm

(
i

n
− (j − 1)K−γn

) )2

≤ p∗
bj∑
i=aj

(
L2m

m

m!
K−rn

)2

≤ p∗2n κ2m

(
L2m

m

m!
K−rn

)2

= p∗2
m+1

(
L2m

m

m!

)2

nK−(2r+1)
n

≤ γc0
4(2r + 1)

n K−(2r+1)
n ≤ γc0

4(2r + 1)
log n ≤ γc0

2(2r + 1)
log

(
n

log n

)
≤ γc0

2
log(Kn) ≤ c0 log(bKγ

nc − 1) = c0 logMn

for all j = 1, . . . ,Mn. Thus, 1
Mn

∑Mn
j=1K(Pj , P0) ≤ c0 logMn, and (C3) holds in Case 1.

Case 2: γ = 1, so that Mn = bKn2m c−1, and the gj,n’s are now given by (5.16)-(5.17).

We now demonstrate that conditions (C1)-(C3) hold for Case 2 in (1)-(3).

(1) It is easy to see that each gj,n is increasing via Figure 5.3. Hence, each fj,n

given by (5.18) belongs to Sm. Also, it is easy to verify that for any 0 ≤ x < y ≤ 1,

|gj,n(x)−gj,n(y)|
|x−y| ≤ L ≤ L for each j = 0, 1, . . . ,Mn. This thus implies that each fj,n ∈

Sm,H(r, L). Hence, the fj,n’s meet condition (C1).

(2) Suppose that j 6= k. By the same argument as in Case 1,

|fj,n(x)− fk,n(x)| =



|ϕm(x− (j − 1)κ2m)| if x ∈ Ij

|ϕm(x− (k − 1)κ2m)| if x ∈ Ik

0 otherwise.

Hence the fj,n’s meet condition (C2) with sn := L
2m!

⌈(
n

logn

) 1
2r+1

⌉−r
�
(

logn
n

) r
2r+1

, as

‖fj,n − fk,n‖∞ = ‖ϕm‖∞ ≥
L

m!
K−rn = 2sn.
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(3) Let aj := dn(j− 1)κ2me and bj := bn j κ2mc. By an argument similar to that in

Case 1, for n sufficiently large, we have that for all j = 1, . . . ,Mn,

K(Pj , P0) ≤ p∗
bj∑
i=aj

(
ϕm

(
i

n
− (j − 1)κ2m

) )2

≤ p∗
bj∑
i=aj

(
L2m

m

m!
K−rn

)2

≤ p∗2n κ2m

(
L2m

m

m!
K−rn

)2

≤ c0

2
log(Kn) ≤ c0 log

(⌊
Kn

2m

⌋)
= c0 log(Mn)

Hence 1
Mn

∑Mn
j=1K(Pj , P0) ≤ c0 logMn and condition (C3) holds for Case 2 as well.

We have demonstrated that conditions (C1)-(C3) are satisfied by fj,n, j = 0, 1 . . . ,Mn.

By virtue of the discussion following the statement of Theorem 5.2.1 in Section 5.2, The-

orem 5.2.1 holds.

5.5 Implications and Extensions

In this section, we state and establish several corollaries to Theorem 5.2.1. The first

two corollaries combine Theorem 5.2.1 with the results from Chapter IV to demonstrate

that, in certain instances, the constrained B-spline estimator proposed in Chapter III

achieves the optimal performance under the sup-norm. The second two corollaries establish

a minimax lower bound in the sup-nom for nonnegative derivative constrained Sobolev

function classes.

Combining the results from Chapters III-V, we have the following results on the

constrained nonparametric estimation problem given by (5.1).

Corollary 5.5.1. Fix m ∈ N, r ∈ (m−1,m], and L > 0. Consider the regression problem

given by (5.1). If m = 1, 2, or 3, then

inf
f̂

sup
f∈Sm,H(r,L)

E
(
‖f̂ − f‖∞

)
�
( log n

n

) r
2r+1

, (5.23)
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where inf
f̂

denotes the infimum over all estimators in Sm on [0, 1].

Proof. For fixed n (and Kn), let the set of design points P = (xi)
n
i=0 be given by xi = i

n

(c.f. (3.13)). Fix positive constants cκ,1, cκ,2 such that 0 < cκ,1 ≤ 1 ≤ cκ,2. Then for

any Tκ ∈ TKn , let f̂BP,Tκ denote the nonnegative derivative constrained B-spline from

Chapter III given by (3.7)-(3.8). The result follows from (5.3).

Remark 5.5.1. By (5.4), f̂BP,Tκ is an (asymptotically) optimally performing estimator

over Sm,H(r, L), for m = 1, 2, 3.

Recall from Chapter IV that by Proposition 4.2.2 and Remark 4.2.1, the maximum

risk associated with the nonnegative constrained B-spline f̂BP,Tκ estimator

sup
f∈Sm,H(r,L)

E
(
‖f̂BP,Tκ − f‖∞

)
≥ c̃m
K3
n

�
(

log n

n

) 3
2r+1

when m > 3 and Kn �
(

n
logn

) 1
2r+1

, which is much larger than the minimax lower bound

given in Theorem 5.2.1. Therefore, we believe that f̂BP,Tκ does not perform optimally over

Sm,H(r, L) for such m. However, the next result demonstrates that this estimator still per-

forms optimally over the restricted Hölder class of strictly positive derivative constrained

functions Sm,H(r, L′, L) (c.f (4.3)) for any fixed m, r, L′, and L. The proof the next

corollary follows immediately from Theorems 4.3.2 and 5.2.1.

Corollary 5.5.2. Fix m ∈ N, r ∈ (m − 1,m], and L ≥ L′ > 0. Let Sm,H(r, L′, L) de-

note the previously defined restricted Hölder class of strictly positive derivative constrained

functions given by (4.3). Then for the regression problem given by (5.1),

inf
f̂

sup
f∈Sm,H(r,L′,L)

E
(
‖f̂ − f‖∞

)
�
( log n

n

) r
2r+1

,
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where inf
f̂

denotes the infimum over all estimators in Sm on [0, 1].

In this chapter, we have studied minimax lower bounds for constrained Hölder

clasees, where the ceiling of the Hölder exponent, dre, is equal to m, the order of the

nonnegative derivative constraint. In the next corollary, we establish the same mini-

max lower bounds when dre is greater than the order of the derivative constraint. Let

Sp,H(r, L) := Sp ∩Hr
L for any p ∈ N, with 1 ≤ p < m. Consider the regression problem

given by (5.1) with Sm,H(r, L) replaced by Sp,H(r, L). We have the following corollary.

Corollary 5.5.3. Fix m ∈ N, r ∈ (m− 1,m], L > 0, and p ∈ N, with 1 ≤ p < m. Then

there exists a positive constant c such that

lim inf
n→∞

inf
f̂

sup
f∈Sp,H(r,L)

E
(
‖f̂ − f‖∞

)
≥ c

( log n

n

) r
2r+1

,

where inf
f̂

denotes the infimum over all estimators in Sp on [0, 1].

Proof. In view of the proof of Theorem 5.2.1, it is sufficient to show that there exists a

family hypothesis functions fj,n, j = 0, 1, . . . ,Mn satisfying (i) fj,n ∈ Sp,H(r, L) for all

j, (ii) (C2) of Section 5.2, and (iii) (C3) of Section 5.2. Because the gj,n’s constructed

in (5.14)-(5.17) satisfy gj,n ≥ 0,

f
(p)
j,n (x) = I(m−p−1)

[0,x] (gj,n) ≥ 0,

so each of the fj,n’s given by (5.18) belong to Sp. Moreover, by the proof of Theorem 5.2.1,

each fj,n ∈ Hr
L (and thus is also in Sp,H(r, L)) and satisfies (C2) and (C3).

We have studied the nonparametric estimation of nonnegative derivative constrained

functions in the sup-norm, over suitable Hölder classes. In this final corollary, we consider
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the same problem over a Sobolev class. Fix m ∈ N and L > 0. We define the Sobolev

class of functions

W(m,L) :=
{
f : [0, 1]→ R

∣∣∣ f is (m− 1) times differentiable,

with f (m−1) absolutely continuous, and ‖f (m)‖L2 ≤ L
}
.

Let Sp,W(m,L) := Sp ∩ W(m,L). Consider the regression problem given by (5.1) with

Sm,H(r, L) replaced by Sp,W(m,L). We have the following last corollary.

Corollary 5.5.4. Fix m ∈ N, L > 0, and p ∈ N, with 1 ≤ p ≤ m. Then there exists a

positive constant c such that

lim inf
n→∞

inf
f̂

sup
f∈Sp,W (m,L)

E
(
‖f̂ − f‖∞

)
≥ c

( log n

n

) r
2r+1

,

where inf
f̂

denotes the infimum over all estimators in Sp on [0, 1].

Proof. In view of the proof of the previous corollary, it is sufficient show that the fj,n’s

given by (5.18) belong to the function class Sp,W(m,L). Note that each gj,n is Lipschitz

continuous, with Lipschitz constant L. Hence, each f
(m−1)
j,n = gj,n is absolutely continuous.

In addition, by the Lipschitz continuity of gj,n,

∫ 1

0

(
f

(m)
j,n (x)

)2
dx =

∫ 1

0

(
g′j,n(x)

)2
dx ≤

∫ 1

0
L2 dx = L2.

Thus, ‖f (m)
j,n ‖L2 ≤ L, and each fj,n ∈ Sm,W(m,L), completing the proof.
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5.6 Summary

In this chapter, we constructed a family of hypothesis functions in order to establish

a minimax lower bound for a family of nonnegative derivative constrained nonparametric

estimation problems under the supremum norm. Combining this result with those from

the previous chapters demonstrated that in certain cases, the nonnegative derivative con-

strained B-spline estimator from Chapter III achieves the optimal performance when the

supremum norm is used as the performance metric.
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CHAPTER VI

Conclusions

We have studied a number of problems in shape constrained estimation, concerning

(i) the analysis and computation of constrained smoothing splines, and (ii) the asymptotic

analysis of general nonnegative derivative constrained nonparametric estimation. In this

chapter, we summarize the results that we have established in these areas, and discuss

several future research directions.

6.1 Analysis and Computation of Constrained Smoothing Splines

In Chapter II, we formulated smoothing splines subject to general linear dynamics

and control constraints in terms of optimal control problems. We then used Hilbert

space methods and variational techniques to derive optimality conditions for the solutions

of these problems. In order to compute the constrained smoothing splines, a modified

nonsmooth Newton’s algorithm with line search was employed. A detailed argument

for the convergence analysis of this algorithm was given; several nontrivial constrained

smoothing spline numerical examples were considered.
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6.1.1 Future Work

A variety of extensions will be considered in the future. For instance, we aspire to

reduce the size requirement on the smoothing parameter needed to guarantee the con-

vergence of the nonsmooth Newton’s algorithm (c.f. Theorems 2.5.1-2.5.2). Such a size

reduction would ensure the algorithm’s convergence for smoothing parameters similar to

those used in the numerical examples in Section 2.6. Another interesting research ex-

tension would involve studying the effect of the smoothing parameter on the constrained

smoothing spline performance. A third direction would include examining a constrained

spline model for nonlinear dynamical systems. Other possibilities include the study of

smoothing splines subject to both control and state constraints. Finally, we hope to ad-

dress the statistical performance analysis of constrained smoothing splines in the future.

6.2 Asymptotic Analysis of General Nonnegative Derivative Constrained

Nonparametric Estimation

In Chapter III, we introduced a general nonnegative derivative constrained B-spline

estimator, for which we developed a critical uniform Lipschitz property. This uniform

Lipschitz property was then invoked in Chapter IV to provided asymptotic upper bounds

on the bias and stochastic error of the constrained B-spline estimator, with respect to

the supremum norm. These upper bounds allowed us to establish the B-spline estima-

tor consistency, and provided us with an estimator convergence rate. After establishing

a variety of minimax asymptotic lower bounds over suitable Hölder and Sobolev classes

under the supremum norm in Chapter V, it was observed that such minimax asymptotic

lower bounds corresponded to the asymptotic upper bounds developed for the nonnega-
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tive derivative constrained B-spline estimator risk for the first, second, and third order

derivative constraints. This demonstrates that the proposed constrained B-spline esti-

mator performs optimally over certain constrained Hölder classes for such nonnegative

derivative constraints with respect to the supremum norm.

6.2.1 Future Work

Although the proposed B-spline estimator achieves the optimal performance rate

under the supremum norm uniformly over many constrained Hölder classes for the first,

second, and third order derivative constraints, this optimal performance is not achieved for

fourth and higher order derivative constraints due to an undesirably large estimator bias.

Consequently, in order to meet the minimax asymptotic lower bounds from Chapter V,

other constrained estimators must be considered. One possible candidate is a nonnegative

derivative constrained B-spline estimator with variable knots. Moreover, the large bias of

the constrained B-spline estimator with fixed knots, introduced in Chapter III, stems from

the inability of certain smooth higher order nonnegative derivative constrained functions

to achieve Jackson type approximations with the same constraint for a fixed knot sequence,

as illustrated in Proposition 4.2.2. However, it is demonstrated in [32] that such Jackson

type approximations are attainable when the spline knot sequence is not fixed. Therefore,

one possible extension of the work presented in Chapters III-V would be to consider the

performance of a nonnegative derivative constrained B-spline estimator, whose variable

knots are somehow influenced by the data.

Other possible extensions to this second topic include the asymptotic analysis of

nonparametric estimation for (i) problems with more general shape constraints, or (ii)

problems with more than one shape constraint such as the k-monotone constraints given

158



in [2]. Finally, we may wish to examine other implications of the uniform Lipschitz prop-

erty for the general nonnegative derivative constrained B-spline estimator such as the

pointwise L2-risk and the pointwise mean squared error; these matters are addressed

in [80, Theroem 4.1, Statement 2], for a convex B-spline estimator.
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APPENDIX A

An Alternative Proof of Proposition 4.2.1

In this appendix, we give an independent proof of Proposition 4.2.1. We continue

to use the notation from Chapter IV. In what follows, we will show that there exists a

constant c∞,3 := 3
2Lc

2+γ
κ,2 such that for all f ∈ S3,H(r, L), with 2 < r ≤ 3, Tκ ∈ TKn , and

Kn ∈ N, there exists fB ∈ STκ+,3 satisfying ‖f − fB‖∞ ≤ c∞,3

K2+γ
n

. In order to do this, first fix

Kn ∈ N and Tκ ∈ TKn . Consider g := f ′ ∈ S2,H(r− 1, L) for any f ∈ S3,H(r, L), r ∈ (2, 3].

Our goal is to construct a piecewise linear function g̃ ∈ STκ+,2 such that

∣∣∣∣∫ x

0
(g(t)− g̃(t)) dt

∣∣∣∣ ≤ c∞,3

K2+γ
n

for all x ∈ [0, 1]. (A.1)

We will then define fB such that fB(x) = f(0) +
∫ x

0 g̃(t) dt for all x ∈ [0, 1]. The function

fB must lie in STκ+,3 since its derivative g̃ lies in the family STκ+,2 of convex piecewise linear

functions with knot sequence Tκ. Furthermore, by (A.1), we will have ‖f −fB‖∞ ≤ c∞,3

K2+γ
n

.

This purpose of this appendix is to construct such g̃ ∈ STκ+,2 and fB ∈ STκ+,3.
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A.1 Overview of Construction

The construction of g̃ is somewhat technical. Therefore, we will first give a brief

overview of the construction of this function.

To construct g̃, we will first subdivide [0, 1] into either N or (N+1) smaller intervals:

[τj−1, τj ], for j = 1, . . . , N with τ0 = 0, and [τN , 1], if τN < 1 . Moreover, each τj will be

a point in the knot sequence Tκ. Furthermore, in selecting the τj ’s via Algorithm 2, we

will ensure that
∫ τj
τj−1

(ĝ − g)(t) dt ≤ c∞,3

K2+γ
n

(shown in Lemma A.2.1), for all j = 1, . . . , N ,

where ĝ ≥ g is the linear interpolant of the convex function g at the knots in Tκ. (The

importance of bounding
∫ τj
τj−1

(ĝ − g)(t) dt in this way will become apparent later.) The

goal is to construct a function g̃j on each [τj−1, τj ] such that
∫ τj
τj−1

(g− g̃j)(t) dt = 0 for all

j, and setting

g̃(t) =


g̃j(t) if t ∈ [τj−1, τj ]

ĝ(t) if t ∈ [τN , 1]

will produce a well-defined convex continuous piecewise linear g̃ ∈ STκ+,2 satisfying (A.1).

On [τj−1, τj ], each g̃j will be a weighted average of ĝ and another piecewise lin-

ear convex function g̀j (see (A.14)) with knots in [τj−1, τj ] ∩ Tκ. Since g ≤ ĝ, we

have
∫ τj
τj−1

g(t) dt ≤
∫ τj
τj−1

ĝ(t) dt for all j = 1, . . . , N . Alternatively, each g̀j will be

constructed such that
∫ τj
τj−1

g(t) dt ≥
∫ τj
τj−1

g̀j(t) dt (see Lemma A.3.2) and
∫ τj
τj−1

(g̀j −

g)(t)1[g̀j−g≥0](t) dt ≤
c∞,3

K2+γ
n

(see the proof of Lemma A.4.1) for all j = 1, . . . , N . By

choosing an appropriate weight rj ∈ [0, 1], and setting g̃j := rj ĝ + (1− rj)g̀j on [τj−1, τj ],

we will have that
∫ τj
τj−1

(g − g̃j)(t) dt = 0 for all j. Combining this with the fact that

0 ≤
∫ τj

τj−1

(ĝ − g)(t) dt,

∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt ≤
c∞,3

K2+γ
n

,
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will allow us to establish that
∣∣∣∫ xτj−1

(g − g̃j)(t) dt
∣∣∣ ≤ c∞,3

K2+γ
n

for all x ∈ [τj−1, τj ]. The

construction of the g̀j ’s and g̃j ’s will also take into account the continuity and convexity

of g̃ (see Lemmas A.3.1 and A.4.1).

Putting all of this together gives us that g̃ ∈ STκ+,2 satisfies (A.1) as

∣∣∣∣∫ x

0
(g − g̃)(t) dt

∣∣∣∣ =

j−1∑
i=1

∣∣∣∣∣
∫ τi

τi−1

(g − g̃i)(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ x

τj−1

(g − g̃j)(t) dt

∣∣∣∣∣ ≤ c∞,3

K2+γ
n

,

for all x ∈ [τj−1, τj ], and j = 1, . . . , N . (If x ∈ [τN , 1], a similar argument can be made.)

The rest of this appendix is concerned with the construction of g̃ and fB. In Sec-

tion A.2, we choose the τj ’s via Algorithm 2 in order to form the intervals [τj−1, τj ],

j = 1, . . . , N , on which we may define the g̀j ’s and the g̃j ’s. In Section A.3 we con-

struct the piecewise linear convex g̀j ’s so that
∫ τj
τj−1

g(t) dt ≥
∫ τj
τj−1

g̀j(t) dt and
∫ τj
τj−1

(g̀j −

g)(t)1[g̀j−g≥0](t) dt ≤
c∞,3

K2+γ
n

. Finally, in Section A.4, we use the g̀j ’s to construct the g̃j ’s,

the function g̃ ∈ STκ+,2, and finally fB ∈ STκ+,3 satisfying (A.1).

A.2 Construction of g̃: Choosing the τj’s

In this section we choose points τj ∈ Tκ via Algorithm 2. The choice of these points

is of crucial importance in the construction of the g̀j ’s, the g̃j ’s, as well as g̃ in subsequent

sections.

Define c∗2 := 1
2Lc

1+γ
κ,2 , and recall that c∞,3 := 3

2Lc
2+γ
κ,2 . These quantities will be

frequently used throughout this and subsequent sections. Note that g = f ′ ∈ S2,H(r−1, L)

is differentiable. Define the function h : [0, 1]× [0, 1]→ R so that

h(x, y) = g(y) + g′(y)(x− y) (A.2)
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for all (x, y) ∈ [0, 1]× [0, 1]. Moreover, for each pair of x, y ∈ [0, 1], the quantity h(x, y) is

the value of the tangent line to g at y evaluated at x. The following properties hold for

all (x, y) ∈ [0, 1]× [0, 1] and are illustrated in Figure A.1.

(P1) Since g is a convex function, the value of any tangent line to g will always be less

than or equal to the value of g at any point x ∈ [0, 1]. Moreover,

h(x, y) ≤ g(x) for all x, y ∈ [0, 1]. (A.3)

(P2) Consider h(·, y), the tangent line to the function g at the point y. Since g is a convex

function, the difference between g and its tangent line h(·, y) evaluated at the point

x increases as the distance between x and y increases. Moreover, combining this

idea with (A.3), we have that

0 ≤ g(x)− h(x, y) increases as |x− y| increases with y fixed. (A.4)

(P3) For fixed x ∈ [0, 1], we may also consider the function g(x)−h(x, ·) : [0, 1]→ R, i.e.,

we consider g(x) − h(x, y) as a function of y since x ∈ [0, 1] is fixed. This function

gives us the difference between the function g and its tangent line h evaluated at the

point x, as we vary the point y at which h is tangent to g. Since g is convex, increasing

the distance between the fixed point x and the point y, where h is tangent to g, will

increase the difference between g and h(·, y) evaluated at the point x. Hence, (A.3)

gives us that

0 ≤ g(x)− h(x, y) increases as |x− y| increases with x fixed. (A.5)
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g(y)

g

h(·, y)

(a) P1: Observe that g(x) ≥
h(x, y) for all x.

g(y)

g(x1) g(x2)

h(·, y)
d1

d2

(b) P2: As x moves farther away
from y, the difference between
g(x) and h(x, y) increases.

g(x) g(y1)

g(y2)

h(·, y1)

h(·, y2)

d1
d2

(c) P3: As y moves farther away
from x, the difference between
g(x) and h(x, y) increases.

Figure A.1: An illustration of properties P1, P2, and P3.

With these properties in mind, we use Algorithm 2 to choose the points τ0, τ1, . . . , τN .

An illustration of Algorithm 2 is given in Figure A.2.

Algorithm 2 Choose τ0, τ1, . . . , τN .

Step 1: Let τ0 = 0, and j = 0.

Step 2: Let τ̃j be the first κi > τj such that g(κi) − h(κi, τj) ≥
c∗2

K1+γ
n

, if such a κi ∈ [0, 1]

exists. (If no such κi ∈ [0, 1] exists, set N = j, and terminate the algorithm.)

Step 3: Let τj+1 be the first κi > τ̃j such that g(τ̃j) − h(τ̃j , κi) ≥
c∗2

K1+γ
n

if such a κi exists.

(If no such κi ∈ [0, 1] exists, set N = j, and terminate the algorithm.)

Step 4: If τj+1 = 1, set N = j + 1, and terminate the algorithm. Otherwise, replace j with
j + 1, and return to Step 2.

g(τj)

g(τ̃j)

g(τj+1)

d∗ :=
c∗2

K
1+γ
n

d∗
d∗

d∗

Figure A.2: In Algorithm 2, τ̃j is the first knot κi ∈ Tκ to the right of τj such that

g(κi) − h(κi, τj) ≥ d∗ :=
c∗2

K1+γ
n

; τj+1 is the first κi ∈ Tκ to the right of τ̃j such that

g(κi)− h(κi, τj+1) ≥ d∗.
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Recall that ĝ is the linear interpolant of the convex function g at the knots in the

sequence Tκ. Later on, we will use ĝ to construct g̃ as described in Section A.1, and will

need the following lemma concerning the area between ĝ and g on each [τj−1, τj ].

Lemma A.2.1. Suppose that N ∈ N. Then for each j ∈ {1, . . . , N}, we have that

0 ≤
∫ τj

τj−1

ĝ(x)− g(x) dx ≤ c∞,3

K2+γ
n

. (A.6)

Additionally, we have ∫ 1

τN

ĝ(x)− g(x) dx ≤ c∞,3

K2+γ
n

, (A.7)

even if N = 0.

Proof. First note that g(κi) = ĝ(κi) for all κi ∈ Tκ, as ĝ is the linear interpolant of g at

the knots in Tκ. Therefore, for all κi > κ`, we have that

∫ κi

κ`

(ĝ(x)− g(x)) dx =
i∑

r=`+1

∫ κr

κr−1

(ĝ(x)− g(x)) dx =
i∑

r=`+1

∫ κr

κr−1

∫ x

κr−1

(ĝ ′(t)− g′(t)) dt dx.

Now, since ĝ is the linear interpolant of g at the knots in Tκ, we have that

ĝ ′(t) =
1

κr − κr−1

∫ κr

κr−1

g′(s) ds for all t ∈ (κr−1, κr), (A.8)

i.e., ĝ ′ is constant on each (κr−1, κr) and equal to the average value of g′ on that same

interval. Therefore, since g′ is an increasing function, ĝ ′(t) − g′(t) ≤ (g′(κr) − g′(κr−1))

for all t ∈ (κr−1, κr). Hence, since κr − κr−1 ≤ cκ,2
Kn

for all r, we also have

i∑
r=`+1

∫ κr

κr−1

∫ x

κr−1

(ĝ ′(t)− g′(t)) dt dx ≤
i∑

r=`+1

∫ κr

κr−1

∫ x

κr−1

(g′(κr)− g′(κr−1)) dt dx
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≤
i∑

r=`+1

c2
κ,2

2K2
n

(g′(κr)− g′(κr−1)) =
c2
κ,2

2K2
n

(g′(κi)− g′(κ`)).

Combining the above information, we see that for all κi > κ`,

∫ κi

κ`

(ĝ(x)− g(x)) dx ≤
c2
κ,2

2K2
n

(g′(κi)− g′(κ`)). (A.9)

Define

a`,i := κi −
(
g′(κi)− g′(κ`)

L

) 1
γ

∈ [κ`, κi],

since g ∈ H1+γ
L . Note that by the properties of g ∈ S2,H(1 + γ, L),

g(κi)− h(κi, κ`) =

∫ κi

κ`

g′(x)− g′(κ`) dx ≥
∫ κi

a`,i

g′(x)− g′(κ`) dx

≥
∫ κi

a`,i

(g′(κi)− g′(κ`))− (g′(κi)− g′(x)) dx

≥
∫ κi

a`,i

(g′(κi)− g′(κ`))− L(κi − x)γ dx =
γ

1 + γ

(g′(κi)− g′(κ`))1+ 1
γ

L
1
γ

.

Hence,

g′(κi)− g′(κ`) ≤
(
L

1
γ

(
1 + γ

γ

)
(g(κi)− h(κi, κ`))

) γ
1+γ

≤ L
1

1+γ (g(κi)− h(κi, κ`))
γ

1+γ .

(A.10)

Combining (A.9) and (A.10), we have that

∫ κi

κ`

(ĝ(x)− g(x)) dx ≤
L

1
1+γ c2

κ,2

2K2
n

(g(κi)− h(κi, κ`))
γ

1+γ , (A.11)

for all κ` and κi with κ` < κi. By a similar argument, (A.11) holds when κ` > κi.
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In what follows, we will show that (A.6) holds for all j = 1, . . . , N , when N ≥ 1.

Fix j ∈ {1, . . . , N}, and note τ̃j−1 = κi∗1 and τj = κi∗2 for some i∗1, i
∗
2 ∈ N. We have that

∫ τj

τj−1

(ĝ − g)(x) dx =

∫ κi∗1−1

τj−1

(ĝ − g)(x) dx+

∫ κi∗1

κi∗1−1

(ĝ − g)(x) dx

+

∫ κi∗2−1

κi∗1

(ĝ − g)(x) dx+

∫ τj

κi∗2−1

(ĝ − g)(x) dx.

and will now bound each of the four quantities on the right hand side of this equation.

(i) We have that τj−1 ≤ κi∗1−1, since τj−1 < κi∗1 = τ̃j−1. Hence,

∫ κi∗1−1

τj−1

(ĝ − g)(x) dx ≤
L

1
1+γ c2

κ,2

2K2
n

(g(κi)− h(κi, κ`))
γ

1+γ ≤
Lc2+γ

κ,2

2K2+γ
n

=
1

3

c∞,3

K2+γ
n

, (A.12)

via the choice of τ̃j−1 in Step 2 of Algorithm 2 and (A.11).

(ii) For any i = 1, . . . ,Kn, let κi−1/2 := κi−1+κi
2 . Then, for any such i, we have g(κi−1) =

ĝ(κi−1), g(κi) = ĝ(κi), and ĝ′(x) ∈ [g′(κi−1), g′(κi)] on (κi−1, κi), since ĝ is the linear

interpolant of g at the knots in Tκ, and g′ is increasing. Therefore,

∫ κi

κi−1

(ĝ − g)(x) dx =

∫ κ
i− 1

2

κi−1

(ĝ − g)(x) dx+

∫ κi

κ
i− 1

2

(ĝ − g)(x) dx

=

∫ κ
i− 1

2

κi−1

∫ t

κi−1

(ĝ − g)′(t) dt dx+

∫ κi

κ
i− 1

2

∫ κi

t
(ĝ − g)′(t) dt dx

≤
∫ κ

i− 1
2

κi−1

∫ t

κi−1

(g(κi)− g(κi−1)) dt dx+

∫ κi

κ
i− 1

2

∫ κi

t
(g(κi)− g(κi−1)) dt dx

≤
∫ κ

i− 1
2

κi−1

∫ t

κi−1

L

(
cκ,2
Kn

)γ
dt dx+

∫ κi

κ
i− 1

2

∫ κi

t
L

(
cκ,2
Kn

)γ
dt dx

≤ 2L

(
cκ,2
Kn

)γ c2
κ,2

8K2
n

=
L

4

(
cκ,2
Kn

)2+γ

=
1

6

c∞,3

K2+γ
n

. (A.13)

Setting i = i∗1 gives us that
∫ κi∗1
κi∗1−1

ĝ(x)− g(x) dx ≤ 1
6
c∞,3

K2+γ
n

.
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(iii) Similar to (i), we have κi∗1 = τ̃j−1 < τj = κi∗2 , so κi∗1 ≤ κi∗2−1, and

∫ κi∗2−1

κi∗1

ĝ(x)− g(x) dx ≤
L

1
1+γ c2

κ,2

2K2
n

(g(κi∗1)− h(κi∗1 , κi∗2−1))
γ

1+γ ≤ 1

3

c∞,3

K2+γ
n

.

(iv) Setting i = i∗2 in (A.13) gives us that
∫ τj
κi∗2−1

ĝ(x)− g(x) dx ≤ 1
6
c∞,3

K2+γ
n

, since τj = κi∗2 .

Combining (i)-(iv), and the fact that ĝ ≥ g, we have that (A.6) holds.

Next, we will show that (A.7) holds, by considering the following three different

cases.

Case 1: Algorithm 2 is terminated at Step 2. In this case, we have g(κi)− h(κi, τN ) <
c∗2

K1+γ
n

for all κi ≥ τN including κKn = 1, so

∫ 1

τN

(ĝ − g)(x) dx ≤
L

1
1+γ c2

κ,2

2K2
n

(g(1)− h(1, τN ))
γ

1+γ ≤
Lc2+γ

κ,2

2K2+γ
n

<
c∞,3

K2+γ
n

.

Case 2: Algorithm 2 is terminated at Step 3. In this case, τ̃N = κi∗1 for some i∗1 ∈ N and

g(τ̃N )− h(τ̃N , κi) ≤
c∗2

K1+γ
n

for all κi ≥ τ̃N , including κKn = 1. Note that

∫ 1

τN

ĝ(x)− g(x) dx =

∫ κi∗1−1

τN

ĝ(x)− g(x) dx+

∫ κi∗1

κi∗1−1

ĝ(x)− g(x) dx

+

∫ κKn

κi∗1

ĝ(x)− g(x) dx.

Using an argument similar to that in (A.12), we have that
∫ κi∗1−1

τN (ĝ − g)(x) dx ≤

1
3
c∞,3

K2+γ
n

, and by (A.13), we have that
∫ κi∗1
κi∗1−1

(ĝ − g)(x) dx ≤ 1
6
c∞,3

K2+γ
n

. Finally, since

g(κi∗1)− h(κi∗1 , 1) <
c∗2

K1+γ
n

, we have that

∫ 1

κi∗1

ĝ(x)− g(x) dx ≤
L

1
1+γ c2

κ,2

2K2
n

(
g(κi∗1)− h(κi∗1 , 1)

) γ
1+γ ≤

Lc2+γ
κ,2

2K2+γ
n

=
1

3

c∞,3

K2+γ
n

.
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From all of this, we can conclude that
∫ 1
τN
ĝ(x)− g(x) dx ≤ 5

6
c∞,3

K2+γ
n

<
c∞,3

K2+γ
n

.

Case 3: Algorithm 2 is terminated at Step 4. We have that τN = 1, so
∫ 1
τN
ĝ(x)− g(x) dx =

0 ≤ c∞,3

K2+γ
n

.

This completes the proof of (A.7).

Now that we have chosen the intervals [τj−1, τj ], j = 1, . . . , N and proven Lemma A.2.1,

we will construct piecewise linear continuous convex functions g̀j , on each [τj−1, τj ], which

will be later used in the construction of g̃.

A.3 Construction of g̃: the g̀j’s

In the previous section, we chose points τ0, τ1, . . . , τN ∈ Tκ. In this section, we

will define continuous piecewise linear convex functions g̀j : [τj−1, τj ] → R for each j =

1, . . . , N . In order to do this, we must first identify certain knots in [τj−1, τj ]∩Tκ that are

needed to construct g̀j :

(i) Let τ
(1)
j−1 ∈ Tκ be the knot immediately to the left of τ̃j−1, i.e., if τ̃j−1 = κi, then

τ
(1)
j−1 = κi−1.

(ii) Observe that g(x)− h(x, τj) increases as x ≤ τj decreases by (A.4). Let τ
(2)
j−1 be the

largest κi ∈ Tκ with κi < τj , such that g(κi)− h(κi, τj) ≥
c∗2

K1+γ
n

.

(iii) Finally, let τ
(3)
j−1 be the knot in Tκ immediately to the right of τ

(2)
j−1.
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Note that for each j, we have τj−1 ≤ τ
(1)
j−1 < τ̃j−1 ≤ τ

(2)
j−1 < τ

(3)
j−1 ≤ τj . We define each g̀j

such that

g̀j(x) :=



h(x, τj−1) if x ∈ [τj−1, τ
(1)
j−1)

h(τ
(1)
j−1, τj−1) +

(
g(τ̃j−1)− c∗2

K1+γ
n
− h(τ

(1)
j−1, τj−1)

)
x−τ (1)

j−1

τ̃j−1−τ
(1)
j−1

if x ∈ [τ
(1)
j−1, τ̃j−1)

ĝ(x)− c∗2
K1+γ
n

if x ∈ [τ̃j−1, τ
(2)
j−1]

h(τ
(3)
j−1, τj) +

(
g(τ

(2)
j−1)− c∗2

K1+γ
n
− h(τ

(3)
j−1, τj)

)
τ

(3)
j−1−x

τ
(3)
j−1−τ

(2)
j−1

if x ∈ (τ
(2)
j−1, τ

(3)
j−1]

h(x, τj) if x ∈ (τ
(3)
j−1, τj ],

(A.14)

where we note that [τj−1, τ
(1)
j−1), (τ

(3)
j−1, τj ] may be empty, and [τ̃j−1, τ

(2)
j−1] may contain only

a single point. An illustration of constructing g̀j is given in Figure A.3.

g(τj−1)

g(τ
(1)
j−1)

g(τ̃j−1)g(τ
(2)
j−1)g(τ

(3)
j−1)

g(τj)

d∗ :=
c∗2

K
1+γ
n

d∗
d∗

d∗

d∗
d∗

Figure A.3: Construction of g̀j (dashed line).

As discussed in Section A.1, the goal in constructing each of the g̀j ’s is that each g̀j

is a continuous, convex, piecewise linear function with knots in [τj−1, τj ] ∩ Tκ, such that∫ τj
τj−1

(g̀j − g)(x) dx ≤ 0, and
∫ x
τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt ≤
c∞,3

K2+γ
n

for all x ∈ [τj−1, τj ].

Heuristically, g̀j should be on average below g more than it is above g; it is possible

that g̀j may be below g on all of (τj−1, τj). We choose g̀j in this way, so that later on,

we may construct g̃j as a weighted average of g̀j and ĝ on [τj−1, τj ]; since ĝ satisfies
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∫ τj
τj−1

(ĝ − g)(x) dx ≥ 0, we may choose a suitable weight so that
∫ τj
τj−1

(g̃j − g)(t) dt = 0.

The next two Lemmas establish the desired properties of the g̀j ’s.

Lemma A.3.1. For each j ∈ {1, . . . , N}, the function g̀j is piecewise linear with knots in

Tκ ∩ [τj−1, τj ], continuous, and convex on [τj−1, τj ].

Proof. Certainly g̀j is a piecewise linear function with knots in Tκ ∩ [τj−1, τj ], as h(·, τj−1)

and h(·, τj) are both linear, and ĝ is the linear interpolant of g with knots in Tκ.

To see that g̀j is continuous, first observe that g̀j is continuous on each of [τj−1, τ
(1)
j−1),

(τ
(1)
j−1, τ̃j−1), (τ̃j−1, τ

(2)
j−1), (τ

(2)
j−1, τ

(3)
j−1), and (τ

(3)
j−1, τj ], some of which may have empty in-

terior. By noting that ĝ(τ̃j−1) = g(τ̃j−1), ĝ(τ
(2)
j−1) = g(τ

(2)
j−1), and substituting in the

endpoints of these subintervals of [τj−1, τj ], we can see that g̀j is continuous on all of

[τj−1, τj ] as well.

Finally, we must show that g̀j is convex on [τj−1, τj ]. This is equivalent to showing

that the slopes of the line segments forming g̀j increase when going from left to right

on [τj−1, τj ]. Since g̀j is linear (and thus convex) on each of [τj−1, τ
(1)
j−1], [τ

(1)
j−1, τ̃j−1],

[τ
(2)
j−1, τ

(3)
j−1], and [τ

(3)
j−1, τj ], as well as convex on [τ̃j−1, τ

(2)
j−1], the slopes of the line segments

forming g̀j increase when going from left to right on each of these subintervals of [τj−1, τj ].

Therefore, it is sufficient to show that the slope of the line segment immediately to the left

of each κi = τ
(1)
j−1, τ̃j−1, τ

(2)
j−1, τ

(3)
j−1 is less than or equal to the slope of the corresponding line

segment immediately to the right of each of these points, i.e., that (g̀j)
′
−(κi) ≤ (g̀j)

′
+(κi) for

each κi = τ
(1)
j−1, τ̃j−1, τ

(2)
j−1, τ

(3)
j−1. We establish this inequality for each of these points. (Note

that we assume that [τj−1, τ
(1)
j−1], [τ̃j−1, τ

(2)
j−1], and [τ

(3)
j−1, τj ] all have nonempty interior. If

this is not the case, similar arguments can be made.)
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(i) By (A.14), (g̀j)
′
−(τ

(1)
j−1) = d

dx [h(x, τj−1)]
∣∣
τ

(1)
j−1

= g′(τj−1). Likewise by (A.14) and the

choice of τ̃j−1 via Algorithm 2,

(g̀j)
′
+(τ

(1)
j−1) =

g(τ̃j−1)− c∗2
K1+γ
n
− h(τ

(1)
j−1, τj−1)

τ̃j−1 − τ (1)
j−1

=
g(τ̃j−1)− g(τj−1)− g′(τj−1)(τ

(1)
j−1 − τj−1)− c∗2

K1+γ
n

τ̃j−1 − τ (1)
j−1

=
g(τ̃j−1)− g(τj−1)− g′(τj−1)(τ̃j−1 − τj−1)− c∗2

K1+γ
n

τ̃j−1 − τ (1)
j−1

+ g′(τj−1)

=
g(τ̃j−1)− h(τ̃j−1, τj−1)− c∗2

K1+γ
n

τ̃j−1 − τ (1)
j−1

+ g′(τj−1)

≥ g′(τj−1) = (g̀j)
′
−(τ

(1)
j−1).

(ii) Let κp be the knot immediately to the right of τ̃j−1, so that τ̃j−1 = κp−1. Then

by (A.8) and the fact that g′ is an increasing function,

(g̀j)
′
+(τ̃j−1) = ĝ ′+(τ̃j−1) =

1

κp − τ̃j−1

∫ κp

τ̃j−1

g′(x) dx ≥ g′(τ̃j−1) ≥
g(τ̃j−1)− g(τ

(1)
j−1)

τ̃j−1 − τ (1)
j−1

≥
g(τ̃j−1)− g(τ

(1)
j−1) + g(τ

(1)
j−1)− h(τ

(1)
j−1, τj−1)− c∗2

K1+γ
n

τ̃j−1 − τ (1)
j−1

=
g(τ̃j−1)− c∗2

K1+γ
n
− h(τ

(1)
j−1, τj−1)

τ̃j−1 − τ (1)
j−1

= (g̀j)
′
−(τ̃j−1).

(iii) Let κp ∈ Tκ be the knot immediately to the left of τ
(2)
j−1, so that τ

(2)
j−1 = κp+1. Then,

by an argument similar to (ii),

(g̀j)
′
−(τ

(2)
j−1) = ĝ ′−(τ

(2)
j−1) =

1

τ
(2)
j−1 − κp

∫ τ
(2)
j−1

κp

g′(x) dx ≤ g′(τ (2)
j−1)

≤
g(τ

(3)
j−1)− g(τ

(2)
j−1)

τ
(3)
j−1 − τ

(2)
j−1

≤
g(τ

(3)
j−1)− g(τ

(2)
j−1)− g(τ

(3)
j−1) + h(τ

(3)
j−1, τj) +

c∗2
K1+γ
n

τ
(3)
j−1 − τ

(2)
j−1
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= −
g(τ

(2)
j−1)− c∗2

K1+γ
n
− h(τ

(3)
j−1, τj)

τ
(3)
j−1 − τ

(2)
j−1

= (g̀j)
′
+(τ

(2)
j−1).

(iv) Finally, we have that

(g̀j)
′
−(τ

(3)
j−1) = −

g(τ
(2)
j−1)− c∗2

K1+γ
n
− h(τ

(3)
j−1, τj)

τ
(3)
j−1 − τ

(2)
j−1

= −
g(τ

(2)
j−1)− g(τj)− g′(τj)(τ (2)

j−1 − τj)−
c∗2

K1+γ
n

τ
(3)
j−1 − τ

(2)
j−1

+ g′(τj)

= −
g(τ

(2)
j−1)− h(τ

(2)
j−1, τj)−

c∗2
K1+γ
n

τ
(3)
j−1 − τ

(2)
j−1

+ g′(τj) ≤ g′(τj) = (g̀j)
′
+(τ

(3)
j−1).

We have established that (g̀j)
′
−(κi) ≤ (g̀j)

′
+(κi) for each κi = τ

(1)
j−1, τ̃j−1, τ

(2)
j−1, τ

(3)
j−1, which

completes the proof of this Lemma.

Lemma A.3.2. For all j = 1, . . . , N , we have

∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt ≤
c∞,3

K2+γ
n

(A.15)

and also, ∫ τj

τj−1

(g̀j − g)(t) dt ≤ 0. (A.16)

Proof. On [τj−1, τ
(1)
j−1], we have that g̀j(x) = h(x, τ

(1)
j−1) ≤ g(x) by (A.3), so (g̀j − g)(x) ≤ 0

for all x ∈ [τj−1, τ
(1)
j−1]. Similarly, (g̀j − g)(x) ≤ 0 for all x ∈ [τ

(3)
j−1, τj ]. Additionally, for

any x ∈ [κi−1, κi],

0 ≤ ĝ(x)− g(x) = min

{∫ x

κi−1

(ĝ − g)′(t) dt,

∫ κi

x
(ĝ − g)′(t) dt

}

≤ (g′(κi)− g′(κi−1))
κi − κi−1

2
≤ c∗2

K1+γ
n

,
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so we have that for all x ∈ [τ̃j−1, τ
(2)
j−1],

g̀j(x)− g(x) = ĝ(x)− g(x)− c∗2

K1+γ
n

≤ 0.

Consider (g̀j − ĝ)(t) on [τ
(1)
j−1, τ̃j−1]. When restricted to [τ

(1)
j−1, τ̃j−1], (g̀j − ĝ)(t) is linear,

with

(g̀j − ĝ)(τ
(1)
j−1) = h(τ

(1)
j−1, τj−1)− g(τ

(1)
j−1) ∈

(
− c∗2

K1+γ
n

, 0

]
,

by (A.3) and the choice of τ
(1)
j−1. Furthermore,

(g̀j − ĝ)(τ̃j−1) = ĝ(τ̃j−1)− c∗2

K1+γ
n

− ĝ(τ̃j−1) = − c∗2

K1+γ
n

.

Hence, |g̀j − ĝ|(t) ≤
c∗2

K1+γ
n

on [τ
(1)
j−1, τ̃j−1], and by (A.13),

∫ τ̃j−1

τ
(1)
j−1

|g̀j − g|(t) dt ≤
∫ τ̃j−1

τ
(1)
j−1

|g̀j − ĝ|(t) dt+

∫ τ̃j−1

τ
(1)
j−1

|ĝ − g|(t) dt

≤ cκ,2c
∗
2

K2+γ
n

+
1

6

c∞,3

K2+γ
n

<
1

2

c∞,3

K2+γ
n

.

By a similar argument,
∫ τ (3)

j−1

τ
(2)
j−1

|g̀j − g|(t) dt < 1
2
c∞,3

K2+γ
n

. Combining the above arguments, we

have that

∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt

=

∫ τ̃j−1

τ
(1)
j−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt+

∫ τ
(3)
j−1

τ
(2)
j−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt

≤
∫ τ̃j−1

τ
(1)
j−1

|g̀j − g|(t) dt+

∫ τ
(3)
j−1

τ
(2)
j−1

|g̀j − g|(t) dt <
1

2

c∞,3

K2+γ
n

+
1

2

c∞,3

K2+γ
n

=
c∞,3

K2+γ
n

,

giving us (A.15).
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Recall from the above discussion that when restricted to [τ
(1)
j−1, τ̃j−1], (g̀j − ĝ)(t) is

linear with (g̀j − ĝ)(τ
(1)
j−1) ≤ 0, and (g̀j − ĝ)(τ̃j−1) = − c∗2

K1+γ
n

. Thus,

∫ τ̃j−1

τ
(1)
j−1

(g̀j − ĝ)(t) dt =
(
τ̃j−1 − τ (1)

j−1

) (g̀j − ĝ)(τ
(1)
j−1) + (g̀j − ĝ)(τ̃j−1)

2

≤ −1

2

cκ,2c
∗
2

K2+γ
n

= −1

6

c∞,3

K2+γ
n

,

which then gives us via (A.13) that

∫ τ̃j−1

τ
(1)
j−1

(g̀j − g)(t) dt =

∫ τ̃j−1

τ
(1)
j−1

(g̀j − ĝ)(t) dt+

∫ τ̃j−1

τ
(1)
j−1

(ĝ − g)(t) dt

≤ −1

6

c∞,3

K2+γ
n

+
1

6

c∞,3

K2+γ
n

= 0

By a similar argument,
∫ τ (3)

j−1

τ
(2)
j−1

(g̀j − g)(t) dt ≤ 0. Hence, since both
∫ τ̃j−1

τ
(1)
j−1

(g̀j − g)(t) dt ≤ 0,

and
∫ τ (3)

j−1

τ
(2)
j−1

(g̀j − g)(t) dt ≤ 0, while g̀j ≤ g on [τj−1, τ
(1)
j−1], [τ̃j−1, τ

(2)
j−1], and [τ

(3)
j−1, τj ], we

have (A.16).

Now that we have constructed the g̀j ’s and established some properties of these

functions via Lemmas A.3.1 and A.3.2, we will utilize these functions in the next section

to construct g̃ ∈ STκ+,2

A.4 Construction of g̃ and fB

We are now ready to construct g̃. For each j = 1, . . . , N , let φj : [0, 1]→ R be given

by

φj(r) := r

∫ τj

τj−1

(ĝ − g)(t) dt+ (1− r)
∫ τj

τj−1

(g̀j − g)(t) dt. (A.17)
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For each j, we have that φj(0) =
∫ τj
τj−1

(g̀j − g)(t) dt ≤ 0 by (A.16) and φj(1) =
∫ τj
τj−1

(ĝ −

g)(t) dt ≥ 0, since ĝ ≥ g is the linear interpolant of g, a convex function. Additionally,

φj is continuous on [0, 1]. By the Intermediate Value Theorem, there exists rj ∈ [0, 1]

satisfying φj(rj) = 0. Define g̃ : [0, 1]→ R such that

g̃(t) :=


g̃j(t) := rj ĝ(t) + (1− rj)g̀j(t) for all t ∈ [τj−1, τj), j = 1, . . . , N

ĝ(t) for all t ∈ [τN , 1].

(A.18)

The following lemma will allow us to establish Proposition 4.2.1.

Lemma A.4.1. The function g̃ is continuous and convex on [0, 1]. Also, g̃ is a piecewise

linear function with knot sequence Tκ. Hence, g̃ ∈ STκ+,2. Finally, for all x ∈ [0, 1],

∣∣∣∣∫ x

0
(g̃ − g)(t) dt

∣∣∣∣ ≤ c∞,3

K2+γ
n

. (A.19)

Proof. To see that g̃ is continuous on [0, 1], first note that g̃ is continuous on [τ0, τ1) as well

as (τj−1, τj) for each j = 2, . . . , N , and on (τN , 1]. Define rN+1 := 1 and g̃N+1(x) := ĝ(x)

for all x ∈ [τN , 1], if τN 6= 1. To see that g̃ is continuous at each τj , j = 1, . . . , N , observe

that (i) ĝ is continuous at each τj , with ĝ(τj) = g(τj), (ii) each g̀j is left continuous at τj ,

with g̀j(τj) = g(τj), and (iii) each g̀j+1 is right continuous at τj , with g̀j+1(τj) = g(τj).

Hence, g̃ is continuous on all of [0, 1], as

lim
t→τ−j

g̃(t) = lim
t→τ−j

(rj ĝ(t) + (1− rj)g̀j(t)) = g(τj)

= lim
t→τ+

j

(rj+1 ĝ(t) + (1− rj+1) g̀j+1(t)) = lim
t→τ+

j

g̃(t).
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By construction, on each [τj−1, τj ] and on [τN , 1], g̃ is a convex (and thus linear) com-

bination of the piecewise linear functions ĝ and g̀j , each with knot sequence Tκ. Therefore,

g̃ is a piecewise linear function with knot sequence Tκ.

Next, we will show that g̃ is convex on [0, 1]. Note that g̃ is convex on each [τj−1, τj ]

and on [τN , 1], since (i) ĝ is convex, (ii) each g̀j is convex on [τj−1, τj ] by Lemma A.3.1,

and (iii) any convex (and thus, conic) combination of convex functions is convex. Since

g̃ is a continuous piecewise linear function, the convexity of g̃ is equivalent to the line

segments forming g̃ having increasing slopes when moving from left to right on [0, 1].

Since we already have that g̃ is convex on each [τj−1, τj ] and on [τN , 1], it is sufficient to

show that the slope of the line segment immediately to the left of each τj is less than or

equal to the slope of the corresponding line segment immediately to the right of that τj

for each j = 1, . . . , N , i.e., we must show that g̃ ′−(τj) ≤ g̃ ′+(τj), for j = 1, . . . , N . Fix

j ∈ {1, . . . , N − 1}. Let κi∗ = τj , so that κi∗−1 is the knot immediately to the left of κi∗

and κi∗+1 is the knot immediately to the right of κi∗ . Using (A.8) and the fact that g′ is

an increasing function, we have that

g̃ ′−(τj) = rj ĝ
′
−(τj) + (1− rj)(g̀j) ′−(τj) =

rj
τj − κi∗−1

∫ τj

κi∗−1

g′(x) dx+ (1− rj)g ′(τj)

≤ g ′(τj) ≤
rj+1

κi∗+1 − τj

∫ κi∗+1

τj

g′(x) dx+ (1− rj+1)g′(τj)

= rj+1 ĝ
′
+(τj) + (1− rj+1)(g̀j+1) ′+(τj) = g̃ ′+(τj).

Alternatively, if j = N and τN < 1, so that τN = κi∗ , then

g̃ ′−(τN ) = rN ĝ
′
−(τN ) + (1− rN )(g̀N ) ′−(τN ) ≤ rN ĝ ′+(τN ) + (1− rN )g ′(τN )

≤ rN ĝ ′+(τN ) +
1− rN

κi∗+1 − τN

∫ κi∗+1

τN

g′(x) dx = ĝ ′+(τN ) = g̃ ′+(τN ).
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Thus g̃ ′−(τj) ≤ g̃ ′+(τj) for all j = 1, . . . , N and g̃ ∈ STκ+,2 is convex on [0, 1].

Finally, we show that (A.19) holds for all x ∈ [0, 1]. Let x ∈ [0, 1]. We have that

x ∈ [τj−1, τj) for some j = 1, . . . , N , or x ∈ [τN , 1]. Note that for any j = 1, . . . , N ,

0 ≤
∣∣∣∣∫ τj

0
(g̃(t)− g(t)) dt

∣∣∣∣ ≤ j∑
i=1

∣∣∣∣∣
∫ τi

τi−1

(g̃(t)− g(t)) dt

∣∣∣∣∣
=

j∑
i=1

∣∣∣∣∣
∫ τi

τi−1

(riĝ(t) + (1− ri)g̀i(t)− g(t)) dt

∣∣∣∣∣
=

j∑
i=1

∣∣∣∣∣ri
∫ τi

τi−1

(ĝ(t)− g(t)) dt+ (1− ri)
∫ τi

τi−1

(g̀i(t)− g(t)) dt

∣∣∣∣∣ =

j∑
i=1

|φi(ri)| = 0.

Hence, if x ∈ [τj−1, τj ], for some j = 1, . . . , N , then

∣∣∣∣∫ x

0
(g̃(t)− g(t)) dt

∣∣∣∣ =

∣∣∣∣∣
∫ x

τj−1

(g̃(t)− g(t)) dt

∣∣∣∣∣
=

∣∣∣∣∣rj
∫ x

τj−1

(ĝ(t)− g(t)) dt+ (1− rj)
∫ x

τj−1

(g̀j(t)− g(t)) dt

∣∣∣∣∣
=
∣∣∣rj ∫ x

τj−1

(ĝ − g)(t) dt+ (1− rj)
∫ x

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt

+ (1− rj)
∫ x

τj−1

(g̀j − g)(t)1[g̀j−g<0](t) dt
∣∣∣

≤ max

{
rj

∫ x

τj−1

(ĝ − g)(t) dt+ (1− rj)
∫ x

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt,

(1− rj)
∫ x

τj−1

(g − g̀j)(t)1[g̀j−g<0](t) dt

}

≤ rj
∫ τj

τj−1

(ĝ − g)(t) dt+ (1− rj)
∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt

≤ rj
c∞,3

K2+γ
n

+ (1− rj)
c∞,3

K2+γ
n

=
c∞,3

K2+γ
n

.

The second inequality in the above display follows from the fact that

rj

∫ τj

τj−1

(ĝ − g)(t) dt+ (1− rj)
∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g≥0](t) dt
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= −(1− rj)
∫ τj

τj−1

(g̀j − g)(t)1[g̀j−g<0](t) dt,

which in turn follows from the choice of rj and the inequality ĝ(x) ≥ g(x) for all x ∈ [0, 1].

Finally, if x ∈ [τN , 1], then by (A.7),

∣∣∣∣∫ x

0
(g̃(t)− g(t)) dt

∣∣∣∣ =

∣∣∣∣∫ x

τN

(ĝ(t)− g(t)) dt

∣∣∣∣ ≤ ∫ 1

τN

(ĝ(t)− g(t)) dt ≤ c∞,3

K2+γ
n

.

Let fB : [0, 1] → R be given by fB(x) := f(0) +
∫ x

0 g̃(t) dt. Since fB(x) := f(0) +∫ x
0 g̃(t) d, and g̃ ∈ STκ+,2, we must have that fB ∈ STκ+,3. Additionally,

|fB(x)− f(x)| =
∣∣∣∣fB(0)− f(0) +

∫ x

0
(fB − f)′(t) dt

∣∣∣∣ =

∣∣∣∣∫ x

0
(g̃ − g)(t) dt

∣∣∣∣ ≤ c∞,3

K2+γ
n

,

for all x ∈ [0, 1] via Lemma A.4.1. Thus, ‖f − fB‖∞ ≤ c∞,3

K2+γ
n

, completing the proof of

Proposition 4.2.1.
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[21] L. Dümbgen, S. Freitag, and G. Jongbloed. Consistency of concave regression
with an application to current-status data. Mathematical Methods of Statistics, Vol.
13(1), pp. 69–81, 2004.

[22] M. Egerstedt and C. Martin. Control Theoretic Splines. Princeton University
Press, 2010.

[23] F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Com-
plementarity Problems. Springer-Verlag, 2003.

[24] M. Gerdts and M. Kunkel. A nonsmooth Newton’s method for discretized op-
timal control problems with state and control constraints. Journal of Industrial and
Management Optimization, Vol. 4(2), pp. 247–280, 2008.

[25] A. Girard. Towards a multiresolution approach to linear control. IEEE Trans. on
Automatic Control, Vol. 51(8), pp. 1261–1270, 2006.

[26] M.V. Golitschek. On the L∞-norm of the orthogonal projector onto splines: A
short proof of A. Shardin’s theorem. Journal of Approximation Theory, Vol. 181, pp.
30–42, 2014.

181



[27] P. Groeneboom, F. Jongbloed, and J.A. Wellner. Estimation of a convex
function: Characterizations and asymptotic theory. Annals of Statistics, Vol. 29(6),
pp. 1653–1698, 2001.

[28] A. Guntuboyina and B. Sen. Covering numbers for convex functions. IEEE Trans.
on Information Theory, Vol. 59(4), 1957–1965, 2013.

[29] A. Guntuboyina and B. Sen. Global risk bounds and adaptation in univariate
convex regression. Probability Theory and Related Fields, Vol. 163(1-2), pp. 379–
411, 2015.

[30] L. Han, M.K. Camlibel, J.-S. Pang, and W.P.M.H. Heemels. A unified nu-
merical scheme for linear-quadratic optimal control problems with joint control and
state constraints. Optimization Methods and Software, Vol. 27(4-5), pp. 761–799,
2012.

[31] P. Hanson and G. Pledger. Consistency in concave regression. Annals of Statis-
tics, Vol. 4, pp.1038–1050, 1976.

[32] Y. Hu. Convexity preserving approximation by free knot splines. SIAM Journal on
Mathematical Analysis, Vol. 22(4), pp. 1183–1191, 1991.

[33] A. Juditsky and A. Nazin. Information lower bounds for stochastic adaptive track-
ing problem under nonparametric uncertainty. Proc. of the 36th IEEE Conf. Decision
and Control, pp. 3476–3477, San Diego, CA, 1997.

[34] A. Juditsky and A. Nazin. On minimax approach to non-parametric adaptive
control. International Journal of Adaptive Control and Signal Processing, Vol. 15(2),
pp. 153–168, 2001.

[35] H. Kano, M. Egerstedt, H. Nakata, and C.F. Martin. B-splines and control
theory. Applied Mathematics and Computation, Vol. 145, pp. 265–288, 2003.

[36] H. Kano, H. Fujioka, and C.F. Martin. Optimal smoothing spline with con-
straints on its derivatives. Proc. of the 49nd IEEE Conf. on Decision and Control,
pp. 6785–6790, 2010.

[37] J. Kiefer. Optimum rates for non-parametric density and regression estimates under
order restrictions. In: Kallianpur, G., Krishnaiah, P. R., Ghosh, J.K. (Eds.), Statistics
and Probability. North–Holland, Amsterdam, pp.419–428 1982.

[38] V.N. Konovalov and D. Leviatan. Estimates on the approximation of 3-
monotone functions by 3-monotone quadratic splines. East J. Approx, Vol. 7, pp.
333–349, 2001.

182



[39] V.N. Konovalov and D. Leviatan. Shape preserving widths of Sobolev-type
classes of s-monotone functions on a finite interval. Isreal J. Math. Vol. 133 (2003),
239-268.

[40] A.P. Korostelev and O. Korosteleva. Mathematical Statistics: Asymptotic
Minimax Theory. American Mathematical Soc., 2011.

[41] S. Kullback. A lower bound for discrimination information in terms of variation.
IEEE Trans. on Information Theory, Vol. 13, pp. 126–127, 1967.

[42] S. Lang. Real and Functional Analysis. Springer-Verlag, 3rd Edition, 1993.

[43] O. Lepski and A. Tsybakov. Asymptotically exact nonparametric hypothesis test-
ing in sup-norm and at a fixed point. Probability Theory and Related Fields, Vol.
117, pp. 17–48, 2000.

[44] D.G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons
Inc., 1969.

[45] E. Mammen. Nonparametric regression under qualitative smoothness assumptions.
Annnals of Statistics, Vol. 19, pp. 741–759, 1991.

[46] C.A. Micchelli and F.I. Utreras. Smoothing and interploation in a convex subset
of a Hilbert space. SIAM Journal on Scientific and Statistical Computing, Vol. 9(4),
pp. 728–746, 1988.

[47] M. Nagahara, C.F. Martin, and Y. Yamamoto. Quadratic programming for
monotone control theoretical splines. Proc. of the SICE 2010 Annual Conference, pp.
531–534, 2010.

[48] A. Nazin and V. Katkovnik. Minimax lower bound for time-tarying frequency
estimation of harmonic signal. IEEE Trans. on Signal Processing, Vol. 46(12), pp.
3235–3245, 1998.

[49] A. Nemirovski. Topics in Non-parametric Statistics. Lecture on Probability The-
ory and Statistics. Berlin, Germany: Springer-Verlag, Vol. 1738, Lecture Notes in
Mathematics, 2000.

[50] A. Nemirovski, B. Polyak, and A. Tsybakov. Convergence rate of nonparamet-
ric estimates of maximum-likelihood type. Problems of of Information Transmission,
Vol. 21(4), pp. 17–33, 1985.

[51] J.K. Pal. Spiking problem in monotone regression: Penalized residual sum of squares.
Statistics and Probability Letters, Vol. 78(12), pp. 1548–1556, 2008.

183



[52] J.K. Pal and M. Woodroofe. Large sample properties of shape restricted re-
gression estimators with smoothness adjustments. Statistica Sinica, Vol. 17(4), pp.
1601–1616, 2007.

[53] J.S. Pang. Newton’s method for B-differentiable equations. Mathematics of Opera-
tions Research, Vol. 15, pp. 311–341, 1990.

[54] J.S. Pang and J. Shen. Strongly regular differential variational systems. IEEE
Trans. on Automatic Control, Vol. 52(2), pp. 242–255, 2007.

[55] J.S. Pang and D. Stewart. Differential variational inequalities. Mathematical Pro-
gramming Series A, Vol. 113, pp. 345–424, 2008.

[56] J.S. Pang and D. Stewart. Solution dependence on initial conditions in differential
variational inequalities. Mathematical Programming Series B, Vol. 116, pp. 429–460,
2009.

[57] D. Papp, And F. Alizadeh. Shape constrained estimations using nonnegative
splines. Journal of Computational and Graphical Statistics, Vol. 23(1), pp. 211–231,
2014.

[58] A.V. Prymak. Three-convex approximation by quadratic splines with arbitrary fixed
knots. East J. Approx, Vol. 8(2), pp. 185–196, 2002.

[59] C.V. Rao, J.B. Rawlings, and J.H. Lee. Constrained linear state estimation – a
moving horizon approach. Automatica, Vol. 37(10), pp. 1619–1628, 2001.

[60] M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations.
Springer, 2nd Edition, 2004.

[61] T. Robertson, F.T. Wright, and R.L. Dykstra. Order Restricted Statistical
Inference. John Wiley & Sons Ltd., 1988.

[62] A.K. Sanyal, M. Chellappa, J.L. Valk, J. Ahmed, J. Shen, D.S. Berstien.
Globally convergent adaptive tracking of spacecraft angular velocity with inertia iden-
tification and adaptive linearization. Proceedings of the 42nd IEEE Conference on
Decision and Control, pp. 2704–2709, Hawaii, 2003.

[63] S. Scholtes. Introduction to piecewise differentiable equations. Habilitation thesis,
Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe,
1994.

[64] A.Y. Shardin. The L∞-norm of the L2-spline projector is bounded independently of
the knot sequence: A proof of de Boor’s conjecture. Acta Mathematica, Vol. 187(1),
pp. 59–137, 2001.

184



[65] J. Shen. Observability analysis of conewise linear systems via directional derivative
and positive invariance techniques. Automatica, Vol. 46(5), pp. 843–851, 2010.

[66] J. Shen. Robust non-Zenoness of piecewise analytic systems with applications to
complementarity systems. Proc. of 2010 American Control Conference, pp. 148–153,
Baltimore, MD, 2010.

[67] J. Shen and T.M. Lebair. Shape restricted smoothing splines via constrained
optimal control and nonsmooth Newton’s methods. Automatica, Vol. 53, pp. 216–
224, 2015.

[68] J. Shen and J.S. Pang. Linear complementarity systems: Zeno states. SIAM
Journal on Control and Optimization, Vol. 44, pp. 1040–1066, 2005.

[69] J. Shen and J.S. Pang. Linear complementarity systems with singleton properties:
non-Zenoness. Proc. of 2007 American Control Conference, pp. 2769–2774, New York,
2007.

[70] J. Shen and X. Wang. A constrained optimal control approach to smoothing
splines. Proc. of the 50th IEEE Conf. on Decision and Control, pp. 1729–1734, Or-
lando, FL, 2011.

[71] J. Shen and X. Wang. Convex regression via penalized splines: a complementarity
approach. Proc. of American Control Conference, pp. 332–337, Montreal, Canada,
2012.

[72] J. Shen and X. Wang. Estimation of monotone functions via P -splines: A con-
strained dynamical optimization approach. SIAM Journal on Control and Optimiza-
tion, Vol. 49(2), pp. 646–671, 2011.

[73] J. Shen and X. Wang. Estimation of shape constrained functions in dynamical sys-
tems and its application to genetic networks. Proc. of American Control Conference,
pp. 5948–5953, 2010.

[74] C.J. Stone. Optimal rate of convergence for nonparametric regression. Annals of
Statistics, Vol. 10, pp. 1040–1053, 1982.

[75] S. Sun, M. Egerstedt, and C.F. Martin. Control theoretic smoothing splines.
IEEE Trans. on Automatic Control, Vol. 45(12), pp. 2271–2279, 2000.

[76] C. Tantiyaswasdikul and M. Woodroofe. Isotonic smoothing splines under
sequential designs. Journal of Statistical Planning and Inference, Vol. 38, pp. 75-88,
1994.

[77] A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2010.

[78] G. Wahba. Spline Models for Observational Data. Philadelphia: SIAM, 1990.

185



[79] X. Wang and J. Shen. A class of grouped Brunk estimators and penalized spline
estimators for monotone regression. Biometrika, Vol. 97(3), pp. 585–601, 2010.

[80] X. Wang and J. Shen. Uniform convergence and rate adaptive estimation of convex
functions via constrained optimization. SIAM Journal on Control and Optimization,
Vol. 51(4), pp. 2753–2787, 2013.

[81] M. Woodroofe and J. Sun. A penalized maximum likelihood estimate of f(0+)
when f is nonincreasing. Statistica Sinica, Vol. 3, pp. 501–515, 1993.

[82] Y. Zhou, M. Egerstedt, and C.F. Martin. Hilbert space methods for control
theoretic splines: a unified treatment. Communication in Information and Systems.
Vol. 6(1), pp. 55–82, 2006.

186




